package fmt import "base:intrinsics" import "base:runtime" import "core:math" import "core:math/bits" import "core:mem" import "core:io" import "core:reflect" import "core:strconv" import "core:strings" import "core:time" import "core:unicode/utf8" // Internal data structure that stores the required information for formatted printing Info :: struct { using state: Info_State, writer: io.Writer, arg: any, // Temporary indirection_level: int, record_level: int, optional_len: Maybe(int), use_nul_termination: bool, n: int, // bytes written } Info_State :: struct { minus: bool, plus: bool, space: bool, zero: bool, hash: bool, width_set: bool, prec_set: bool, ignore_user_formatters: bool, in_bad: bool, width: int, prec: int, indent: int, } // Custom formatter signature. It returns true if the formatting was successful and false when it could not be done User_Formatter :: #type proc(fi: ^Info, arg: any, verb: rune) -> bool // Example User Formatter: // SomeType :: struct { // value: int, // } // // Custom Formatter for SomeType // User_Formatter :: proc(fi: ^fmt.Info, arg: any, verb: rune) -> bool { // m := cast(^SomeType)arg.data // switch verb { // case 'v', 'd': // fmt.fmt_int(fi, u64(m.value), true, 8 * size_of(SomeType), verb) // case: // return false // } // return true // } // main :: proc() { // // Ensure the fmt._user_formatters map is initialized // fmt.set_user_formatters(new(map[typeid]fmt.User_Formatter)) // err := fmt.register_user_formatter(type_info_of(SomeType).id, User_Formatter) // assert(err == .None) // // Use the custom formatter // x := SomeType{42} // fmt.println("Custom type value: ", x) // } Register_User_Formatter_Error :: enum { None, No_User_Formatter, Formatter_Previously_Found, } // NOTE(bill): This is a pointer to prevent accidental additions // it is prefixed with `_` rather than marked with a private attribute so that users can access it if necessary _user_formatters: ^map[typeid]User_Formatter // Sets user-defined formatters for custom print formatting of specific types // // Inputs: // - m: A pointer to a map of typeids to User_Formatter structs. // // NOTE: Must be called before using register_user_formatter. // set_user_formatters :: proc(m: ^map[typeid]User_Formatter) { assert(_user_formatters == nil, "set_user_formatters must not be called more than once.") _user_formatters = m } // Registers a user-defined formatter for a specific typeid // // Inputs: // - id: The typeid of the custom type. // - formatter: The User_Formatter function for the custom type. // // Returns: A Register_User_Formatter_Error value indicating the success or failure of the operation. // // WARNING: set_user_formatters must be called before using this procedure. // register_user_formatter :: proc(id: typeid, formatter: User_Formatter) -> Register_User_Formatter_Error { if _user_formatters == nil { return .No_User_Formatter } if prev, found := _user_formatters[id]; found && prev != nil { return .Formatter_Previously_Found } _user_formatters[id] = formatter return .None } // Creates a formatted string // // *Allocates Using Context's Allocator* // // Inputs: // - args: A variadic list of arguments to be formatted. // - sep: An optional separator string (default is a single space). // // Returns: A formatted string. // @(require_results) aprint :: proc(args: ..any, sep := " ", allocator := context.allocator) -> string { str: strings.Builder strings.builder_init(&str, allocator) return sbprint(&str, ..args, sep=sep) } // Creates a formatted string with a newline character at the end // // *Allocates Using Context's Allocator* // // Inputs: // - args: A variadic list of arguments to be formatted. // - sep: An optional separator string (default is a single space). // // Returns: A formatted string with a newline character at the end. // @(require_results) aprintln :: proc(args: ..any, sep := " ", allocator := context.allocator) -> string { str: strings.Builder strings.builder_init(&str, allocator) return sbprintln(&str, ..args, sep=sep) } // Creates a formatted string using a format string and arguments // // *Allocates Using Context's Allocator* // // Inputs: // - fmt: A format string with placeholders for the provided arguments. // - args: A variadic list of arguments to be formatted. // - newline: Whether the string should end with a newline. (See `aprintfln`.) // // Returns: A formatted string. The returned string must be freed accordingly. // @(require_results) aprintf :: proc(fmt: string, args: ..any, allocator := context.allocator, newline := false) -> string { str: strings.Builder strings.builder_init(&str, allocator) return sbprintf(&str, fmt, ..args, newline=newline) } // Creates a formatted string using a format string and arguments, followed by a newline. // // *Allocates Using Context's Allocator* // // Inputs: // - fmt: A format string with placeholders for the provided arguments. // - args: A variadic list of arguments to be formatted. // // Returns: A formatted string. The returned string must be freed accordingly. // @(require_results) aprintfln :: proc(fmt: string, args: ..any, allocator := context.allocator) -> string { return aprintf(fmt, ..args, allocator=allocator, newline=true) } // Creates a formatted string // // *Allocates Using Context's Temporary Allocator* // // Inputs: // - args: A variadic list of arguments to be formatted. // - sep: An optional separator string (default is a single space). // // Returns: A formatted string. // @(require_results) tprint :: proc(args: ..any, sep := " ") -> string { str: strings.Builder strings.builder_init(&str, context.temp_allocator) return sbprint(&str, ..args, sep=sep) } // Creates a formatted string with a newline character at the end // // *Allocates Using Context's Temporary Allocator* // // Inputs: // - args: A variadic list of arguments to be formatted. // - sep: An optional separator string (default is a single space). // // Returns: A formatted string with a newline character at the end. // @(require_results) tprintln :: proc(args: ..any, sep := " ") -> string { str: strings.Builder strings.builder_init(&str, context.temp_allocator) return sbprintln(&str, ..args, sep=sep) } // Creates a formatted string using a format string and arguments // // *Allocates Using Context's Temporary Allocator* // // Inputs: // - fmt: A format string with placeholders for the provided arguments. // - args: A variadic list of arguments to be formatted. // - newline: Whether the string should end with a newline. (See `tprintfln`.) // // Returns: A formatted string. // @(require_results) tprintf :: proc(fmt: string, args: ..any, newline := false) -> string { str: strings.Builder strings.builder_init(&str, context.temp_allocator) return sbprintf(&str, fmt, ..args, newline=newline) } // Creates a formatted string using a format string and arguments, followed by a newline. // // *Allocates Using Context's Temporary Allocator* // // Inputs: // - fmt: A format string with placeholders for the provided arguments. // - args: A variadic list of arguments to be formatted. // // Returns: A formatted string. // @(require_results) tprintfln :: proc(fmt: string, args: ..any) -> string { return tprintf(fmt, ..args, newline=true) } // Creates a formatted string using a supplied buffer as the backing array. Writes into the buffer. // // Inputs: // - buf: The backing buffer // - args: A variadic list of arguments to be formatted // - sep: An optional separator string (default is a single space) // // Returns: A formatted string // bprint :: proc(buf: []byte, args: ..any, sep := " ") -> string { sb := strings.builder_from_bytes(buf) return sbprint(&sb, ..args, sep=sep) } // Creates a formatted string using a supplied buffer as the backing array, appends newline. Writes into the buffer. // // Inputs: // - buf: The backing buffer // - args: A variadic list of arguments to be formatted // - sep: An optional separator string (default is a single space) // // Returns: A formatted string with a newline character at the end // bprintln :: proc(buf: []byte, args: ..any, sep := " ") -> string { sb := strings.builder_from_bytes(buf) return sbprintln(&sb, ..args, sep=sep) } // Creates a formatted string using a supplied buffer as the backing array. Writes into the buffer. // // Inputs: // - buf: The backing buffer // - fmt: A format string with placeholders for the provided arguments // - args: A variadic list of arguments to be formatted // - newline: Whether the string should end with a newline. (See `bprintfln`.) // // Returns: A formatted string // bprintf :: proc(buf: []byte, fmt: string, args: ..any, newline := false) -> string { sb := strings.builder_from_bytes(buf) return sbprintf(&sb, fmt, ..args, newline=newline) } // Creates a formatted string using a supplied buffer as the backing array, followed by a newline. Writes into the buffer. // // Inputs: // - buf: The backing buffer // - fmt: A format string with placeholders for the provided arguments // - args: A variadic list of arguments to be formatted // // Returns: A formatted string // bprintfln :: proc(buf: []byte, fmt: string, args: ..any) -> string { return bprintf(buf, fmt, ..args, newline=true) } // Runtime assertion with a formatted message // // Inputs: // - condition: The boolean condition to be asserted // - fmt: A format string with placeholders for the provided arguments // - args: A variadic list of arguments to be formatted // - loc: The location of the caller // @(disabled=ODIN_DISABLE_ASSERT) assertf :: proc(condition: bool, fmt: string, args: ..any, loc := #caller_location) { if !condition { // NOTE(dragos): We are using the same trick as in builtin.assert // to improve performance to make the CPU not // execute speculatively, making it about an order of // magnitude faster @(cold) internal :: proc(loc: runtime.Source_Code_Location, fmt: string, args: ..any) { p := context.assertion_failure_proc if p == nil { p = runtime.default_assertion_failure_proc } message := tprintf(fmt, ..args) p("Runtime assertion", message, loc) } internal(loc, fmt, ..args) } } // Runtime panic with a formatted message // // Inputs: // - fmt: A format string with placeholders for the provided arguments // - args: A variadic list of arguments to be formatted // - loc: The location of the caller // panicf :: proc(fmt: string, args: ..any, loc := #caller_location) -> ! { p := context.assertion_failure_proc if p == nil { p = runtime.default_assertion_failure_proc } message := tprintf(fmt, ..args) p("Panic", message, loc) } // Creates a formatted C string // // *Allocates Using Context's Allocator* // // Inputs: // - args: A variadic list of arguments to be formatted. // - sep: An optional separator string (default is a single space). // // Returns: A formatted C string. // @(require_results) caprint :: proc(args: ..any, sep := " ", allocator := context.allocator) -> cstring { str: strings.Builder strings.builder_init(&str, allocator) sbprint(&str, ..args, sep=sep) strings.write_byte(&str, 0) s := strings.to_string(str) return cstring(raw_data(s)) } // Creates a formatted C string // // *Allocates Using Context's Allocator* // // Inputs: // - format: A format string with placeholders for the provided arguments // - args: A variadic list of arguments to be formatted // - newline: Whether the string should end with a newline. (See `caprintfln`.) // // Returns: A formatted C string // @(require_results) caprintf :: proc(format: string, args: ..any, allocator := context.allocator, newline := false) -> cstring { str: strings.Builder strings.builder_init(&str, allocator) sbprintf(&str, format, ..args, newline=newline) strings.write_byte(&str, 0) s := strings.to_string(str) return cstring(raw_data(s)) } // Creates a formatted C string, followed by a newline. // // *Allocates Using Context's Allocator* // // Inputs: // - format: A format string with placeholders for the provided arguments // - args: A variadic list of arguments to be formatted // // Returns: A formatted C string // @(require_results) caprintfln :: proc(format: string, args: ..any, allocator := context.allocator) -> cstring { return caprintf(format, ..args, allocator=allocator, newline=true) } // Creates a formatted C string // // *Allocates Using Context's Temporary Allocator* // // Inputs: // - args: A variadic list of arguments to be formatted. // - sep: An optional separator string (default is a single space). // // Returns: A formatted C string. // @(require_results) ctprint :: proc(args: ..any, sep := " ") -> cstring { return caprint(args=args, sep=sep, allocator=context.temp_allocator) } // Creates a formatted C string // // *Allocates Using Context's Temporary Allocator* // // Inputs: // - format: A format string with placeholders for the provided arguments // - args: A variadic list of arguments to be formatted // - newline: Whether the string should end with a newline. (See `ctprintfln`.) // // Returns: A formatted C string // @(require_results) ctprintf :: proc(format: string, args: ..any, newline := false) -> cstring { return caprintf(format=format, args=args, allocator=context.temp_allocator, newline=newline) } // Creates a formatted C string, followed by a newline. // // *Allocates Using Context's Temporary Allocator* // // Inputs: // - format: A format string with placeholders for the provided arguments // - args: A variadic list of arguments to be formatted // // Returns: A formatted C string // @(require_results) ctprintfln :: proc(format: string, args: ..any) -> cstring { return caprintf(format=format, args=args, allocator=context.temp_allocator, newline=true) } // Formats using the default print settings and writes to the given strings.Builder // // Inputs: // - buf: A pointer to a strings.Builder to store the formatted string // - args: A variadic list of arguments to be formatted // - sep: An optional separator string (default is a single space) // // Returns: A formatted string // sbprint :: proc(buf: ^strings.Builder, args: ..any, sep := " ") -> string { wprint(strings.to_writer(buf), ..args, sep=sep, flush=true) return strings.to_string(buf^) } // Formats and writes to a strings.Builder buffer using the default print settings // // Inputs: // - buf: A pointer to a strings.Builder buffer // - args: A variadic list of arguments to be formatted // - sep: An optional separator string (default is a single space) // // Returns: The resulting formatted string // sbprintln :: proc(buf: ^strings.Builder, args: ..any, sep := " ") -> string { wprintln(strings.to_writer(buf), ..args, sep=sep, flush=true) return strings.to_string(buf^) } // Formats and writes to a strings.Builder buffer according to the specified format string // // Inputs: // - buf: A pointer to a strings.Builder buffer // - fmt: The format string // - args: A variadic list of arguments to be formatted // - newline: Whether a trailing newline should be written. (See `sbprintfln`.) // // Returns: The resulting formatted string // sbprintf :: proc(buf: ^strings.Builder, fmt: string, args: ..any, newline := false) -> string { wprintf(strings.to_writer(buf), fmt, ..args, flush=true, newline=newline) return strings.to_string(buf^) } // Formats and writes to a strings.Builder buffer according to the specified format string, followed by a newline. // // Inputs: // - buf: A pointer to a strings.Builder to store the formatted string // - args: A variadic list of arguments to be formatted // // Returns: A formatted string // sbprintfln :: proc(buf: ^strings.Builder, format: string, args: ..any) -> string { return sbprintf(buf, format, ..args, newline=true) } // Formats and writes to an io.Writer using the default print settings // // Inputs: // - w: An io.Writer to write to // - args: A variadic list of arguments to be formatted // - sep: An optional separator string (default is a single space) // // Returns: The number of bytes written // wprint :: proc(w: io.Writer, args: ..any, sep := " ", flush := true) -> int { fi: Info fi.writer = w // NOTE(bill): Old approach // prev_string := false; // for arg, i in args { // is_string := arg != nil && reflect.is_string(type_info_of(arg.id)); // if i > 0 && !is_string && !prev_string { // io.write_byte(writer, ' '); // } // fmt_value(&fi, args[i], 'v'); // prev_string = is_string; // } // NOTE(bill, 2020-06-19): I have found that the previous approach was not what people were expecting // and were expecting `*print` to be the same `*println` except for the added newline // so I am going to keep the same behaviour as `*println` for `*print` for _, i in args { if i > 0 { io.write_string(fi.writer, sep, &fi.n) } fmt_value(&fi, args[i], 'v') } if flush { io.flush(w) } return fi.n } // Formats and writes to an io.Writer using the default print settings with a newline character at the end // // Inputs: // - w: An io.Writer to write to // - args: A variadic list of arguments to be formatted // - sep: An optional separator string (default is a single space) // // Returns: The number of bytes written // wprintln :: proc(w: io.Writer, args: ..any, sep := " ", flush := true) -> int { fi: Info fi.writer = w for _, i in args { if i > 0 { io.write_string(fi.writer, sep, &fi.n) } fmt_value(&fi, args[i], 'v') } io.write_byte(fi.writer, '\n', &fi.n) if flush { io.flush(w) } return fi.n } // Formats and writes to an io.Writer according to the specified format string // // Inputs: // - w: An io.Writer to write to // - fmt: The format string // - args: A variadic list of arguments to be formatted // - newline: Whether a trailing newline should be written. (See `wprintfln`.) // // Returns: The number of bytes written // wprintf :: proc(w: io.Writer, fmt: string, args: ..any, flush := true, newline := false) -> int { MAX_CHECKED_ARGS :: 64 assert(len(args) <= MAX_CHECKED_ARGS, "number of args > 64 is unsupported") parse_options :: proc(fi: ^Info, fmt: string, index, end: int, unused_args: ^bit_set[0 ..< MAX_CHECKED_ARGS], args: ..any) -> int { i := index // Prefix prefix_loop: for ; i < end; i += 1 { switch fmt[i] { case '+': fi.plus = true case '-': fi.minus = true fi.zero = false case ' ': fi.space = true case '#': fi.hash = true case '0': fi.zero = !fi.minus case: break prefix_loop } } // Width if i < end && fmt[i] == '*' { i += 1 width_index, _, index_ok := _arg_number(fmt, &i, len(args)) if index_ok { unused_args^ -= {width_index} fi.width, _, fi.width_set = int_from_arg(args, width_index) if !fi.width_set { io.write_string(fi.writer, "%!(BAD WIDTH)", &fi.n) } if fi.width < 0 { fi.width = -fi.width fi.minus = true fi.zero = false } } } else { fi.width, i, fi.width_set = _parse_int(fmt, i) } // Precision if i < end && fmt[i] == '.' { i += 1 if i < end && fmt[i] == '*' { i += 1 precision_index, _, index_ok := _arg_number(fmt, &i, len(args)) if index_ok { unused_args^ -= {precision_index} fi.prec, _, fi.prec_set = int_from_arg(args, precision_index) if fi.prec < 0 { fi.prec = 0 fi.prec_set = false } if !fi.prec_set { io.write_string(fi.writer, "%!(BAD PRECISION)", &fi.n) } } } else { prev_i := i fi.prec, i, fi.prec_set = _parse_int(fmt, i) if i == prev_i { fi.prec = 0 fi.prec_set = true } } } return i } error_check_arg :: proc(fi: ^Info, arg_parsed: bool, unused_args: bit_set[0 ..< MAX_CHECKED_ARGS]) -> (int, bool) { if !arg_parsed { for index in unused_args { return index, true } io.write_string(fi.writer, "%!