package runtime import "base:intrinsics" @builtin Maybe :: union($T: typeid) {T} @(builtin, require_results) container_of :: #force_inline proc "contextless" (ptr: $P/^$Field_Type, $T: typeid, $field_name: string) -> ^T where intrinsics.type_has_field(T, field_name), intrinsics.type_field_type(T, field_name) == Field_Type { offset :: offset_of_by_string(T, field_name) return (^T)(uintptr(ptr) - offset) if ptr != nil else nil } when !NO_DEFAULT_TEMP_ALLOCATOR { @thread_local global_default_temp_allocator_data: Default_Temp_Allocator } @(builtin, disabled=NO_DEFAULT_TEMP_ALLOCATOR) init_global_temporary_allocator :: proc(size: int, backup_allocator := context.allocator) { when !NO_DEFAULT_TEMP_ALLOCATOR { default_temp_allocator_init(&global_default_temp_allocator_data, size, backup_allocator) } } // `copy_slice` is a built-in procedure that copies elements from a source slice `src` to a destination slice `dst`. // The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum // of len(src) and len(dst). // // Prefer the procedure group `copy`. @builtin copy_slice :: proc "contextless" (dst, src: $T/[]$E) -> int { n := max(0, min(len(dst), len(src))) if n > 0 { intrinsics.mem_copy(raw_data(dst), raw_data(src), n*size_of(E)) } return n } // `copy_from_string` is a built-in procedure that copies elements from a source string `src` to a destination slice `dst`. // The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum // of len(src) and len(dst). // // Prefer the procedure group `copy`. @builtin copy_from_string :: proc "contextless" (dst: $T/[]$E/u8, src: $S/string) -> int { n := max(0, min(len(dst), len(src))) if n > 0 { intrinsics.mem_copy(raw_data(dst), raw_data(src), n) } return n } // `copy` is a built-in procedure that copies elements from a source slice/string `src` to a destination slice `dst`. // The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum // of len(src) and len(dst). @builtin copy :: proc{copy_slice, copy_from_string} // `unordered_remove` removed the element at the specified `index`. It does so by replacing the current end value // with the old value, and reducing the length of the dynamic array by 1. // // Note: This is an O(1) operation. // Note: If you want the elements to remain in their order, use `ordered_remove`. // Note: If the index is out of bounds, this procedure will panic. @builtin unordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check { bounds_check_error_loc(loc, index, len(array)) n := len(array)-1 if index != n { array[index] = array[n] } (^Raw_Dynamic_Array)(array).len -= 1 } // `ordered_remove` removed the element at the specified `index` whilst keeping the order of the other elements. // // Note: This is an O(N) operation. // Note: If the elements do not have to remain in their order, prefer `unordered_remove`. // Note: If the index is out of bounds, this procedure will panic. @builtin ordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check { bounds_check_error_loc(loc, index, len(array)) if index+1 < len(array) { copy(array[index:], array[index+1:]) } (^Raw_Dynamic_Array)(array).len -= 1 } // `remove_range` removes a range of elements specified by the range `lo` and `hi`, whilst keeping the order of the other elements. // // Note: This is an O(N) operation. // Note: If the range is out of bounds, this procedure will panic. @builtin remove_range :: proc(array: ^$D/[dynamic]$T, lo, hi: int, loc := #caller_location) #no_bounds_check { slice_expr_error_lo_hi_loc(loc, lo, hi, len(array)) n := max(hi-lo, 0) if n > 0 { if hi != len(array) { copy(array[lo:], array[hi:]) } (^Raw_Dynamic_Array)(array).len -= n } } // `pop` will remove and return the end value of dynamic array `array` and reduces the length of `array` by 1. // // Note: If the dynamic array has no elements (`len(array) == 0`), this procedure will panic. @builtin pop :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check { assert(len(array) > 0, loc=loc) res = array[len(array)-1] (^Raw_Dynamic_Array)(array).len -= 1 return res } // `pop_safe` trys to remove and return the end value of dynamic array `array` and reduces the length of `array` by 1. // If the operation is not possible, it will return false. @builtin pop_safe :: proc "contextless" (array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check { if len(array) == 0 { return } res, ok = array[len(array)-1], true (^Raw_Dynamic_Array)(array).len -= 1 return } // `pop_front` will remove and return the first value of dynamic array `array` and reduces the length of `array` by 1. // // Note: If the dynamic array as no elements (`len(array) == 0`), this procedure will panic. @builtin pop_front :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check { assert(len(array) > 0, loc=loc) res = array[0] if len(array) > 1 { copy(array[0:], array[1:]) } (^Raw_Dynamic_Array)(array).len -= 1 return res } // `pop_front_safe` trys to return and remove the first value of dynamic array `array` and reduces the length of `array` by 1. // If the operation is not possible, it will return false. @builtin pop_front_safe :: proc "contextless" (array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check { if len(array) == 0 { return } res, ok = array[0], true if len(array) > 1 { copy(array[0:], array[1:]) } (^Raw_Dynamic_Array)(array).len -= 1 return } // `clear` will set the length of a passed dynamic array or map to `0` @builtin clear :: proc{ clear_dynamic_array, clear_map, clear_soa_dynamic_array, } // `reserve` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`). @builtin reserve :: proc{ reserve_dynamic_array, reserve_map, reserve_soa, } @builtin non_zero_reserve :: proc{ non_zero_reserve_dynamic_array, non_zero_reserve_soa, } // `resize` will try to resize memory of a passed dynamic array to the requested element count (setting the `len`, and possibly `cap`). @builtin resize :: proc{ resize_dynamic_array, resize_soa, } @builtin non_zero_resize :: proc{ non_zero_resize_dynamic_array, non_zero_resize_soa, } // Shrinks the capacity of a dynamic array or map down to the current length, or the given capacity. @builtin shrink :: proc{shrink_dynamic_array, shrink_map} // `free` will try to free the passed pointer, with the given `allocator` if the allocator supports this operation. @builtin free :: proc{mem_free} // `free_all` will try to free/reset all of the memory of the given `allocator` if the allocator supports this operation. @builtin free_all :: proc{mem_free_all} // `delete_string` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation. // // Note: Prefer the procedure group `delete`. @builtin delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { return mem_free_with_size(raw_data(str), len(str), allocator, loc) } // `delete_cstring` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation. // // Note: Prefer the procedure group `delete`. @builtin delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { return mem_free((^byte)(str), allocator, loc) } // `delete_dynamic_array` will try to free the underlying data of the passed dynamic array, with the given `allocator` if the allocator supports this operation. // // Note: Prefer the procedure group `delete`. @builtin delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) -> Allocator_Error { return mem_free_with_size(raw_data(array), cap(array)*size_of(E), array.allocator, loc) } // `delete_slice` will try to free the underlying data of the passed sliced, with the given `allocator` if the allocator supports this operation. // // Note: Prefer the procedure group `delete`. @builtin delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { return mem_free_with_size(raw_data(array), len(array)*size_of(E), allocator, loc) } // `delete_map` will try to free the underlying data of the passed map, with the given `allocator` if the allocator supports this operation. // // Note: Prefer the procedure group `delete`. @builtin delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) -> Allocator_Error { return map_free_dynamic(transmute(Raw_Map)m, map_info(T), loc) } // `delete` will try to free the underlying data of the passed built-in data structure (string, cstring, dynamic array, slice, or map), with the given `allocator` if the allocator supports this operation. // // Note: Prefer `delete` over the specific `delete_*` procedures where possible. @builtin delete :: proc{ delete_string, delete_cstring, delete_dynamic_array, delete_slice, delete_map, delete_soa_slice, delete_soa_dynamic_array, } // The new