package linalg import "core:math" import "base:builtin" import "base:intrinsics" import "base:runtime" // Generic TAU :: 6.28318530717958647692528676655900576 PI :: 3.14159265358979323846264338327950288 E :: 2.71828182845904523536 τ :: TAU π :: PI e :: E SQRT_TWO :: 1.41421356237309504880168872420969808 SQRT_THREE :: 1.73205080756887729352744634150587236 SQRT_FIVE :: 2.23606797749978969640917366873127623 LN2 :: 0.693147180559945309417232121458176568 LN10 :: 2.30258509299404568401799145468436421 MAX_F64_PRECISION :: 16 // Maximum number of meaningful digits after the decimal point for 'f64' MAX_F32_PRECISION :: 8 // Maximum number of meaningful digits after the decimal point for 'f32' RAD_PER_DEG :: TAU/360.0 DEG_PER_RAD :: 360.0/TAU @private IS_NUMERIC :: intrinsics.type_is_numeric @private IS_QUATERNION :: intrinsics.type_is_quaternion @private IS_ARRAY :: intrinsics.type_is_array @private IS_FLOAT :: intrinsics.type_is_float @private BASE_TYPE :: intrinsics.type_base_type @private ELEM_TYPE :: intrinsics.type_elem_type @(require_results) scalar_dot :: proc "contextless" (a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) { return a * b } @(require_results) vector_dot :: proc "contextless" (a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) #no_bounds_check { for i in 0.. (c: f16) { return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z } @(require_results) quaternion128_dot :: proc "contextless" (a, b: $T/quaternion128) -> (c: f32) { return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z } @(require_results) quaternion256_dot :: proc "contextless" (a, b: $T/quaternion256) -> (c: f64) { return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z } dot :: proc{scalar_dot, vector_dot, quaternion64_dot, quaternion128_dot, quaternion256_dot} inner_product :: dot outer_product :: intrinsics.outer_product @(require_results) quaternion_inverse :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) { return conj(q) * quaternion(w=1.0/dot(q, q), x=0, y=0, z=0) } @(require_results) scalar_cross :: proc "contextless" (a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) { return a * b } @(require_results) vector_cross2 :: proc "contextless" (a, b: $T/[2]$E) -> E where IS_NUMERIC(E) { return a[0]*b[1] - b[0]*a[1] } @(require_results) vector_cross3 :: proc "contextless" (a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) { c[0] = a[1]*b[2] - b[1]*a[2] c[1] = a[2]*b[0] - b[2]*a[0] c[2] = a[0]*b[1] - b[0]*a[1] return } @(require_results) quaternion_cross :: proc "contextless" (q1, q2: $Q) -> (q3: Q) where IS_QUATERNION(Q) { q3.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y q3.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z q3.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x q3.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z return } vector_cross :: proc{scalar_cross, vector_cross2, vector_cross3} cross :: proc{scalar_cross, vector_cross2, vector_cross3, quaternion_cross} @(require_results) vector_normalize :: proc "contextless" (v: $T/[$N]$E) -> T where IS_FLOAT(E) { return v / length(v) } @(require_results) quaternion_normalize :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) { return q/abs(q) } normalize :: proc{vector_normalize, quaternion_normalize} @(require_results) vector_normalize0 :: proc "contextless" (v: $T/[$N]$E) -> T where IS_FLOAT(E) { m := length(v) return 0 if m == 0 else v/m } @(require_results) quaternion_normalize0 :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) { m := abs(q) return 0 if m == 0 else q/m } normalize0 :: proc{vector_normalize0, quaternion_normalize0} @(require_results) vector_length :: proc "contextless" (v: $T/[$N]$E) -> E where IS_FLOAT(E) { return math.sqrt(dot(v, v)) } @(require_results) vector_length2 :: proc "contextless" (v: $T/[$N]$E) -> E where IS_NUMERIC(E) { return dot(v, v) } @(require_results) quaternion_length :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) { return abs(q) } @(require_results) quaternion_length2 :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) { return dot(q, q) } @(require_results) scalar_triple_product :: proc "contextless" (a, b, c: $T/[$N]$E) -> E where IS_NUMERIC(E) { // a . (b x c) // b . (c x a) // c . (a x b) return dot(a, cross(b, c)) } @(require_results) vector_triple_product :: proc "contextless" (a, b, c: $T/[$N]$E) -> T where IS_NUMERIC(E) { // a x (b x c) // (a . c)b - (a . b)c return cross(a, cross(b, c)) } length :: proc{vector_length, quaternion_length} length2 :: proc{vector_length2, quaternion_length2} @(require_results) projection :: proc "contextless" (x, normal: $T/[$N]$E) -> T where IS_NUMERIC(E) { return dot(x, normal) / dot(normal, normal) * normal } @(require_results) identity_array_based_matrix :: proc "contextless" ($T: typeid/[$N][N]$E) -> (m: T) #no_bounds_check { for i in 0.. T #no_bounds_check { return 1 } identity :: proc{ identity_array_based_matrix, identity_matrix, } transpose :: intrinsics.transpose @(require_results) matrix_mul :: proc "contextless" (a, b: $M/matrix[$N, N]$E) -> (c: M) where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check { return a * b } @(require_results) matrix_comp_mul :: proc "contextless" (a, b: $M/matrix[$I, $J]$E) -> (c: M) where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check { return hadamard_product(a, b) } @(require_results) matrix_mul_differ :: proc "contextless" (a: $A/matrix[$I, $J]$E, b: $B/matrix[J, $K]E) -> (c: matrix[I, K]E) where !IS_ARRAY(E), IS_NUMERIC(E), I != K #no_bounds_check { return a * b } @(require_results) matrix_mul_vector :: proc "contextless" (a: $A/matrix[$I, $J]$E, b: $B/[J]E) -> (c: B) where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check { return a * b } @(require_results) quaternion_mul_quaternion :: proc "contextless" (q1, q2: $Q) -> Q where IS_QUATERNION(Q) { return q1 * q2 } @(require_results) quaternion64_mul_vector3 :: proc "contextless" (q: $Q/quaternion64, v: $V/[3]$F/f16) -> V { q := transmute(runtime.Raw_Quaternion64_Vector_Scalar)q v := v t := cross(2*q.vector, v) return V(v + q.scalar*t + cross(q.vector, t)) } @(require_results) quaternion128_mul_vector3 :: proc "contextless" (q: $Q/quaternion128, v: $V/[3]$F/f32) -> V { q := transmute(runtime.Raw_Quaternion128_Vector_Scalar)q v := v t := cross(2*q.vector, v) return V(v + q.scalar*t + cross(q.vector, t)) } @(require_results) quaternion256_mul_vector3 :: proc "contextless" (q: $Q/quaternion256, v: $V/[3]$F/f64) -> V { q := transmute(runtime.Raw_Quaternion256_Vector_Scalar)q v := v t := cross(2*q.vector, v) return V(v + q.scalar*t + cross(q.vector, t)) } quaternion_mul_vector3 :: proc{quaternion64_mul_vector3, quaternion128_mul_vector3, quaternion256_mul_vector3} mul :: proc{ matrix_mul, matrix_mul_differ, matrix_mul_vector, quaternion64_mul_vector3, quaternion128_mul_vector3, quaternion256_mul_vector3, quaternion_mul_quaternion, } @(require_results) vector_to_ptr :: proc "contextless" (v: ^$V/[$N]$E) -> ^E where IS_NUMERIC(E), N > 0 #no_bounds_check { return &v[0] } @(require_results) matrix_to_ptr :: proc "contextless" (m: ^$A/matrix[$I, $J]$E) -> ^E where IS_NUMERIC(E), I > 0, J > 0 #no_bounds_check { return &m[0, 0] } to_ptr :: proc{vector_to_ptr, matrix_to_ptr} vector_angle_between :: proc "contextless" (a, b: $V/[$N]$E) -> E { a0 := normalize0(a) b0 := normalize0(b) return math.acos(dot(a0, b0)) } quaternion64_angle_between :: proc "contextless" (a, b: $Q/quaternion64) -> f16 { c := normalize0(conj(a) * b) return math.acos(c.w) } quaternion128_angle_between :: proc "contextless" (a, b: $Q/quaternion128) -> f32 { c := normalize0(conj(a) * b) return math.acos(c.w) } quaternion256_angle_between :: proc "contextless" (a, b: $Q/quaternion256) -> f64 { c := normalize0(conj(a) * b) return math.acos(c.w) } angle_between :: proc{ vector_angle_between, quaternion64_angle_between, quaternion128_angle_between, quaternion256_angle_between, } // Splines @(require_results) vector_slerp :: proc "contextless" (x, y: $T/[$N]$E, a: E) -> T #no_bounds_check { cos_alpha := dot(x, y) alpha := math.acos(cos_alpha) sin_alpha := math.sin(alpha) t1 := math.sin((1 - a) * alpha) / sin_alpha t2 := math.sin(a * alpha) / sin_alpha return x * t1 + y * t2 } @(require_results) catmull_rom :: proc "contextless" (v1, v2, v3, v4: $T/[$N]$E, s: E) -> T #no_bounds_check { s2 := s*s s3 := s2*s f1 := -s3 + 2 * s2 - s f2 := 3 * s3 - 5 * s2 + 2 f3 := -3 * s3 + 4 * s2 + s f4 := s3 - s2 return (f1 * v1 + f2 * v2 + f3 * v3 + f4 * v4) * 0.5 } @(require_results) hermite :: proc "contextless" (v1, t1, v2, t2: $T/[$N]$E, s: E) -> T #no_bounds_check { s2 := s*s s3 := s2*s f1 := 2 * s3 - 3 * s2 + 1 f2 := -2 * s3 + 3 * s2 f3 := s3 - 2 * s2 + s f4 := s3 - s2 return f1 * v1 + f2 * v2 + f3 * t1 + f4 * t2 } @(require_results) cubic :: proc "contextless" (v1, v2, v3, v4: $T/[$N]$E, s: E) -> T #no_bounds_check { return ((v1 * s + v2) * s + v3) * s + v4 } @(require_results) array_cast :: proc "contextless" (v: $A/[$N]$T, $Elem_Type: typeid) -> (w: [N]Elem_Type) #no_bounds_check { for i in 0.. (w: matrix[M, N]Elem_Type) #no_bounds_check { for j in 0.. [N]f32 { return array_cast(v, f32) } @(require_results) to_f64 :: #force_inline proc(v: $A/[$N]$T) -> [N]f64 { return array_cast(v, f64) } @(require_results) to_i8 :: #force_inline proc(v: $A/[$N]$T) -> [N]i8 { return array_cast(v, i8) } @(require_results) to_i16 :: #force_inline proc(v: $A/[$N]$T) -> [N]i16 { return array_cast(v, i16) } @(require_results) to_i32 :: #force_inline proc(v: $A/[$N]$T) -> [N]i32 { return array_cast(v, i32) } @(require_results) to_i64 :: #force_inline proc(v: $A/[$N]$T) -> [N]i64 { return array_cast(v, i64) } @(require_results) to_int :: #force_inline proc(v: $A/[$N]$T) -> [N]int { return array_cast(v, int) } @(require_results) to_u8 :: #force_inline proc(v: $A/[$N]$T) -> [N]u8 { return array_cast(v, u8) } @(require_results) to_u16 :: #force_inline proc(v: $A/[$N]$T) -> [N]u16 { return array_cast(v, u16) } @(require_results) to_u32 :: #force_inline proc(v: $A/[$N]$T) -> [N]u32 { return array_cast(v, u32) } @(require_results) to_u64 :: #force_inline proc(v: $A/[$N]$T) -> [N]u64 { return array_cast(v, u64) } @(require_results) to_uint :: #force_inline proc(v: $A/[$N]$T) -> [N]uint { return array_cast(v, uint) } @(require_results) to_complex32 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex32 { return array_cast(v, complex32) } @(require_results) to_complex64 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex64 { return array_cast(v, complex64) } @(require_results) to_complex128 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex128 { return array_cast(v, complex128) } @(require_results) to_quaternion64 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion64 { return array_cast(v, quaternion64) } @(require_results) to_quaternion128 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion128 { return array_cast(v, quaternion128) } @(require_results) to_quaternion256 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion256 { return array_cast(v, quaternion256) } hadamard_product :: intrinsics.hadamard_product matrix_flatten :: intrinsics.matrix_flatten determinant :: proc{ matrix1x1_determinant, matrix2x2_determinant, matrix3x3_determinant, matrix4x4_determinant, } adjugate :: proc{ matrix1x1_adjugate, matrix2x2_adjugate, matrix3x3_adjugate, matrix4x4_adjugate, } inverse_transpose :: proc{ matrix1x1_inverse_transpose, matrix2x2_inverse_transpose, matrix3x3_inverse_transpose, matrix4x4_inverse_transpose, } inverse :: proc{ matrix1x1_inverse, matrix2x2_inverse, matrix3x3_inverse, matrix4x4_inverse, } @(require_results) hermitian_adjoint :: proc "contextless" (m: $M/matrix[$N, N]$T) -> M where intrinsics.type_is_complex(T), N >= 1 #no_bounds_check { return conj(transpose(m)) } @(require_results) trace :: proc "contextless" (m: $M/matrix[$N, N]$T) -> (trace: T) #no_bounds_check { for i in 0.. (minor: T) where N > 1 #no_bounds_check { K :: int(N-1) cut_down: matrix[K, K]T for col_idx in 0..= column) for row_idx in 0..= row) cut_down[row_idx, col_idx] = m[i, j] } } return determinant(cut_down) } @(require_results) matrix1x1_determinant :: proc "contextless" (m: $M/matrix[1, 1]$T) -> (det: T) #no_bounds_check { return m[0, 0] } @(require_results) matrix2x2_determinant :: proc "contextless" (m: $M/matrix[2, 2]$T) -> (det: T) #no_bounds_check { return m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0] } @(require_results) matrix3x3_determinant :: proc "contextless" (m: $M/matrix[3, 3]$T) -> (det: T) #no_bounds_check { a := +m[0, 0] * (m[1, 1] * m[2, 2] - m[1, 2] * m[2, 1]) b := -m[0, 1] * (m[1, 0] * m[2, 2] - m[1, 2] * m[2, 0]) c := +m[0, 2] * (m[1, 0] * m[2, 1] - m[1, 1] * m[2, 0]) return a + b + c } @(require_results) matrix4x4_determinant :: proc "contextless" (m: $M/matrix[4, 4]$T) -> (det: T) #no_bounds_check { a := adjugate(m) for i in 0..