(MISSING ARGUMENT)", &fi.n) } else { io.write_string(fi.writer, "%!(BAD ARGUMENT NUMBER)", &fi.n) } return 0, false } fi: Info end := len(fmt) unused_args: bit_set[0 ..< MAX_CHECKED_ARGS] for i in 0 ..< len(args) { unused_args += {i} } loop: for i := 0; i < end; /**/ { fi = Info{writer = w, n = fi.n} prev_i := i for i < end && !(fmt[i] == '%' || fmt[i] == '{' || fmt[i] == '}') { i += 1 } if i > prev_i { io.write_string(fi.writer, fmt[prev_i:i], &fi.n) } if i >= end { break loop } char := fmt[i] // Process a "char" i += 1 if char == '}' { if i < end && fmt[i] == char { // Skip extra one i += 1 } io.write_byte(fi.writer, char, &fi.n) continue loop } else if char == '{' { if i < end && fmt[i] == char { // Skip extra one i += 1 io.write_byte(fi.writer, char, &fi.n) continue loop } } if char == '%' { if i < end && fmt[i] == '%' { io.write_byte(fi.writer, '%', &fi.n) i += 1 continue loop } i = parse_options(&fi, fmt, i, end, &unused_args, ..args) arg_index, arg_parsed, index_ok := _arg_number(fmt, &i, len(args)) if !index_ok { arg_index, index_ok = error_check_arg(&fi, arg_parsed, unused_args) } if i >= end { io.write_string(fi.writer, "%!(NO VERB)", &fi.n) break loop } else if fmt[i] == ' ' { io.write_string(fi.writer, "%!(NO VERB)", &fi.n) continue loop } verb, w := utf8.decode_rune_in_string(fmt[i:]) i += w if index_ok { unused_args -= {arg_index} fmt_arg(&fi, args[arg_index], verb) } } else if char == '{' { arg_index: int arg_parsed, index_ok: bool if i < end && fmt[i] != '}' && fmt[i] != ':' { arg_index, i, arg_parsed = _parse_int(fmt, i) if arg_parsed { index_ok = 0 <= arg_index && arg_index < len(args) } } if !index_ok { arg_index, index_ok = error_check_arg(&fi, arg_parsed, unused_args) } verb: rune = 'v' if i < end && fmt[i] == ':' { i += 1 i = parse_options(&fi, fmt, i, end, &unused_args, ..args) if i >= end { io.write_string(fi.writer, "%!(NO VERB)", &fi.n) break loop } else if fmt[i] == '}' { i += 1 io.write_string(fi.writer, "%!(NO VERB)", &fi.n) continue } w: int = 1 verb, w = utf8.decode_rune_in_string(fmt[i:]) i += w } if i >= end { io.write_string(fi.writer, "%!(MISSING CLOSE BRACE)", &fi.n) break loop } brace, w := utf8.decode_rune_in_string(fmt[i:]) i += w switch { case brace != '}': io.write_string(fi.writer, "%!(MISSING CLOSE BRACE)", &fi.n) case index_ok: fmt_arg(&fi, args[arg_index], verb) unused_args -= {arg_index} } } } if unused_args != {} { // Use default options when formatting extra arguments. extra_fi := Info { writer = fi.writer, n = fi.n } io.write_string(extra_fi.writer, "%!(EXTRA ", &extra_fi.n) first_printed := false for index in unused_args { if first_printed { io.write_string(extra_fi.writer, ", ", &extra_fi.n) } arg := args[index] if arg == nil { io.write_string(extra_fi.writer, "", &extra_fi.n) } else { fmt_arg(&extra_fi, arg, 'v') } first_printed = true } io.write_byte(extra_fi.writer, ')', &extra_fi.n) fi.n = extra_fi.n } if newline { io.write_byte(w, '\n', &fi.n) } if flush { io.flush(w) } return fi.n } // Formats and writes to an io.Writer according to the specified format string, followed by a newline. // // Inputs: // - w: The io.Writer to write to. // - args: A variadic list of arguments to be formatted. // // Returns: The number of bytes written. // wprintfln :: proc(w: io.Writer, format: string, args: ..any, flush := true) -> int { return wprintf(w, format, ..args, flush=flush, newline=true) } // Writes a ^runtime.Type_Info value to an io.Writer // // Inputs: // - w: An io.Writer to write to // - info: A pointer to a runtime.Type_Info value // // Returns: The number of bytes written and an io.Error if encountered // wprint_type :: proc(w: io.Writer, info: ^runtime.Type_Info, flush := true) -> (int, io.Error) { n, err := reflect.write_type(w, info) if flush { io.flush(w) } return n, err } // Writes a typeid value to an io.Writer // // Inputs: // - w: An io.Writer to write to // - id: A typeid value // // Returns: The number of bytes written and an io.Error if encountered // wprint_typeid :: proc(w: io.Writer, id: typeid, flush := true) -> (int, io.Error) { n, err := reflect.write_type(w, type_info_of(id)) if flush { io.flush(w) } return n, err } // Parses an integer from a given string starting at a specified offset // // Inputs: // - s: The string to parse the integer from // - offset: The position in the string to start parsing the integer // // Returns: // - result: The parsed integer // - new_offset: The position in the string after parsing the integer // - ok: A boolean indicating if the parsing was successful // _parse_int :: proc(s: string, offset: int) -> (result: int, new_offset: int, ok: bool) { is_digit :: #force_inline proc(r: byte) -> bool { return '0' <= r && r <= '9' } new_offset = offset for new_offset < len(s) { c := s[new_offset] is_digit(c) or_break new_offset += 1 result *= 10 result += int(c)-'0' } ok = new_offset > offset return } // Parses an argument number from a format string and determines if it's valid // // Inputs: // - format: The format string to parse // - offset: A pointer to the current position in the format string // - arg_count: The total number of arguments // // Returns: // - index: The parsed argument index // - parsed: A boolean indicating if an argument number was parsed // - ok: A boolean indicating if the parsed argument number is within arg_count // _arg_number :: proc(format: string, offset: ^int, arg_count: int) -> (index: int, parsed, ok: bool) { parse_arg_number :: proc(format: string) -> (int, int, bool) { if len(format) < 3 { return 0, 1, false } for i in 1.. (int, int, bool) { num := 0 new_arg_index := arg_index ok := true if arg_index < len(args) { num, ok = reflect.as_int(args[arg_index]) } if ok { new_arg_index += 1 } return num, new_arg_index, ok } // Writes a bad verb error message // // Inputs: // - fi: A pointer to an Info structure // - verb: The invalid format verb // fmt_bad_verb :: proc(fi: ^Info, verb: rune) { prev_in_bad := fi.in_bad defer fi.in_bad = prev_in_bad fi.in_bad = true io.write_string(fi.writer, "%!", &fi.n) io.write_rune(fi.writer, verb, &fi.n) io.write_byte(fi.writer, '(', &fi.n) if arg := fi.arg; arg != nil { reflect.write_typeid(fi.writer, arg.id, &fi.n) io.write_byte(fi.writer, '=', &fi.n) fmt_value(fi, arg, 'v') } else { io.write_string(fi.writer, "", &fi.n) } io.write_byte(fi.writer, ')', &fi.n) } // Formats a boolean value according to the specified format verb // // Inputs: // - fi: A pointer to an Info structure // - b: The boolean value to format // - verb: The format verb // fmt_bool :: proc(fi: ^Info, b: bool, verb: rune) { switch verb { case 't', 'v', 'w': fmt_string(fi, b ? "true" : "false", 's') case: fmt_bad_verb(fi, verb) } } // Writes padding characters for formatting // // Inputs: // - fi: A pointer to an Info structure // - width: The number of padding characters to write // fmt_write_padding :: proc(fi: ^Info, width: int) { if width <= 0 { return } pad_byte: byte = ' ' if !fi.space { pad_byte = '0' } for i := 0; i < width; i += 1 { io.write_byte(fi.writer, pad_byte, &fi.n) } } // Formats an integer value with specified base, sign, bit size, and digits // // Inputs: // - fi: A pointer to an Info structure // - u: The integer value to format // - base: The base for integer formatting // - is_signed: A boolean indicating if the integer is signed // - bit_size: The bit size of the integer // - digits: A string containing the digits for formatting // // WARNING: May panic if the width and precision are too big, causing a buffer overrun // _fmt_int :: proc(fi: ^Info, u: u64, base: int, is_signed: bool, bit_size: int, digits: string) { _, neg := strconv.is_integer_negative(u, is_signed, bit_size) BUF_SIZE :: 256 if fi.width_set || fi.prec_set { width := fi.width + fi.prec + 3 // 3 extra bytes for sign and prefix if width > BUF_SIZE { // TODO(bill):???? panic("_fmt_int: buffer overrun. Width and precision too big") } } buf: [256]byte start := 0 if fi.hash && !is_signed { switch base { case 2: io.write_byte(fi.writer, '0', &fi.n) io.write_byte(fi.writer, 'b', &fi.n) start = 2 case 8: io.write_byte(fi.writer, '0', &fi.n) io.write_byte(fi.writer, 'o', &fi.n) start = 2 case 12: io.write_byte(fi.writer, '0', &fi.n) io.write_byte(fi.writer, 'o', &fi.n) start = 2 case 16: io.write_byte(fi.writer, '0', &fi.n) io.write_byte(fi.writer, 'x', &fi.n) start = 2 } } prec := 0 if fi.prec_set { prec = fi.prec if prec == 0 && u == 0 { prev_zero := fi.zero fi.zero = false fmt_write_padding(fi, fi.width) fi.zero = prev_zero return } } else if fi.zero && fi.width_set { prec = fi.width if neg || fi.plus { // There needs to be space for the "sign" prec -= 1 } } switch base { case 2, 8, 10, 12, 16: break case: panic("_fmt_int: unknown base, whoops") } flags: strconv.Int_Flags if fi.hash && !fi.zero && start == 0 { flags += {.Prefix} } if fi.plus { flags += {.Plus} } s := strconv.append_bits(buf[start:], u, base, is_signed, bit_size, digits, flags) prev_zero := fi.zero defer fi.zero = prev_zero fi.zero = false _pad(fi, s) } // Formats an int128 value based on the provided formatting options. // // Inputs: // - fi: A pointer to the Info struct containing formatting options. // - u: The int128 value to be formatted. // - base: The base to be used for formatting the integer (e.g. 2, 8, 10, 12, 16). // - is_signed: Whether the value should be treated as signed or unsigned. // - bit_size: The number of bits of the value (e.g. 64, 128). // - digits: A string containing the digit characters to use for the formatted integer. // // WARNING: Panics if the formatting options result in a buffer overrun. // _fmt_int_128 :: proc(fi: ^Info, u: u128, base: int, is_signed: bool, bit_size: int, digits: string) { _, neg := strconv.is_integer_negative_128(u, is_signed, bit_size) BUF_SIZE :: 256 if fi.width_set || fi.prec_set { width := fi.width + fi.prec + 3 // 3 extra bytes for sign and prefix if width > BUF_SIZE { // TODO(bill):???? panic("_fmt_int: buffer overrun. Width and precision too big") } } buf: [256]byte start := 0 if fi.hash && !is_signed { switch base { case 2: io.write_byte(fi.writer, '0', &fi.n) io.write_byte(fi.writer, 'b', &fi.n) start = 2 case 8: io.write_byte(fi.writer, '0', &fi.n) io.write_byte(fi.writer, 'o', &fi.n) start = 2 case 12: io.write_byte(fi.writer, '0', &fi.n) io.write_byte(fi.writer, 'o', &fi.n) start = 2 case 16: io.write_byte(fi.writer, '0', &fi.n) io.write_byte(fi.writer, 'x', &fi.n) start = 2 } } prec := 0 if fi.prec_set { prec = fi.prec if prec == 0 && u == 0 { prev_zero := fi.zero fi.zero = false fmt_write_padding(fi, fi.width) fi.zero = prev_zero return } } else if fi.zero && fi.width_set { prec = fi.width if neg || fi.plus { // There needs to be space for the "sign" prec -= 1 } } switch base { case 2, 8, 10, 12, 16: break case: panic("_fmt_int: unknown base, whoops") } flags: strconv.Int_Flags if fi.hash && !fi.zero && start == 0 { flags += {.Prefix} } if fi.plus { flags += {.Plus} } s := strconv.append_bits_128(buf[start:], u, base, is_signed, bit_size, digits, flags) if fi.hash && fi.zero && fi.indent == 0 { c: byte = 0 switch base { case 2: c = 'b' case 8: c = 'o' case 12: c = 'z' case 16: c = 'x' } if c != 0 { io.write_byte(fi.writer, '0', &fi.n) io.write_byte(fi.writer, c, &fi.n) } } prev_zero := fi.zero defer fi.zero = prev_zero fi.zero = false _pad(fi, s) } // Units of measurements: __MEMORY_LOWER := " b kib mib gib tib pib eib" __MEMORY_UPPER := " B KiB MiB GiB TiB PiB EiB" // Formats an integer value as bytes with the best representation. // // Inputs: // - fi: A pointer to an Info structure // - u: The integer value to format // - is_signed: A boolean indicating if the integer is signed // - bit_size: The bit size of the integer // - digits: A string containing the digits for formatting // _fmt_memory :: proc(fi: ^Info, u: u64, is_signed: bool, bit_size: int, units: string) { abs, neg := strconv.is_integer_negative(u, is_signed, bit_size) // Default to a precision of 2, but if less than a kb, 0 prec := fi.prec if (fi.prec_set || abs < mem.Kilobyte) else 2 div, off, unit_len := 1, 0, 1 for n := abs; n >= mem.Kilobyte; n /= mem.Kilobyte { div *= mem.Kilobyte off += 4 // First iteration is slightly different because you go from // units of length 1 to units of length 2. if unit_len == 1 { off = 2 unit_len = 3 } } // If hash, we add a space between the value and the suffix. if fi.hash { unit_len += 1 } else { off += 1 } amt := f64(abs) / f64(div) if neg { amt = -amt } buf: [256]byte str := strconv.append_float(buf[:], amt, 'f', prec, 64) // Add the unit at the end. copy(buf[len(str):], units[off:off+unit_len]) str = string(buf[:len(str)+unit_len]) if !fi.plus { // Strip sign from "+" but not "+Inf". if str[0] == '+' && str[1] != 'I' { str = str[1:] } } _pad(fi, str) } // Hex Values: __DIGITS_LOWER := "0123456789abcdefx" __DIGITS_UPPER := "0123456789ABCDEFX" // Formats a rune value according to the specified formatting verb. // // Inputs: // - fi: A pointer to the Info struct containing formatting options. // - r: The rune value to be formatted. // - verb: The formatting verb to use (e.g. 'c', 'r', 'v', 'q'). // fmt_rune :: proc(fi: ^Info, r: rune, verb: rune) { switch verb { case 'c', 'r', 'v': io.write_rune(fi.writer, r, &fi.n) case 'q', 'w': fi.n += io.write_quoted_rune(fi.writer, r) case: fmt_int(fi, u64(r), false, 32, verb) } } // Formats an integer value according to the specified formatting verb. // // Inputs: // - fi: A pointer to the Info struct containing formatting options. // - u: The integer value to be formatted. // - is_signed: Whether the value should be treated as signed or unsigned. // - bit_size: The number of bits of the value (e.g. 32, 64). // - verb: The formatting verb to use (e.g. 'v', 'b', 'o', 'i', 'd', 'z', 'x', 'X', 'c', 'r', 'U'). // fmt_int :: proc(fi: ^Info, u: u64, is_signed: bool, bit_size: int, verb: rune) { switch verb { case 'v', 'w': _fmt_int(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER) case 'b': _fmt_int(fi, u, 2, is_signed, bit_size, __DIGITS_LOWER) case 'o': _fmt_int(fi, u, 8, is_signed, bit_size, __DIGITS_LOWER) case 'i', 'd': _fmt_int(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER) case 'z': _fmt_int(fi, u, 12, is_signed, bit_size, __DIGITS_LOWER) case 'x': _fmt_int(fi, u, 16, is_signed, bit_size, __DIGITS_LOWER) case 'X': _fmt_int(fi, u, 16, is_signed, bit_size, __DIGITS_UPPER) case 'c', 'r': fmt_rune(fi, rune(u), verb) case 'U': r := rune(u) if r < 0 || r > utf8.MAX_RUNE { fmt_bad_verb(fi, verb) } else { io.write_string(fi.writer, "U+", &fi.n) _fmt_int(fi, u, 16, false, bit_size, __DIGITS_UPPER) } case 'm': _fmt_memory(fi, u, is_signed, bit_size, __MEMORY_LOWER) case 'M': _fmt_memory(fi, u, is_signed, bit_size, __MEMORY_UPPER) case: fmt_bad_verb(fi, verb) } } // Formats an int128 value according to the specified formatting verb. // // Inputs: // - fi: A pointer to the Info struct containing formatting options. // - u: The int128 value to be formatted. // - is_signed: Whether the value should be treated as signed or unsigned. // - bit_size: The number of bits of the value (e.g. 64, 128). // - verb: The formatting verb to use (e.g. 'v', 'b', 'o', 'i', 'd', 'z', 'x', 'X', 'c', 'r', 'U'). // fmt_int_128 :: proc(fi: ^Info, u: u128, is_signed: bool, bit_size: int, verb: rune) { switch verb { case 'v', 'w': _fmt_int_128(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER) case 'b': _fmt_int_128(fi, u, 2, is_signed, bit_size, __DIGITS_LOWER) case 'o': _fmt_int_128(fi, u, 8, is_signed, bit_size, __DIGITS_LOWER) case 'i', 'd': _fmt_int_128(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER) case 'z': _fmt_int_128(fi, u, 12, is_signed, bit_size, __DIGITS_LOWER) case 'x': _fmt_int_128(fi, u, 16, is_signed, bit_size, __DIGITS_LOWER) case 'X': _fmt_int_128(fi, u, 16, is_signed, bit_size, __DIGITS_UPPER) case 'c', 'r': fmt_rune(fi, rune(u), verb) case 'U': r := rune(u) if r < 0 || r > utf8.MAX_RUNE { fmt_bad_verb(fi, verb) } else { io.write_string(fi.writer, "U+", &fi.n) _fmt_int_128(fi, u, 16, false, bit_size, __DIGITS_UPPER) } case: fmt_bad_verb(fi, verb) } } // Pads a formatted string with the appropriate padding, based on the provided formatting options. // // Inputs: // - fi: A pointer to the Info struct containing formatting options. // - s: The string to be padded. // _pad :: proc(fi: ^Info, s: string) { if !fi.width_set { io.write_string(fi.writer, s, &fi.n) return } width := fi.width - utf8.rune_count_in_string(s) if fi.minus { // right pad io.write_string(fi.writer, s, &fi.n) fmt_write_padding(fi, width) } else if !fi.space && s != "" && s[0] == '-' { // left pad accounting for zero pad of negative number io.write_byte(fi.writer, '-', &fi.n) fmt_write_padding(fi, width) io.write_string(fi.writer, s[1:], &fi.n) } else { // left pad fmt_write_padding(fi, width) io.write_string(fi.writer, s, &fi.n) } } // Formats a floating-point number with a specific format and precision. // // Inputs: // - fi: Pointer to the Info struct containing format settings. // - v: The floating-point number to format. // - bit_size: The size of the floating-point number in bits (16, 32, or 64). // - verb: The format specifier character. // - float_fmt: The byte format used for formatting the float (either 'f' or 'e'). // // NOTE: Can return "NaN", "+Inf", "-Inf", "+", or "-". // _fmt_float_as :: proc(fi: ^Info, v: f64, bit_size: int, verb: rune, float_fmt: byte, prec: int) { prec := prec if fi.prec_set { prec = fi.prec } buf: [386]byte // Can return "NaN", "+Inf", "-Inf", "+", "-". str := strconv.append_float(buf[:], v, float_fmt, prec, bit_size) if !fi.plus { // Strip sign from "+" but not "+Inf". if str[0] == '+' && str[1] != 'I' { str = str[1:] } } _pad(fi, str) } // Formats a floating-point number with a specific format. // // Inputs: // - fi: Pointer to the Info struct containing format settings. // - v: The floating-point number to format. // - bit_size: The size of the floating-point number in bits (16, 32, or 64). // - verb: The format specifier character. // fmt_float :: proc(fi: ^Info, v: f64, bit_size: int, verb: rune) { switch verb { case 'g', 'G', 'v', 'w': _fmt_float_as(fi, v, bit_size, verb, 'g', -1) case 'f', 'F': _fmt_float_as(fi, v, bit_size, verb, 'f', 3) case 'e', 'E': // BUG(): "%.3e" returns "3.000e+00" _fmt_float_as(fi, v, bit_size, verb, 'e', 6) case 'h', 'H': prev_fi := fi^ defer fi^ = prev_fi fi.hash = false fi.width = bit_size fi.zero = true fi.plus = false u: u64 switch bit_size { case 16: u = u64(transmute(u16)f16(v)) case 32: u = u64(transmute(u32)f32(v)) case 64: u = transmute(u64)v case: panic("Unhandled float size") } io.write_string(fi.writer, "0h", &fi.n) _fmt_int(fi, u, 16, false, bit_size, __DIGITS_LOWER if verb == 'h' else __DIGITS_UPPER) case: fmt_bad_verb(fi, verb) } } // Formats a string with a specific format. // // Inputs: // - fi: Pointer to the Info struct containing format settings. // - s: The string to format. // - verb: The format specifier character (e.g. 's', 'v', 'q', 'x', 'X'). // fmt_string :: proc(fi: ^Info, s: string, verb: rune) { s, verb := s, verb if ol, ok := fi.optional_len.?; ok { s = s[:clamp(ol, 0, len(s))] } if !fi.in_bad && fi.record_level > 0 && verb == 'v' { verb = 'q' } switch verb { case 's', 'v': if fi.width_set { if fi.width > len(s) { if fi.minus { io.write_string(fi.writer, s, &fi.n) } for _ in 0.. 