built-in procedure allocates memory. The first argument is a type, not a value, and the value // return is a pointer to a newly allocated value of that type using the specified allocator, default is context.allocator @(builtin, require_results) new :: proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> (^T, Allocator_Error) #optional_allocator_error { return new_aligned(T, align_of(T), allocator, loc) } @(require_results) new_aligned :: proc($T: typeid, alignment: int, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) { data := mem_alloc_bytes(size_of(T), alignment, allocator, loc) or_return t = (^T)(raw_data(data)) return } @(builtin, require_results) new_clone :: proc(data: $T, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) #optional_allocator_error { t_data := mem_alloc_bytes(size_of(T), align_of(T), allocator, loc) or_return t = (^T)(raw_data(t_data)) if t != nil { t^ = data } return } DEFAULT_DYNAMIC_ARRAY_CAPACITY :: 8 @(require_results) make_aligned :: proc($T: typeid/[]$E, #any_int len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error { make_slice_error_loc(loc, len) data, err := mem_alloc_bytes(size_of(E)*len, alignment, allocator, loc) if data == nil && size_of(E) != 0 { return nil, err } s := Raw_Slice{raw_data(data), len} return transmute(T)s, err } // `make_slice` allocates and initializes a slice. Like `new`, the first argument is a type, not a value. // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. // // Note: Prefer using the procedure group `make`. @(builtin, require_results) make_slice :: proc($T: typeid/[]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error { return make_aligned(T, len, align_of(E), allocator, loc) } // `make_dynamic_array` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value. // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. // // Note: Prefer using the procedure group `make`. @(builtin, require_results) make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error { return make_dynamic_array_len_cap(T, 0, 0, allocator, loc) } // `make_dynamic_array_len` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value. // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. // // Note: Prefer using the procedure group `make`. @(builtin, require_results) make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error { return make_dynamic_array_len_cap(T, len, len, allocator, loc) } // `make_dynamic_array_len_cap` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value. // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. // // Note: Prefer using the procedure group `make`. @(builtin, require_results) make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, #any_int len: int, #any_int cap: int, allocator := context.allocator, loc := #caller_location) -> (array: T, err: Allocator_Error) #optional_allocator_error { err = _make_dynamic_array_len_cap((^Raw_Dynamic_Array)(&array), size_of(E), align_of(E), len, cap, allocator, loc) return } @(require_results) _make_dynamic_array_len_cap :: proc(array: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, #any_int len: int, #any_int cap: int, allocator := context.allocator, loc := #caller_location) -> (err: Allocator_Error) { make_dynamic_array_error_loc(loc, len, cap) array.allocator = allocator // initialize allocator before just in case it fails to allocate any memory data := mem_alloc_bytes(size_of_elem*cap, align_of_elem, allocator, loc) or_return use_zero := data == nil && size_of_elem != 0 array.data = raw_data(data) array.len = 0 if use_zero else len array.cap = 0 if use_zero else cap array.allocator = allocator return } // `make_map` allocates and initializes a map. Like `new`, the first argument is a type, not a value. // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. // // Note: Prefer using the procedure group `make`. @(builtin, require_results) make_map :: proc($T: typeid/map[$K]$E, #any_int capacity: int = 1< (m: T, err: Allocator_Error) #optional_allocator_error { make_map_expr_error_loc(loc, capacity) context.allocator = allocator err = reserve_map(&m, capacity, loc) return } // `make_multi_pointer` allocates and initializes a multi-pointer. Like `new`, the first argument is a type, not a value. // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. // // This is "similar" to doing `raw_data(make([]E, len, allocator))`. // // Note: Prefer using the procedure group `make`. @(builtin, require_results) make_multi_pointer :: proc($T: typeid/[^]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (mp: T, err: Allocator_Error) #optional_allocator_error { make_slice_error_loc(loc, len) data := mem_alloc_bytes(size_of(E)*len, align_of(E), allocator, loc) or_return if data == nil && size_of(E) != 0 { return } mp = cast(T)raw_data(data) return } // `make` built-in procedure allocates and initializes a value of type slice, dynamic array, map, or multi-pointer (only). // // Similar to `new`, the first argument is a type, not a value. Unlike new, make's return type is the same as the // type of its argument, not a pointer to it. // Make uses the specified allocator, default is context.allocator. @builtin make :: proc{ make_slice, make_dynamic_array, make_dynamic_array_len, make_dynamic_array_len_cap, make_map, make_multi_pointer, make_soa_slice, make_soa_dynamic_array, make_soa_dynamic_array_len, make_soa_dynamic_array_len_cap, } // `clear_map` will set the length of a passed map to `0` // // Note: Prefer the procedure group `clear` @builtin clear_map :: proc "contextless" (m: ^$T/map[$K]$V) { if m == nil { return } map_clear_dynamic((^Raw_Map)(m), map_info(T)) } // `reserve_map` will try to reserve memory of a passed map to the requested element count (setting the `cap`). // // Note: Prefer the procedure group `reserve` @builtin reserve_map :: proc(m: ^$T/map[$K]$V, #any_int capacity: int, loc := #caller_location) -> Allocator_Error { return __dynamic_map_reserve((^Raw_Map)(m), map_info(T), uint(capacity), loc) if m != nil else nil } // Shrinks the capacity of a map down to the current length. // // Note: Prefer the procedure group `shrink` @builtin shrink_map :: proc(m: ^$T/map[$K]$V, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) { if m != nil { return map_shrink_dynamic((^Raw_Map)(m), map_info(T), loc) } return } // The delete_key built-in procedure deletes the element with the specified key (m[key]) from the map. // If m is nil, or there is no such element, this procedure is a no-op @builtin delete_key :: proc(m: ^$T/map[$K]$V, key: K) -> (deleted_key: K, deleted_value: V) { if m != nil { key := key old_k, old_v, ok := map_erase_dynamic((^Raw_Map)(m), map_info(T), uintptr(&key)) if ok { deleted_key = (^K)(old_k)^ deleted_value = (^V)(old_v)^ } } return } _append_elem :: #force_inline proc(array: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, arg_ptr: rawptr, should_zero: bool, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { if array == nil { return } if array.cap < array.len+1 { // Same behavior as _append_elems but there's only one arg, so we always just add DEFAULT_DYNAMIC_ARRAY_CAPACITY. cap := 2 * array.cap + DEFAULT_DYNAMIC_ARRAY_CAPACITY // do not 'or_return' here as it could be a partial success err = _reserve_dynamic_array(array, size_of_elem, align_of_elem, cap, should_zero, loc) } if array.cap-array.len > 0 { data := ([^]byte)(array.data) assert(data != nil, loc=loc) data = data[array.len*size_of_elem:] intrinsics.mem_copy_non_overlapping(data, arg_ptr, size_of_elem) array.len += 1 n = 1 } return } @builtin append_elem :: proc(array: ^$T/[dynamic]$E, #no_broadcast arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { when size_of(E) == 0 { (^Raw_Dynamic_Array)(array).len += 1 return 1, nil } else { arg := arg return _append_elem((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), &arg, true, loc=loc) } } @builtin non_zero_append_elem :: proc(array: ^$T/[dynamic]$E, #no_broadcast arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { when size_of(E) == 0 { (^Raw_Dynamic_Array)(array).len += 1 return 1, nil } else { arg := arg return _append_elem((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), &arg, false, loc=loc) } } _append_elems :: #force_inline proc(array: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, should_zero: bool, loc := #caller_location, args: rawptr, arg_len: int) -> (n: int, err: Allocator_Error) #optional_allocator_error { if array == nil { return 0, nil } if arg_len <= 0 { return 0, nil } if array.cap < array.len+arg_len { cap := 2 * array.cap + max(DEFAULT_DYNAMIC_ARRAY_CAPACITY, arg_len) // do not 'or_return' here as it could be a partial success err = _reserve_dynamic_array(array, size_of_elem, align_of_elem, cap, should_zero, loc) } arg_len := arg_len arg_len = min(array.cap-array.len, arg_len) if arg_len > 0 { data := ([^]byte)(array.data) assert(data != nil, loc=loc) data = data[array.len*size_of_elem:] intrinsics.mem_copy(data, args, size_of_elem * arg_len) // must be mem_copy (overlapping) array.len += arg_len } return arg_len, err } @builtin append_elems :: proc(array: ^$T/[dynamic]$E, #no_broadcast args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { when size_of(E) == 0 { a := (^Raw_Dynamic_Array)(array) a.len += len(args) return len(args), nil } else { return _append_elems((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), true, loc, raw_data(args), len(args)) } } @builtin non_zero_append_elems :: proc(array: ^$T/[dynamic]$E, #no_broadcast args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { when size_of(E) == 0 { a := (^Raw_Dynamic_Array)(array) a.len += len(args) return len(args), nil } else { return _append_elems((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), false, loc, raw_data(args), len(args)) } } // The append_string built-in procedure appends a string to the end of a [dynamic]u8 like type _append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, should_zero: bool, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { return _append_elems((^Raw_Dynamic_Array)(array), 1, 1, should_zero, loc, raw_data(arg), len(arg)) } @builtin append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { return _append_elem_string(array, arg, true, loc) } @builtin non_zero_append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { return _append_elem_string(array, arg, false, loc) } // The append_string built-in procedure appends multiple strings to the end of a [dynamic]u8 like type @builtin append_string :: proc(array: ^$T/[dynamic]$E/u8, args: ..string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { n_arg: int for arg in args { n_arg, err = append(array, ..transmute([]E)(arg), loc=loc) n += n_arg if err != nil { return } } return } // The append built-in procedure appends elements to the end of a dynamic array @builtin append :: proc{ append_elem, append_elems, append_elem_string, append_soa_elem, append_soa_elems, } @builtin non_zero_append :: proc{ non_zero_append_elem, non_zero_append_elems, non_zero_append_elem_string, non_zero_append_soa_elem, non_zero_append_soa_elems, } @builtin append_nothing :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { if array == nil { return 0, nil } prev_len := len(array) resize(array, len(array)+1, loc) or_return return len(array)-prev_len, nil } @builtin inject_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, #no_broadcast arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { if array == nil { return } n := max(len(array), index) m :: 1 new_size := n + m resize(array, new_size, loc) or_return when size_of(E) != 0 { copy(array[index + m:], array[index:]) array[index] = arg } ok = true return } @builtin inject_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, #no_broadcast args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { if array == nil { return } if len(args) == 0 { ok = true return } n := max(len(array), index) m := len(args) new_size := n + m resize(array, new_size, loc) or_return when size_of(E) != 0 { copy(array[index + m:], array[index:]) copy(array[index:], args) } ok = true return } @builtin inject_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { if array == nil { return } if len(arg) == 0 { ok = true return } n := max(len(array), index) m := len(arg) new_size := n + m resize(array, new_size, loc) or_return copy(array[index+m:], array[index:]) copy(array[index:], arg) ok = true return } @builtin inject_at :: proc{inject_at_elem, inject_at_elems, inject_at_elem_string} @builtin assign_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { if index < len(array) { array[index] = arg ok = true } else { resize(array, index+1, loc) or_return array[index] = arg ok = true } return } @builtin assign_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, #no_broadcast