<4 { det += m[0, i] * a[0, i] } return } @(require_results) matrix1x1_adjugate :: proc "contextless" (x: $M/matrix[1, 1]$T) -> (y: M) #no_bounds_check { y = x return } @(require_results) matrix2x2_adjugate :: proc "contextless" (x: $M/matrix[2, 2]$T) -> (y: M) #no_bounds_check { y[0, 0] = +x[1, 1] y[0, 1] = -x[1, 0] y[1, 0] = -x[0, 1] y[1, 1] = +x[0, 0] return } @(require_results) matrix3x3_adjugate :: proc "contextless" (m: $M/matrix[3, 3]$T) -> (y: M) #no_bounds_check { y[0, 0] = +(m[1, 1] * m[2, 2] - m[2, 1] * m[1, 2]) y[0, 1] = -(m[1, 0] * m[2, 2] - m[2, 0] * m[1, 2]) y[0, 2] = +(m[1, 0] * m[2, 1] - m[2, 0] * m[1, 1]) y[1, 0] = -(m[0, 1] * m[2, 2] - m[2, 1] * m[0, 2]) y[1, 1] = +(m[0, 0] * m[2, 2] - m[2, 0] * m[0, 2]) y[1, 2] = -(m[0, 0] * m[2, 1] - m[2, 0] * m[0, 1]) y[2, 0] = +(m[0, 1] * m[1, 2] - m[1, 1] * m[0, 2]) y[2, 1] = -(m[0, 0] * m[1, 2] - m[1, 0] * m[0, 2]) y[2, 2] = +(m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) return } @(require_results) matrix4x4_adjugate :: proc "contextless" (x: $M/matrix[4, 4]$T) -> (y: M) #no_bounds_check { for i in 0..<4 { for j in 0..<4 { sign: T = 1 if (i + j) % 2 == 0 else -1 y[i, j] = sign * matrix_minor(x, i, j) } } return } @(require_results) matrix1x1_inverse_transpose :: proc "contextless" (x: $M/matrix[1, 1]$T) -> (y: M) #no_bounds_check { y[0, 0] = 1/x[0, 0] return } @(require_results) matrix2x2_inverse_transpose :: proc "contextless" (x: $M/matrix[2, 2]$T) -> (y: M) #no_bounds_check { d := x[0, 0]*x[1, 1] - x[0, 1]*x[1, 0] when intrinsics.type_is_integer(T) { y[0, 0] = +x[1, 1] / d y[1, 0] = -x[0, 1] / d y[0, 1] = -x[1, 0] / d y[1, 1] = +x[0, 0] / d } else { id := 1 / d y[0, 0] = +x[1, 1] * id y[1, 0] = -x[0, 1] * id y[0, 1] = -x[1, 0] * id y[1, 1] = +x[0, 0] * id } return } @(require_results) matrix3x3_inverse_transpose :: proc "contextless" (x: $M/matrix[3, 3]$T) -> (y: M) #no_bounds_check { a := adjugate(x) d := determinant(x) when intrinsics.type_is_integer(T) { for i in 0..<3 { for j in 0..<3 { y[i, j] = a[i, j] / d } } } else { id := 1/d for i in 0..<3 { for j in 0..<3 { y[i, j] = a[i, j] * id } } } return } @(require_results) matrix4x4_inverse_transpose :: proc "contextless" (x: $M/matrix[4, 4]$T) -> (y: M) #no_bounds_check { a := adjugate(x) d: T for i in 0..<4 { d += x[0, i] * a[0, i] } when intrinsics.type_is_integer(T) { for i in 0..<4 { for j in 0..<4 { y[i, j] = a[i, j] / d } } } else { id := 1/d for i in 0..<4 { for j in 0..<4 { y[i, j] = a[i, j] * id } } } return } @(require_results) matrix1x1_inverse :: proc "contextless" (x: $M/matrix[1, 1]$T) -> (y: M) #no_bounds_check { y[0, 0] = 1/x[0, 0] return } @(require_results) matrix2x2_inverse :: proc "contextless" (x: $M/matrix[2, 2]$T) -> (y: M) #no_bounds_check { d := x[0, 0]*x[1, 1] - x[0, 1]*x[1, 0] when intrinsics.type_is_integer(T) { y[0, 0] = +x[1, 1] / d y[0, 1] = -x[0, 1] / d y[1, 0] = -x[1, 0] / d y[1, 1] = +x[0, 0] / d } else { id := 1 / d y[0, 0] = +x[1, 1] * id y[0, 1] = -x[0, 1] * id y[1, 0] = -x[1, 0] * id y[1, 1] = +x[0, 0] * id } return } @(require_results) matrix3x3_inverse :: proc "contextless" (x: $M/matrix[3, 3]$T) -> (y: M) #no_bounds_check { a := adjugate(x) d := determinant(x) when intrinsics.type_is_integer(T) { for i in 0..<3 { for j in 0..<3 { y[i, j] = a[j, i] / d } } } else { id := 1/d for i in 0..<3 { for j in 0..<3 { y[i, j] = a[j, i] * id } } } return } @(require_results) matrix4x4_inverse :: proc "contextless" (x: $M/matrix[4, 4]$T) -> (y: M) #no_bounds_check { a := adjugate(x) d: T for i in 0..<4 { d += x[0, i] * a[0, i] } when intrinsics.type_is_integer(T) { for i in 0..<4 { for j in 0..<4 { y[i, j] = a[j, i] / d } } } else { id := 1/d for i in 0..<4 { for j in 0..<4 { y[i, j] = a[j, i] * id } } } return }