0 && space { io.write_byte(fi.writer, ' ', &fi.n) } char_set := __DIGITS_UPPER if verb == 'x' { char_set = __DIGITS_LOWER } _fmt_int(fi, u64(s[i]), 16, false, 8, char_set) } case: fmt_bad_verb(fi, verb) } } // Formats a C-style string with a specific format. // // Inputs: // - fi: Pointer to the Info struct containing format settings. // - s: The C-style string to format. // - verb: The format specifier character (Ref fmt_string). // fmt_cstring :: proc(fi: ^Info, s: cstring, verb: rune) { fmt_string(fi, string(s), verb) } // Formats a raw pointer with a specific format. // // Inputs: // - fi: Pointer to the Info struct containing format settings. // - p: The raw pointer to format. // - verb: The format specifier character (e.g. 'p', 'v', 'b', 'o', 'i', 'd', 'z', 'x', 'X'). // fmt_pointer :: proc(fi: ^Info, p: rawptr, verb: rune) { u := u64(uintptr(p)) switch verb { case 'p', 'v', 'w': if !fi.hash { io.write_string(fi.writer, "0x", &fi.n) } _fmt_int(fi, u, 16, false, 8*size_of(rawptr), __DIGITS_UPPER) case 'b': _fmt_int(fi, u, 2, false, 8*size_of(rawptr), __DIGITS_UPPER) case 'o': _fmt_int(fi, u, 8, false, 8*size_of(rawptr), __DIGITS_UPPER) case 'i', 'd': _fmt_int(fi, u, 10, false, 8*size_of(rawptr), __DIGITS_UPPER) case 'z': _fmt_int(fi, u, 12, false, 8*size_of(rawptr), __DIGITS_UPPER) case 'x': _fmt_int(fi, u, 16, false, 8*size_of(rawptr), __DIGITS_UPPER) case 'X': _fmt_int(fi, u, 16, false, 8*size_of(rawptr), __DIGITS_UPPER) case: fmt_bad_verb(fi, verb) } } // Formats a Structure of Arrays (SoA) pointer with a specific format. // // Inputs: // - fi: Pointer to the Info struct containing format settings. // - p: The SoA pointer to format. // - verb: The format specifier character. // fmt_soa_pointer :: proc(fi: ^Info, p: runtime.Raw_Soa_Pointer, verb: rune) { io.write_string(fi.writer, "#soa{data=0x", &fi.n) _fmt_int(fi, u64(uintptr(p.data)), 16, false, 8*size_of(rawptr), __DIGITS_UPPER) io.write_string(fi.writer, ", index=", &fi.n) _fmt_int(fi, u64(p.index), 10, false, 8*size_of(rawptr), __DIGITS_UPPER) io.write_string(fi.writer, "}", &fi.n) } // String representation of an enum value. // // Inputs: // - val: The enum value. // // Returns: The string representation of the enum value and a boolean indicating success. // @(require_results) enum_value_to_string :: proc(val: any) -> (string, bool) { return reflect.enum_name_from_value_any(val) } // Returns the enum value of a string representation. // // $T: The typeid of the enum type. // Inputs: // - s: The string representation of the enum value. // // Returns: The enum value and a boolean indicating success. // string_to_enum_value :: proc($T: typeid, s: string) -> (T, bool) { ti := runtime.type_info_base(type_info_of(T)) if e, ok := ti.variant.(runtime.Type_Info_Enum); ok { for str, idx in e.names { if s == str { // NOTE(bill): Unsafe cast ptr := cast(^T)&e.values[idx] return ptr^, true } } } return T{}, false } // Formats an enum value with a specific format. // // Inputs: // - fi: Pointer to the Info struct containing format settings. // - v: The enum value to format. // - verb: The format specifier character (e.g. 'i','d','f','s','v','q','w'). // fmt_enum :: proc(fi: ^Info, v: any, verb: rune) { if v.id == nil || v.data == nil { io.write_string(fi.writer, "", &fi.n) return } type_info := type_info_of(v.id) #partial switch e in type_info.variant { case: fmt_bad_verb(fi, verb) case runtime.Type_Info_Enum: switch verb { case: fmt_bad_verb(fi, verb) case 'i', 'd', 'f': fmt_arg(fi, any{v.data, runtime.type_info_base(e.base).id}, verb) case 's', 'v', 'q': if str, ok := enum_value_to_string(v); ok { fmt_string(fi, str, verb) } else { io.write_string(fi.writer, "%!(BAD ENUM VALUE=", &fi.n) fmt_arg(fi, any{v.data, runtime.type_info_base(e.base).id}, 'i') io.write_string(fi.writer, ")", &fi.n) } case 'w': if str, ok := enum_value_to_string(v); ok { io.write_byte(fi.writer, '.', &fi.n) io.write_string(fi.writer, str, &fi.n) } else { io.write_string(fi.writer, "%!(BAD ENUM VALUE=", &fi.n) fmt_arg(fi, any{v.data, runtime.type_info_base(e.base).id}, 'i') io.write_string(fi.writer, ")", &fi.n) } } } } // Converts a stored enum value to a string representation // // Inputs: // - enum_type: A pointer to the runtime.Type_Info of the enumeration. // - ev: The runtime.Type_Info_Enum_Value of the stored enum value. // - offset: An optional integer to adjust the enumeration value (default is 0). // // Returns: A tuple containing the string representation of the enum value and a bool indicating success. // stored_enum_value_to_string :: proc(enum_type: ^runtime.Type_Info, ev: runtime.Type_Info_Enum_Value, offset: int = 0) -> (string, bool) { et := runtime.type_info_base(enum_type) ev := ev ev += runtime.Type_Info_Enum_Value(offset) #partial switch e in et.variant { case: return "", false case runtime.Type_Info_Enum: if reflect.is_string(e.base) { for val, idx in e.values { if val == ev { return e.names[idx], true } } } else if len(e.values) == 0 { return "", true } else { for val, idx in e.values { if val == ev { return e.names[idx], true } } } return "", false } return "", false } // Formats a bit set and writes it to the provided Info structure // // Inputs: // - fi: A pointer to the Info structure where the formatted bit set will be written. // - v: The bit set value to be formatted. // - name: An optional string for the name of the bit set (default is an empty string). // - verb: An optional verb to adjust format. // fmt_bit_set :: proc(fi: ^Info, v: any, name: string = "", verb: rune = 'v') { is_bit_set_different_endian_to_platform :: proc(ti: ^runtime.Type_Info) -> bool { if ti == nil { return false } t := runtime.type_info_base(ti) #partial switch info in t.variant { case runtime.Type_Info_Integer: switch info.endianness { case .Platform: return false case .Little: return ODIN_ENDIAN != .Little case .Big: return ODIN_ENDIAN != .Big } } return false } byte_swap :: bits.byte_swap type_info := type_info_of(v.id) #partial switch info in type_info.variant { case runtime.Type_Info_Named: val := v val.id = info.base.id fmt_bit_set(fi, val, info.name, verb) case runtime.Type_Info_Bit_Set: bits: u128 bit_size := u128(8*type_info.size) do_byte_swap := is_bit_set_different_endian_to_platform(info.underlying) as_arg := verb == 'b' || verb == 'o' || verb == 'd' || verb == 'i' || verb == 'z' || verb == 'x' || verb == 'X' if as_arg && !fi.width_set { fi.width_set = true fi.width = int(bit_size) } switch bit_size { case 0: bits = 0 case 8: x := (^u8)(v.data)^ if as_arg { fmt_arg(fi, x, verb) return } bits = u128(x) case 16: x := (^u16)(v.data)^ if do_byte_swap { x = byte_swap(x) } if as_arg { fmt_arg(fi, x, verb) return } bits = u128(x) case 32: x := (^u32)(v.data)^ if do_byte_swap { x = byte_swap(x) } if as_arg { fmt_arg(fi, x, verb) return } bits = u128(x) case 64: x := (^u64)(v.data)^ if do_byte_swap { x = byte_swap(x) } if as_arg { fmt_arg(fi, x, verb) return } bits = u128(x) case 128: x := (^u128)(v.data)^ if do_byte_swap { x = byte_swap(x) } if as_arg { fmt_arg(fi, x, verb) return } bits = x case: panic("unknown bit_size size") } et := runtime.type_info_base(info.elem) if verb != 'w' { if name != "" { io.write_string(fi.writer, name, &fi.n) } else { reflect.write_type(fi.writer, type_info, &fi.n) } } io.write_byte(fi.writer, '{', &fi.n) defer io.write_byte(fi.writer, '}', &fi.n) e, is_enum := et.variant.(runtime.Type_Info_Enum) commas := 0 loop: for i in 0 ..< bit_size { if bits & (1< 0 { io.write_string(fi.writer, ", ", &fi.n) } if is_enum { enum_name: string if ti_named, is_named := info.elem.variant.(runtime.Type_Info_Named); is_named { enum_name = ti_named.name } for ev, evi in e.values { v := u64(ev) if v == u64(i) { if verb == 'w' { io.write_string(fi.writer, enum_name, &fi.n) io.write_byte(fi.writer, '.', &fi.n) } io.write_string(fi.writer, e.names[evi], &fi.n) commas += 1 continue loop } } } v := i64(i) + info.lower io.write_i64(fi.writer, v, 10, &fi.n) commas += 1 } } } // Writes the specified number of indents to the provided Info structure // // Inputs: // - fi: A pointer to the Info structure where the indents will be written. // fmt_write_indent :: proc(fi: ^Info) { for _ in 0.. 