args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { new_size := index + len(args) if len(args) == 0 { ok = true } else if new_size < len(array) { copy(array[index:], args) ok = true } else { resize(array, new_size, loc) or_return copy(array[index:], args) ok = true } return } @builtin assign_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { new_size := index + len(arg) if len(arg) == 0 { ok = true } else if new_size < len(array) { copy(array[index:], arg) ok = true } else { resize(array, new_size, loc) or_return copy(array[index:], arg) ok = true } return } @builtin assign_at :: proc{assign_at_elem, assign_at_elems, assign_at_elem_string} // `clear_dynamic_array` will set the length of a passed dynamic array to `0` // // Note: Prefer the procedure group `clear`. @builtin clear_dynamic_array :: proc "contextless" (array: ^$T/[dynamic]$E) { if array != nil { (^Raw_Dynamic_Array)(array).len = 0 } } // `reserve_dynamic_array` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`). // // Note: Prefer the procedure group `reserve`. _reserve_dynamic_array :: #force_inline proc(a: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, capacity: int, should_zero: bool, loc := #caller_location) -> Allocator_Error { if a == nil { return nil } if capacity <= a.cap { return nil } if a.allocator.procedure == nil { a.allocator = context.allocator } assert(a.allocator.procedure != nil) old_size := a.cap * size_of_elem new_size := capacity * size_of_elem allocator := a.allocator new_data: []byte if should_zero { new_data = mem_resize(a.data, old_size, new_size, align_of_elem, allocator, loc) or_return } else { new_data = non_zero_mem_resize(a.data, old_size, new_size, align_of_elem, allocator, loc) or_return } if new_data == nil && new_size > 0 { return .Out_Of_Memory } a.data = raw_data(new_data) a.cap = capacity return nil } @builtin reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, #any_int capacity: int, loc := #caller_location) -> Allocator_Error { return _reserve_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), capacity, true, loc) } @builtin non_zero_reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, #any_int capacity: int, loc := #caller_location) -> Allocator_Error { return _reserve_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), capacity, false, loc) } _resize_dynamic_array :: #force_inline proc(a: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, length: int, should_zero: bool, loc := #caller_location) -> Allocator_Error { if a == nil { return nil } if length <= a.cap { if should_zero && a.len < length { intrinsics.mem_zero(([^]byte)(a.data)[a.len*size_of_elem:], (length-a.len)*size_of_elem) } a.len = max(length, 0) return nil } if a.allocator.procedure == nil { a.allocator = context.allocator } assert(a.allocator.procedure != nil) old_size := a.cap * size_of_elem new_size := length * size_of_elem allocator := a.allocator new_data : []byte if should_zero { new_data = mem_resize(a.data, old_size, new_size, align_of_elem, allocator, loc) or_return } else { new_data = non_zero_mem_resize(a.data, old_size, new_size, align_of_elem, allocator, loc) or_return } if new_data == nil && new_size > 0 { return .Out_Of_Memory } a.data = raw_data(new_data) a.len = length a.cap = length return nil } // `resize_dynamic_array` will try to resize memory of a passed dynamic array or map to the requested element count (setting the `len`, and possibly `cap`). // // Note: Prefer the procedure group `resize` @builtin resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, #any_int length: int, loc := #caller_location) -> Allocator_Error { return _resize_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), length, true, loc=loc) } @builtin non_zero_resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, #any_int length: int, loc := #caller_location) -> Allocator_Error { return _resize_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), length, false, loc=loc) } /* Shrinks the capacity of a dynamic array down to the current length, or the given capacity. If `new_cap` is negative, then `len(array)` is used. Returns false if `cap(array) < new_cap`, or the allocator report failure. If `len(array) < new_cap`, then `len(array)` will