0 { io.write_string(fi.writer, ", ", &fi.n) } data := uintptr(array_data) + uintptr(i*elem_size) fmt_arg(fi, any{rawptr(data), elem_id}, verb) } } } // Handles struct tag processing for formatting // // Inputs: // - data: A raw pointer to the data being processed // - info: Type information about the struct // - idx: The index of the tag in the struct // - verb: A mutable pointer to the rune representing the format verb // - optional_len: A mutable pointer to an integer holding the optional length (if applicable) // - use_nul_termination: A mutable pointer to a boolean flag indicating if NUL termination is used // // Returns: A boolean value indicating whether to continue processing the tag // @(private) handle_tag :: proc(state: ^Info_State, data: rawptr, info: reflect.Type_Info_Struct, idx: int, verb: ^rune, optional_len: ^int, use_nul_termination: ^bool) -> (do_continue: bool) { handle_optional_len :: proc(data: rawptr, info: reflect.Type_Info_Struct, field_name: string, optional_len: ^int) { if optional_len == nil { return } for f, i in info.names[:info.field_count] { if f != field_name { continue } ptr := rawptr(uintptr(data) + info.offsets[i]) field := any{ptr, info.types[i].id} if new_len, iok := reflect.as_int(field); iok { optional_len^ = max(new_len, 0) } break } } tag := info.tags[idx] if vt, ok := reflect.struct_tag_lookup(reflect.Struct_Tag(tag), "fmt"); ok { value := strings.trim_space(string(vt)) switch value { case "": return false case "-": return true } fi := state head, _, tail := strings.partition(value, ",") i := 0 prefix_loop: for ; i < len(head); i += 1 { switch head[i] { case '+': fi.plus = true case '-': fi.minus = true fi.zero = false case ' ': fi.space = true case '#': fi.hash = true case '0': fi.zero = !fi.minus case: break prefix_loop } } fi.width, i, fi.width_set = _parse_int(head, i) if i < len(head) && head[i] == '.' { i += 1 prev_i := i fi.prec, i, fi.prec_set = _parse_int(head, i) if i == prev_i { fi.prec = 0 fi.prec_set = true } } r: rune if i >= len(head) || head[i] == ' ' { r = 'v' } else { r, _ = utf8.decode_rune_in_string(head[i:]) } if verb^ == 'w' { // TODO(bill): is this a good idea overriding that field tags if 'w' is used? switch r { case 's': r = 'q' case: r = 'w' } } verb^ = r if tail != "" { field_name := tail if field_name == "0" { if use_nul_termination != nil { use_nul_termination^ = true } } else { switch r { case 's', 'q': handle_optional_len(data, info, field_name, optional_len) case 'v', 'w': #partial switch reflect.type_kind(info.types[idx].id) { case .String, .Multi_Pointer, .Array, .Slice, .Dynamic_Array: handle_optional_len(data, info, field_name, optional_len) } } } } } return } // Formats a struct for output, handling various struct types (e.g., SOA, raw unions) // // Inputs: // - fi: A mutable pointer to an Info struct containing formatting state // - v: The value to be formatted // - the_verb: The formatting verb to be used (e.g. 'v') // - info: Type information about the struct // - type_name: The name of the type being formatted // fmt_struct :: proc(fi: ^Info, v: any, the_verb: rune, info: runtime.Type_Info_Struct, type_name: string) { if the_verb != 'v' && the_verb != 'w' { fmt_bad_verb(fi, the_verb) return } if .raw_union in info.flags { if type_name == "" { io.write_string(fi.writer, "(raw union)", &fi.n) } else { io.write_string(fi.writer, type_name, &fi.n) io.write_string(fi.writer, "{}", &fi.n) } return } is_soa := info.soa_kind != .None io.write_string(fi.writer, type_name, &fi.n) io.write_byte(fi.writer, '[' if is_soa && the_verb == 'v' else '{', &fi.n) fi.record_level += 1 defer fi.record_level -= 1 hash := fi.hash; defer fi.hash = hash indent := fi.indent; defer fi.indent -= 1 do_trailing_comma := hash // fi.hash = false; fi.indent += 1 is_empty := info.field_count == 0 if !is_soa && hash && !is_empty { io.write_byte(fi.writer, '\n', &fi.n) } defer { if !is_soa && hash && !is_empty { for _ in 0.. 0 { io.write_byte(fi.writer, '\n', &fi.n) } for index in 0.. 0 { io.write_string(fi.writer, ", ", &fi.n) } field_count := -1 if !hash && field_count > 0 { io.write_string(fi.writer, ", ", &fi.n) } if hash { fi.indent -= 1 fmt_write_indent(fi) fi.indent += 1 } io.write_string(fi.writer, base_type_name, &fi.n) io.write_byte(fi.writer, '{', &fi.n) if hash && !is_empty { io.write_byte(fi.writer, '\n', &fi.n) } defer { if hash && !is_empty { fi.indent -= 1 fmt_write_indent(fi) fi.indent += 1 } io.write_byte(fi.writer, '}', &fi.n) if hash { io.write_string(fi.writer, ",\n", &fi.n) } } fi.record_level += 1 defer fi.record_level -= 1 for i in 0.. 0 { io.write_string(fi.writer, ", ", &fi.n) } if hash { fmt_write_indent(fi) } io.write_string(fi.writer, name, &fi.n) io.write_string(fi.writer, " = ", &fi.n) if info.soa_kind == .Fixed { t := info.types[i].variant.(runtime.Type_Info_Array).elem t_size := uintptr(t.size) if reflect.is_any(t) { io.write_string(fi.writer, "any{}", &fi.n) } else { data := rawptr(uintptr(v.data) + info.offsets[i] + index*t_size) fmt_arg(fi, any{data, t.id}, verb) } } else { t := info.types[i].variant.(runtime.Type_Info_Multi_Pointer).elem t_size := uintptr(t.size) if reflect.is_any(t) { io.write_string(fi.writer, "any{}", &fi.n) } else { field_ptr := (^^byte)(uintptr(v.data) + info.offsets[i])^ data := rawptr(uintptr(field_ptr) + index*t_size) fmt_arg(fi, any{data, t.id}, verb) } } if hash { io.write_string(fi.writer, ",\n", &fi.n) } } } if hash && n > 0 { for _ in 0..= 0 { fi.optional_len = optional_len } defer if optional_len >= 0 { fi.optional_len = nil } fi.use_nul_termination = use_nul_termination defer fi.use_nul_termination = false if !do_trailing_comma && field_count > 0 { io.write_string(fi.writer, ", ") } if hash { fmt_write_indent(fi) } io.write_string(fi.writer, name, &fi.n) io.write_string(fi.writer, " = ", &fi.n) if t := info.types[i]; reflect.is_any(t) { io.write_string(fi.writer, "any{}", &fi.n) } else { prev_state := fi.state fi.state = new_state data := rawptr(uintptr(v.data) + info.offsets[i]) fmt_arg(fi, any{data, t.id}, verb) fi.state = prev_state } if do_trailing_comma { io.write_string(fi.writer, ",\n", &fi.n) } } } } // Searches for the first NUL-terminated element in a given buffer // // Inputs: // - ptr: The raw pointer to the buffer. // - elem_size: The size of each element in the buffer. // - max_n: The maximum number of elements to search (use -1 for no limit). // // Returns: The number of elements before the first NUL-terminated element. // @(private) search_nul_termination :: proc(ptr: rawptr, elem_size: int, max_n: int) -> (n: int) { for p := uintptr(ptr); max_n < 0 || n < max_n; p += uintptr(elem_size) { if mem.check_zero_ptr(rawptr(p), elem_size) { break } n += 1 } return n } // Formats a NUL-terminated array into a string representation // // Inputs: // - fi: Pointer to the formatting Info struct. // - data: The raw pointer to the array data. // - max_n: The maximum number of elements to process. // - elem_size: The size of each element in the array. // - elem: Pointer to the type information of the array element. // - verb: The formatting verb. // fmt_array_nul_terminated :: proc(fi: ^Info, data: rawptr, max_n: int, elem_size: int, elem: ^reflect.Type_Info, verb: rune) { if data == nil { io.write_string(fi.writer, "", &fi.n) return } n := search_nul_termination(data, elem_size, max_n) fmt_array(fi, data, n, elem_size, elem, verb) } // Formats an array into a string representation // // Inputs: // - fi: Pointer to the formatting Info struct. // - data: The raw pointer to the array data. // - n: The number of elements in the array. // - elem_size: The size of each element in the array. // - elem: Pointer to the type information of the array element. // - verb: The formatting verb (e.g. 's','q','p','w'). // fmt_array :: proc(fi: ^Info, data: rawptr, n: int, elem_size: int, elem: ^reflect.Type_Info, verb: rune) { if data == nil && n > 0 { io.write_string(fi.writer, "nil") return } if verb == 's' || verb == 'q' { print_utf16 :: proc(fi: ^Info, s: []$T) where size_of(T) == 2, intrinsics.type_is_integer(T) { REPLACEMENT_CHAR :: '\ufffd' _surr1 :: 0xd800 _surr2 :: 0xdc00 _surr3 :: 0xe000 _surr_self :: 0x10000 for i := 0; i < len(s); i += 1 { r := rune(REPLACEMENT_CHAR) switch c := s[i]; { case c < _surr1, _surr3 <= c: r = rune(c) case _surr1 <= c && c < _surr2 && i+1 < len(s) && _surr2 <= s[i+1] && s[i+1] < _surr3: r1, r2 := rune(c), rune(s[i+1]) if _surr1 <= r1 && r1 < _surr2 && _surr2 <= r2 && r2 < _surr3 { r = (r1-_surr1)<<10 | (r2 - _surr2) + _surr_self } i += 1 } io.write_rune(fi.writer, r, &fi.n) } } print_utf32 :: proc(fi: ^Info, s: []$T) where size_of(T) == 4 { for r in s { io.write_rune(fi.writer, rune(r), &fi.n) } } switch reflect.type_info_base(elem).id { case byte: fmt_string(fi, string(([^]byte)(data)[:n]), verb); return case u16: print_utf16(fi, ([^]u16)(data)[:n]); return case u16le: print_utf16(fi, ([^]u16le)(data)[:n]); return case u16be: print_utf16(fi, ([^]u16be)(data)[:n]); return case u32: print_utf32(fi, ([^]u32)(data)[:n]); return case u32le: print_utf32(fi, ([^]u32le)(data)[:n]); return case u32be: print_utf32(fi, ([^]u32be)(data)[:n]); return case rune: print_utf32(fi, ([^]rune)(data)[:n]); return } } if verb == 'p' { fmt_pointer(fi, data, 'p') } else { fmt_write_array(fi, data, n, elem_size, elem.id, verb) } } // Formats a named type into a string representation // // Inputs: // - fi: Pointer to the formatting Info struct. // - v: The value to format. // - verb: The formatting verb. // - info: The named type information. // // NOTE: This procedure supports built-in custom formatters for core library types such as runtime.Source_Code_Location, time.Duration, and time.Time. // fmt_named :: proc(fi: ^Info, v: any, verb: rune, info: runtime.Type_Info_Named) { write_padded_number :: proc(fi: ^Info, i: i64, width: int) { n := width-1 for x := i; x >= 10; x /= 10 { n -= 1 } for _ in 0.. (nw: int, nv: u64) { v := v w := len(buf) print := false for _ in 0.. int { v := v w := len(buf) if v == 0 { w -= 1 buf[w] = '0' } else { for v > 0 { w -= 1 buf[w] = byte(v%10) + '0' v /= 10 } } return w } buf: [32]byte w := len(buf) u := u64(a) neg := a < 0 if neg { u = -u } if u < u64(time.Second) { prec: int w -= 1 buf[w] = 's' w -= 1 switch { case u == 0: io.write_string(fi.writer, "0s", &fi.n) return case u < u64(time.Microsecond): prec = 0 buf[w] = 'n' case u < u64(time.Millisecond): prec = 3 // U+00B5 'µ' micro sign == 0xC2 0xB5 w -= 1 // Need room for two bytes copy(buf[w:], "µ") case: prec = 6 buf[w] = 'm' } w, u = ffrac(buf[:w], u, prec) w = fint(buf[:w], u) } else { w -= 1 buf[w] = 's' w, u = ffrac(buf[:w], u, 9) w = fint(buf[:w], u%60) u /= 60 if u > 0 { w -= 1 buf[w] = 'm' w = fint(buf[:w], u%60) u /= 60 if u > 0 { w -= 1 buf[w] = 'h' w = fint(buf[:w], u) } } } if neg { w -= 1 buf[w] = '-' } io.write_string(fi.writer, string(buf[w:]), &fi.n) return case time.Time: t := a y, mon, d := time.date(t) h, min, s := time.clock(t) ns := (t._nsec - (t._nsec/1e9 + time.UNIX_TO_ABSOLUTE)*1e9) % 1e9 write_padded_number(fi, i64(y), 4) io.write_byte(fi.writer, '-', &fi.n) write_padded_number(fi, i64(mon), 2) io.write_byte(fi.writer, '-', &fi.n) write_padded_number(fi, i64(d), 2) io.write_byte(fi.writer, ' ', &fi.n) write_padded_number(fi, i64(h), 2) io.write_byte(fi.writer, ':', &fi.n) write_padded_number(fi, i64(min), 2) io.write_byte(fi.writer, ':', &fi.n) write_padded_number(fi, i64(s), 2) io.write_byte(fi.writer, '.', &fi.n) write_padded_number(fi, (ns), 9) io.write_string(fi.writer, " +0000 UTC", &fi.n) return } } #partial switch b in info.base.variant { case runtime.Type_Info_Struct: fmt_struct(fi, v, verb, b, info.name) case runtime.Type_Info_Bit_Field: fmt_bit_field(fi, v, verb, b, info.name) case runtime.Type_Info_Bit_Set: fmt_bit_set(fi, v, verb = verb) case: if verb == 'w' { #partial switch _ in info.base.variant { case runtime.Type_Info_Array, runtime.Type_Info_Enumerated_Array, runtime.Type_Info_Dynamic_Array, runtime.Type_Info_Slice, runtime.Type_Info_Struct, runtime.Type_Info_Enum, runtime.Type_Info_Map, runtime.Type_Info_Bit_Set, runtime.Type_Info_Simd_Vector, runtime.Type_Info_Matrix, runtime.Type_Info_Bit_Field: io.write_string(fi.writer, info.name, &fi.n) } } fmt_value(fi, any{v.data, info.base.id}, verb) } } // Formats a union type into a string representation // // Inputs: // - fi: Pointer to the formatting Info struct. // - v: The value to format. // - verb: The formatting verb. // - info: The union type information. // - type_size: The size of the union type. // fmt_union :: proc(fi: ^Info, v: any, verb: rune, info: runtime.Type_Info_Union, type_size: int) { if type_size == 0 { io.write_string(fi.writer, "nil", &fi.n) return } if reflect.type_info_union_is_pure_maybe(info) { if v.data == nil { io.write_string(fi.writer, "nil", &fi.n) } else { id := info.variants[0].id fmt_arg(fi, any{v.data, id}, verb) } return } tag: i64 = -1 tag_ptr := uintptr(v.data) + info.tag_offset tag_any := any{rawptr(tag_ptr), info.tag_type.id} switch i in tag_any { case u8: tag = i64(i) case i8: tag = i64(i) case u16: tag = i64(i) case i16: tag = i64(i) case u32: tag = i64(i) case i32: tag = i64(i) case u64: tag = i64(i) case i64: tag = i case: panic("Invalid union tag type") } assert(tag >= 0) if v.data == nil { io.write_string(fi.writer, "nil", &fi.n) } else if info.no_nil { id := info.variants[tag].id fmt_arg(fi, any{v.data, id}, verb) } else if tag == 0 { io.write_string(fi.writer, "nil", &fi.n) } else { id := info.variants[tag-1].id fmt_arg(fi, any{v.data, id}, verb) } } // Formats a matrix as a string // // Inputs: // - fi: A pointer to an Info struct containing formatting information. // - v: The matrix value to be formatted. // - verb: The formatting verb rune. // - info: A runtime.Type_Info_Matrix struct containing matrix type information. // fmt_matrix :: proc(fi: ^Info, v: any, verb: rune, info: runtime.Type_Info_Matrix) { if verb == 'w' { io.write_byte(fi.writer, '{', &fi.n) } else { io.write_string(fi.writer, "matrix", &fi.n) io.write_byte(fi.writer, '[', &fi.n) } defer io.write_byte(fi.writer, ']' if verb != 'w' else '}', &fi.n) fi.indent += 1 if fi.hash { // Printed as it is written io.write_byte(fi.writer, '\n', &fi.n) for row in 0.. 0 { io.write_string(fi.writer, ", ", &fi.n) } offset: int switch info.layout { case .Column_Major: offset = (row + col*info.elem_stride)*info.elem_size case .Row_Major: offset = (col + row*info.elem_stride)*info.elem_size } data := uintptr(v.data) + uintptr(offset) fmt_arg(fi, any{rawptr(data), info.elem.id}, verb) } io.write_string(fi.writer, ",\n", &fi.n) } } else { // Printed in Row-Major layout to match text layout row_separator := ", " if verb == 'w' else "; " for row in 0.. 0 { io.write_string(fi.writer, row_separator, &fi.n) } for col in 0.. 0 { io.write_string(fi.writer, ", ", &fi.n) } offset: int switch info.layout { case .Column_Major: offset = (row + col*info.elem_stride)*info.elem_size case .Row_Major: offset = (col + row*info.elem_stride)*info.elem_size } data := uintptr(v.data) + uintptr(offset) fmt_arg(fi, any{rawptr(data), info.elem.id}, verb) } } } fi.indent -= 1 if fi.hash { fmt_write_indent(fi) } } fmt_bit_field :: proc(fi: ^Info, v: any, verb: rune, info: runtime.Type_Info_Bit_Field, type_name: string) { read_bits :: proc(ptr: [^]byte, offset, size: uintptr) -> (res: u64) { for i in 0.. (do_continue: bool) { tag := info.tags[idx] if vt, ok := reflect.struct_tag_lookup(reflect.Struct_Tag(tag), "fmt"); ok { value := strings.trim_space(string(vt)) switch value { case "": return false case "-": return true } r, w := utf8.decode_rune_in_string(value) value = value[w:] if value == "" || value[0] == ',' { verb^ = r } } return false } io.write_string(fi.writer, type_name if len(type_name) != 0 || verb == 'w' else "bit_field", &fi.n) io.write_byte(fi.writer, '{', &fi.n) hash := fi.hash; defer fi.hash = hash indent := fi.indent; defer fi.indent -= 1 do_trailing_comma := hash fi.indent += 1 if hash { io.write_byte(fi.writer, '\n', &fi.n) } defer { if hash { for _ in 0.. 0 { io.write_string(fi.writer, ", ") } if hash { fmt_write_indent(fi) } io.write_string(fi.writer, name, &fi.n) io.write_string(fi.writer, " = ", &fi.n) bit_offset := info.bit_offsets[i] bit_size := info.bit_sizes[i] type := info.types[i] value := read_bits(([^]byte)(v.data), bit_offset, bit_size) if reflect.is_endian_big(type) { value <<= u64(8*type.size) - u64(bit_size) } if !reflect.is_unsigned(runtime.type_info_core(type)) { // Sign Extension m := u64(1<<(bit_size-1)) value = (value ~ m) - m } fmt_value(fi, any{&value, type.id}, field_verb) if do_trailing_comma { io.write_string(fi.writer, ",\n", &fi.n) } } } // Formats a value based on its type and formatting verb // // Inputs: // - fi: A pointer to an Info struct containing formatting information. // - v: The value to be formatted. // - verb: The formatting verb rune. // // NOTE: Uses user formatters if available and not ignored. // fmt_value :: proc(fi: ^Info, v: any, verb: rune) { if v.data == nil || v.id == nil { io.write_string(fi.writer, "", &fi.n) return } if _user_formatters != nil && !fi.ignore_user_formatters { formatter := _user_formatters[v.id] if formatter != nil { if ok := formatter(fi, v, verb); !ok { fi.ignore_user_formatters = true fmt_bad_verb(fi, verb) } return } } fi.ignore_user_formatters = false type_info := type_info_of(v.id) switch info in type_info.variant { case runtime.Type_Info_Any: // Ignore case runtime.Type_Info_Parameters: // Ignore case runtime.Type_Info_Named: fmt_named(fi, v, verb, info) case runtime.Type_Info_Boolean: fmt_arg(fi, v, verb) case runtime.Type_Info_Integer: fmt_arg(fi, v, verb) case runtime.Type_Info_Rune: fmt_arg(fi, v, verb) case runtime.Type_Info_Float: fmt_arg(fi, v, verb) case runtime.Type_Info_Complex: fmt_arg(fi, v, verb) case runtime.Type_Info_Quaternion: fmt_arg(fi, v, verb) case runtime.Type_Info_String: fmt_arg(fi, v, verb) case runtime.Type_Info_Pointer: if v.id == typeid_of(^runtime.Type_Info) { reflect.write_type(fi.writer, (^^runtime.Type_Info)(v.data)^, &fi.n) } else { ptr := (^rawptr)(v.data)^ if verb != 'p' && info.elem != nil { a := any{ptr, info.elem.id} elem := runtime.type_info_base(info.elem) if elem != nil { #partial switch e in elem.variant { case runtime.Type_Info_Array, runtime.Type_Info_Slice, runtime.Type_Info_Dynamic_Array, runtime.Type_Info_Map: if ptr == nil { io.write_string(fi.writer, "", &fi.n) return } if fi.indirection_level < 1 { fi.indirection_level += 1 defer fi.indirection_level -= 1 io.write_byte(fi.writer, '&') fmt_value(fi, a, verb) return } case runtime.Type_Info_Struct, runtime.Type_Info_Union: if ptr == nil { io.write_string(fi.writer, "", &fi.n) return } if fi.indirection_level < 1 { fi.indirection_level += 1 defer fi.indirection_level -= 1 io.write_byte(fi.writer, '&', &fi.n) fmt_value(fi, a, verb) return } } } } fmt_pointer(fi, ptr, verb) } case runtime.Type_Info_Soa_Pointer: ptr := (^runtime.Raw_Soa_Pointer)(v.data)^ fmt_soa_pointer(fi, ptr, verb) case runtime.Type_Info_Multi_Pointer: ptr := (^rawptr)(v.data)^ if ptr == nil { io.write_string(fi.writer, "", &fi.n) return } if verb != 'p' && info.elem != nil { a := any{ptr, info.elem.id} elem := runtime.type_info_base(info.elem) if elem != nil { if n, ok := fi.optional_len.?; ok { fi.optional_len = nil fmt_array(fi, ptr, n, elem.size, elem, verb) return } else if fi.use_nul_termination { fi.use_nul_termination = false fmt_array_nul_terminated(fi, ptr, -1, elem.size, elem, verb) return } #partial switch e in elem.variant { case runtime.Type_Info_Integer: switch verb { case 's', 'q': switch elem.id { case u8: fmt_cstring(fi, cstring(ptr), verb) return case u16, u32, rune: n := search_nul_termination(ptr, elem.size, -1) fmt_array(fi, ptr, n, elem.size, elem, verb) return } } case runtime.Type_Info_Array, runtime.Type_Info_Slice, runtime.Type_Info_Dynamic_Array, runtime.Type_Info_Map: if fi.indirection_level < 1 { fi.indirection_level += 1 defer fi.indirection_level -= 1 io.write_byte(fi.writer, '&', &fi.n) fmt_value(fi, a, verb) return } case runtime.Type_Info_Struct, runtime.Type_Info_Union: if fi.indirection_level < 1 { fi.indirection_level += 1 defer fi.indirection_level -= 1 io.write_byte(fi.writer, '&', &fi.n) fmt_value(fi, a, verb) return } } } } fmt_pointer(fi, ptr, verb) case runtime.Type_Info_Enumerated_Array: fi.record_level += 1 defer fi.record_level -= 1 if fi.hash { io.write_byte(fi.writer, '[' if verb != 'w' else '{', &fi.n) io.write_byte(fi.writer, '\n', &fi.n) defer { fmt_write_indent(fi) io.write_byte(fi.writer, ']' if verb != 'w' else '}', &fi.n) } indent := fi.indent fi.indent += 1 defer fi.indent = indent for i in 0.. 