be left unchanged. Note: Prefer the procedure group `shrink` */ shrink_dynamic_array :: proc(array: ^$T/[dynamic]$E, new_cap := -1, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) { return _shrink_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), new_cap, loc) } _shrink_dynamic_array :: proc(a: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, new_cap := -1, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) { if a == nil { return } new_cap := new_cap if new_cap >= 0 else a.len if new_cap > a.cap { return } if a.allocator.procedure == nil { a.allocator = context.allocator } assert(a.allocator.procedure != nil) old_size := a.cap * size_of_elem new_size := new_cap * size_of_elem new_data := mem_resize(a.data, old_size, new_size, align_of_elem, a.allocator, loc) or_return a.data = raw_data(new_data) a.len = min(new_cap, a.len) a.cap = new_cap return true, nil } @builtin map_insert :: proc(m: ^$T/map[$K]$V, key: K, value: V, loc := #caller_location) -> (ptr: ^V) { key, value := key, value return (^V)(__dynamic_map_set_without_hash((^Raw_Map)(m), map_info(T), rawptr(&key), rawptr(&value), loc)) } // Explicitly inserts a key and value into a map `m`, the same as `map_insert`, but the return values differ. // - `prev_key` will return the previous pointer of a key if it exists, check `found_previous` if was previously found // - `value_ptr` will return the pointer of the memory where the insertion happens, and `nil` if the map failed to resize // - `found_previous` will be true a previous key was found @(builtin, require_results) map_upsert :: proc(m: ^$T/map[$K]$V, key: K, value: V, loc := #caller_location) -> (prev_key: K, value_ptr: ^V, found_previous: bool) { key, value := key, value kp, vp := __dynamic_map_set_extra_without_hash((^Raw_Map)(m), map_info(T), rawptr(&key), rawptr(&value), loc) if kp != nil { prev_key = (^K)(kp)^ found_previous = true } value_ptr = (^V)(vp) return } @builtin card :: proc "contextless" (s: $S/bit_set[$E; $U]) -> int { when size_of(S) == 1 { return int(intrinsics.count_ones(transmute(u8)s)) } else when size_of(S) == 2 { return int(intrinsics.count_ones(transmute(u16)s)) } else when size_of(S) == 4 { return int(intrinsics.count_ones(transmute(u32)s)) } else when size_of(S) == 8 { return int(intrinsics.count_ones(transmute(u64)s)) } else when size_of(S) == 16 { return int(intrinsics.count_ones(transmute(u128)s)) } else { #panic("Unhandled card bit_set size") } } @builtin @(disabled=ODIN_DISABLE_ASSERT) assert :: proc(condition: bool, message := "", loc := #caller_location) { if !condition { // NOTE(bill): This is wrapped in a procedure call // to improve performance to make the CPU not // execute speculatively, making it about an order of // magnitude faster @(cold) internal :: proc(message: string, loc: Source_Code_Location) { p := context.assertion_failure_proc if p == nil { p = default_assertion_failure_proc } p("runtime assertion", message, loc) } internal(message, loc) } } @builtin panic :: proc(message: string, loc := #caller_location) -> ! { p := context.assertion_failure_proc if p == nil { p = default_assertion_failure_proc } p("panic", message, loc) } @builtin unimplemented :: proc(message := "", loc := #caller_location) -> ! { p := context.assertion_failure_proc if p == nil { p = default_assertion_failure_proc } p("not yet implemented", message, loc) } @builtin @(disabled=ODIN_DISABLE_ASSERT) assert_contextless :: proc "contextless" (condition: bool, message := "", loc := #caller_location) { if !condition { // NOTE(bill): This is wrapped in a procedure call // to improve performance to make the CPU not // execute speculatively, making it about an order of // magnitude faster @(cold) internal :: proc "contextless" (message: string, loc: Source_Code_Location) { default_assertion_contextless_failure_proc("runtime assertion", message, loc) } internal(message, loc) } } @builtin panic_contextless :: proc "contextless" (message: string, loc := #caller_location) -> ! { default_assertion_contextless_failure_proc("panic", message, loc) } @builtin unimplemented_contextless :: proc "contextless" (message := "", loc := #caller_location) -> ! { default_assertion_contextless_failure_proc("not yet implemented", message, loc) }