0 { io.write_string(fi.writer, ", ", &fi.n) } idx, ok := stored_enum_value_to_string(info.index, info.min_value, i) if ok { io.write_byte(fi.writer, '.', &fi.n) io.write_string(fi.writer, idx, &fi.n) } else { io.write_i64(fi.writer, i64(info.min_value)+i64(i), 10, &fi.n) } io.write_string(fi.writer, " = ", &fi.n) data := uintptr(v.data) + uintptr(i*info.elem_size) fmt_arg(fi, any{rawptr(data), info.elem.id}, verb) } } case runtime.Type_Info_Array: n := info.count ptr := v.data if ol, ok := fi.optional_len.?; ok { fi.optional_len = nil n = min(n, ol) } else if fi.use_nul_termination { fi.use_nul_termination = false fmt_array_nul_terminated(fi, ptr, n, info.elem_size, info.elem, verb) return } fmt_array(fi, ptr, n, info.elem_size, info.elem, verb) case runtime.Type_Info_Slice: slice := cast(^mem.Raw_Slice)v.data n := slice.len ptr := slice.data if ol, ok := fi.optional_len.?; ok { fi.optional_len = nil n = min(n, ol) } else if fi.use_nul_termination { fi.use_nul_termination = false fmt_array_nul_terminated(fi, ptr, n, info.elem_size, info.elem, verb) return } fmt_array(fi, ptr, n, info.elem_size, info.elem, verb) case runtime.Type_Info_Dynamic_Array: array := cast(^mem.Raw_Dynamic_Array)v.data n := array.len ptr := array.data if ol, ok := fi.optional_len.?; ok { fi.optional_len = nil n = min(n, ol) } else if fi.use_nul_termination { fi.use_nul_termination = false fmt_array_nul_terminated(fi, ptr, n, info.elem_size, info.elem, verb) return } fmt_array(fi, ptr, n, info.elem_size, info.elem, verb) case runtime.Type_Info_Simd_Vector: io.write_byte(fi.writer, '<', &fi.n) defer io.write_byte(fi.writer, '>', &fi.n) for i in 0.. 0 { io.write_string(fi.writer, ", ", &fi.n) } data := uintptr(v.data) + uintptr(i*info.elem_size) fmt_arg(fi, any{rawptr(data), info.elem.id}, verb) } case runtime.Type_Info_Map: switch verb { case: fmt_bad_verb(fi, verb) case 'v', 'w': if verb == 'v' { io.write_string(fi.writer, "map", &fi.n) } io.write_byte(fi.writer, '[' if verb != 'w' else '{', &fi.n) defer io.write_byte(fi.writer, ']' if verb != 'w' else '}', &fi.n) hash := fi.hash; defer fi.hash = hash indent := fi.indent; defer fi.indent -= 1 do_trailing_comma := hash fi.indent += 1 if hash { io.write_byte(fi.writer, '\n', &fi.n) } defer { if hash { for _ in 0.. 0 { io.write_string(fi.writer, ", ") } if hash { fmt_write_indent(fi) } j += 1 key := runtime.map_cell_index_dynamic(ks, info.map_info.ks, bucket_index) value := runtime.map_cell_index_dynamic(vs, info.map_info.vs, bucket_index) fmt_arg(&Info{writer = fi.writer}, any{rawptr(key), info.key.id}, verb) if hash { io.write_string(fi.writer, " = ", &fi.n) } else { io.write_string(fi.writer, "=", &fi.n) } fmt_arg(fi, any{rawptr(value), info.value.id}, verb) if do_trailing_comma { io.write_string(fi.writer, ",\n", &fi.n) } } } } case runtime.Type_Info_Struct: fmt_struct(fi, v, verb, info, "") case runtime.Type_Info_Union: fmt_union(fi, v, verb, info, type_info.size) case runtime.Type_Info_Enum: fmt_enum(fi, v, verb) case runtime.Type_Info_Procedure: ptr := (^rawptr)(v.data)^ if ptr == nil { io.write_string(fi.writer, "nil", &fi.n) } else { reflect.write_typeid(fi.writer, v.id, &fi.n) io.write_string(fi.writer, " @ ", &fi.n) fmt_pointer(fi, ptr, 'p') } case runtime.Type_Info_Type_Id: id := (^typeid)(v.data)^ reflect.write_typeid(fi.writer, id, &fi.n) case runtime.Type_Info_Bit_Set: fmt_bit_set(fi, v, verb = verb) case runtime.Type_Info_Relative_Pointer: ptr := reflect.relative_pointer_to_absolute_raw(v.data, info.base_integer.id) absolute_ptr := any{ptr, info.pointer.id} fmt_value(fi, absolute_ptr, verb) case runtime.Type_Info_Relative_Multi_Pointer: ptr := reflect.relative_pointer_to_absolute_raw(v.data, info.base_integer.id) absolute_ptr := any{ptr, info.pointer.id} fmt_value(fi, absolute_ptr, verb) case runtime.Type_Info_Matrix: fmt_matrix(fi, v, verb, info) case runtime.Type_Info_Bit_Field: fmt_bit_field(fi, v, verb, info, "") } } // This proc helps keep some of the code around whether or not to print an // intermediate plus sign in complexes and quaternions more readable. @(private) _cq_should_print_intermediate_plus :: proc "contextless" (fi: ^Info, f: f64) -> bool { if !fi.plus && f >= 0 { #partial switch math.classify(f) { case .Neg_Zero, .Inf: // These two classes print their own signs. return false case: return true } } return false } // Formats a complex number based on the given formatting verb // // Inputs: // - fi: A pointer to an Info struct containing formatting information. // - c: The complex128 value to be formatted. // - bits: The number of bits in the complex number (32 or 64). // - verb: The formatting verb rune ('f', 'F', 'v', 'h', 'H', 'w'). // fmt_complex :: proc(fi: ^Info, c: complex128, bits: int, verb: rune) { switch verb { case 'f', 'F', 'v', 'h', 'H', 'w': r, i := real(c), imag(c) fmt_float(fi, r, bits/2, verb) if _cq_should_print_intermediate_plus(fi, i) { io.write_rune(fi.writer, '+', &fi.n) } fmt_float(fi, i, bits/2, verb) io.write_rune(fi.writer, 'i', &fi.n) case: fmt_bad_verb(fi, verb) return } } // Formats a quaternion number based on the given formatting verb // // Inputs: // - fi: A pointer to an Info struct containing formatting information. // - q: The quaternion256 value to be formatted. // - bits: The number of bits in the quaternion number (64, 128, or 256). // - verb: The formatting verb rune ('f', 'F', 'v', 'h', 'H', 'w'). // fmt_quaternion :: proc(fi: ^Info, q: quaternion256, bits: int, verb: rune) { switch verb { case 'f', 'F', 'v', 'h', 'H', 'w': r, i, j, k := real(q), imag(q), jmag(q), kmag(q) fmt_float(fi, r, bits/4, verb) if _cq_should_print_intermediate_plus(fi, i) { io.write_rune(fi.writer, '+', &fi.n) } fmt_float(fi, i, bits/4, verb) io.write_rune(fi.writer, 'i', &fi.n) if _cq_should_print_intermediate_plus(fi, j) { io.write_rune(fi.writer, '+', &fi.n) } fmt_float(fi, j, bits/4, verb) io.write_rune(fi.writer, 'j', &fi.n) if _cq_should_print_intermediate_plus(fi, k) { io.write_rune(fi.writer, '+', &fi.n) } fmt_float(fi, k, bits/4, verb) io.write_rune(fi.writer, 'k', &fi.n) case: fmt_bad_verb(fi, verb) return } } // Formats an argument based on its type and the given formatting verb // // Inputs: // - fi: A pointer to an Info struct containing formatting information. // - arg: The value to be formatted. // - verb: The formatting verb rune (e.g. 'T'). // // NOTE: Uses user formatters if available and not ignored. // fmt_arg :: proc(fi: ^Info, arg: any, verb: rune) { if arg == nil { io.write_string(fi.writer, "") return } fi.arg = arg if verb == 'T' { ti := type_info_of(arg.id) switch a in arg { case ^runtime.Type_Info: ti = a } reflect.write_type(fi.writer, ti, &fi.n) return } if _user_formatters != nil { formatter := _user_formatters[arg.id] if formatter != nil { if ok := formatter(fi, arg, verb); !ok { fmt_bad_verb(fi, verb) } return } } arg_info := type_info_of(arg.id) if info, ok := arg_info.variant.(runtime.Type_Info_Named); ok { fmt_named(fi, arg, verb, info) return } base_arg := arg base_arg.id = runtime.typeid_base(base_arg.id) switch a in base_arg { case bool: fmt_bool(fi, a, verb) case b8: fmt_bool(fi, bool(a), verb) case b16: fmt_bool(fi, bool(a), verb) case b32: fmt_bool(fi, bool(a), verb) case b64: fmt_bool(fi, bool(a), verb) case any: fmt_arg(fi, a, verb) case rune: fmt_rune(fi, a, verb) case f16: fmt_float(fi, f64(a), 16, verb) case f32: fmt_float(fi, f64(a), 32, verb) case f64: fmt_float(fi, a, 64, verb) case f16le: fmt_float(fi, f64(a), 16, verb) case f32le: fmt_float(fi, f64(a), 32, verb) case f64le: fmt_float(fi, f64(a), 64, verb) case f16be: fmt_float(fi, f64(a), 16, verb) case f32be: fmt_float(fi, f64(a), 32, verb) case f64be: fmt_float(fi, f64(a), 64, verb) case complex32: fmt_complex(fi, complex128(a), 32, verb) case complex64: fmt_complex(fi, complex128(a), 64, verb) case complex128: fmt_complex(fi, a, 128, verb) case quaternion64: fmt_quaternion(fi, quaternion256(a), 64, verb) case quaternion128: fmt_quaternion(fi, quaternion256(a), 128, verb) case quaternion256: fmt_quaternion(fi, a, 256, verb) case i8: fmt_int(fi, u64(a), true, 8, verb) case u8: fmt_int(fi, u64(a), false, 8, verb) case i16: fmt_int(fi, u64(a), true, 16, verb) case u16: fmt_int(fi, u64(a), false, 16, verb) case i32: fmt_int(fi, u64(a), true, 32, verb) case u32: fmt_int(fi, u64(a), false, 32, verb) case i64: fmt_int(fi, u64(a), true, 64, verb) case u64: fmt_int(fi, a, false, 64, verb) case int: fmt_int(fi, u64(a), true, 8*size_of(int), verb) case uint: fmt_int(fi, u64(a), false, 8*size_of(uint), verb) case uintptr: fmt_int(fi, u64(a), false, 8*size_of(uintptr), verb) case string: fmt_string(fi, a, verb) case cstring: fmt_cstring(fi, a, verb) case typeid: reflect.write_typeid(fi.writer, a, &fi.n) case i16le: fmt_int(fi, u64(a), true, 16, verb) case u16le: fmt_int(fi, u64(a), false, 16, verb) case i32le: fmt_int(fi, u64(a), true, 32, verb) case u32le: fmt_int(fi, u64(a), false, 32, verb) case i64le: fmt_int(fi, u64(a), true, 64, verb) case u64le: fmt_int(fi, u64(a), false, 64, verb) case i16be: fmt_int(fi, u64(a), true, 16, verb) case u16be: fmt_int(fi, u64(a), false, 16, verb) case i32be: fmt_int(fi, u64(a), true, 32, verb) case u32be: fmt_int(fi, u64(a), false, 32, verb) case i64be: fmt_int(fi, u64(a), true, 64, verb) case u64be: fmt_int(fi, u64(a), false, 64, verb) case i128: fmt_int_128(fi, u128(a), true, 128, verb) case u128: fmt_int_128(fi, a, false, 128, verb) case i128le: fmt_int_128(fi, u128(a), true, 128, verb) case u128le: fmt_int_128(fi, u128(a), false, 128, verb) case i128be: fmt_int_128(fi, u128(a), true, 128, verb) case u128be: fmt_int_128(fi, u128(a), false, 128, verb) case: fmt_value(fi, arg, verb) } }