package math import "base:intrinsics" import "base:builtin" _ :: intrinsics Float_Class :: enum { Normal, // an ordinary nonzero floating point value Subnormal, // a subnormal floating point value Zero, // zero Neg_Zero, // the negative zero NaN, // Not-A-Number (NaN) Inf, // positive infinity Neg_Inf, // negative infinity } TAU :: 6.28318530717958647692528676655900576 PI :: 3.14159265358979323846264338327950288 E :: 2.71828182845904523536 τ :: TAU π :: PI e :: E SQRT_TWO :: 1.41421356237309504880168872420969808 SQRT_THREE :: 1.73205080756887729352744634150587236 SQRT_FIVE :: 2.23606797749978969640917366873127623 LN2 :: 0.693147180559945309417232121458176568 LN10 :: 2.30258509299404568401799145468436421 MAX_F64_PRECISION :: 16 // Maximum number of meaningful digits after the decimal point for 'f64' MAX_F32_PRECISION :: 8 // Maximum number of meaningful digits after the decimal point for 'f32' MAX_F16_PRECISION :: 4 // Maximum number of meaningful digits after the decimal point for 'f16' RAD_PER_DEG :: TAU/360.0 DEG_PER_RAD :: 360.0/TAU abs :: builtin.abs min :: builtin.min max :: builtin.max clamp :: builtin.clamp @(require_results) sqrt_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(sqrt_f16(f16(x))) } @(require_results) sqrt_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(sqrt_f16(f16(x))) } @(require_results) sqrt_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(sqrt_f32(f32(x))) } @(require_results) sqrt_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(sqrt_f32(f32(x))) } @(require_results) sqrt_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(sqrt_f64(f64(x))) } @(require_results) sqrt_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(sqrt_f64(f64(x))) } sqrt :: proc{ sqrt_f16, sqrt_f16le, sqrt_f16be, sqrt_f32, sqrt_f32le, sqrt_f32be, sqrt_f64, sqrt_f64le, sqrt_f64be, } @(require_results) sin_f16le :: proc "contextless" (θ: f16le) -> f16le { return #force_inline f16le(sin_f16(f16(θ))) } @(require_results) sin_f16be :: proc "contextless" (θ: f16be) -> f16be { return #force_inline f16be(sin_f16(f16(θ))) } @(require_results) sin_f32le :: proc "contextless" (θ: f32le) -> f32le { return #force_inline f32le(sin_f32(f32(θ))) } @(require_results) sin_f32be :: proc "contextless" (θ: f32be) -> f32be { return #force_inline f32be(sin_f32(f32(θ))) } @(require_results) sin_f64le :: proc "contextless" (θ: f64le) -> f64le { return #force_inline f64le(sin_f64(f64(θ))) } @(require_results) sin_f64be :: proc "contextless" (θ: f64be) -> f64be { return #force_inline f64be(sin_f64(f64(θ))) } // Return the sine of θ in radians. sin :: proc{ sin_f16, sin_f16le, sin_f16be, sin_f32, sin_f32le, sin_f32be, sin_f64, sin_f64le, sin_f64be, } @(require_results) cos_f16le :: proc "contextless" (θ: f16le) -> f16le { return #force_inline f16le(cos_f16(f16(θ))) } @(require_results) cos_f16be :: proc "contextless" (θ: f16be) -> f16be { return #force_inline f16be(cos_f16(f16(θ))) } @(require_results) cos_f32le :: proc "contextless" (θ: f32le) -> f32le { return #force_inline f32le(cos_f32(f32(θ))) } @(require_results) cos_f32be :: proc "contextless" (θ: f32be) -> f32be { return #force_inline f32be(cos_f32(f32(θ))) } @(require_results) cos_f64le :: proc "contextless" (θ: f64le) -> f64le { return #force_inline f64le(cos_f64(f64(θ))) } @(require_results) cos_f64be :: proc "contextless" (θ: f64be) -> f64be { return #force_inline f64be(cos_f64(f64(θ))) } // Return the cosine of θ in radians. cos :: proc{ cos_f16, cos_f16le, cos_f16be, cos_f32, cos_f32le, cos_f32be, cos_f64, cos_f64le, cos_f64be, } @(require_results) pow_f16le :: proc "contextless" (x, power: f16le) -> f16le { return #force_inline f16le(pow_f16(f16(x), f16(power))) } @(require_results) pow_f16be :: proc "contextless" (x, power: f16be) -> f16be { return #force_inline f16be(pow_f16(f16(x), f16(power))) } @(require_results) pow_f32le :: proc "contextless" (x, power: f32le) -> f32le { return #force_inline f32le(pow_f32(f32(x), f32(power))) } @(require_results) pow_f32be :: proc "contextless" (x, power: f32be) -> f32be { return #force_inline f32be(pow_f32(f32(x), f32(power))) } @(require_results) pow_f64le :: proc "contextless" (x, power: f64le) -> f64le { return #force_inline f64le(pow_f64(f64(x), f64(power))) } @(require_results) pow_f64be :: proc "contextless" (x, power: f64be) -> f64be { return #force_inline f64be(pow_f64(f64(x), f64(power))) } pow :: proc{ pow_f16, pow_f16le, pow_f16be, pow_f32, pow_f32le, pow_f32be, pow_f64, pow_f64le, pow_f64be, } @(require_results) fmuladd_f16le :: proc "contextless" (a, b, c: f16le) -> f16le { return #force_inline f16le(fmuladd_f16(f16(a), f16(b), f16(c))) } @(require_results) fmuladd_f16be :: proc "contextless" (a, b, c: f16be) -> f16be { return #force_inline f16be(fmuladd_f16(f16(a), f16(b), f16(c))) } @(require_results) fmuladd_f32le :: proc "contextless" (a, b, c: f32le) -> f32le { return #force_inline f32le(fmuladd_f32(f32(a), f32(b), f32(c))) } @(require_results) fmuladd_f32be :: proc "contextless" (a, b, c: f32be) -> f32be { return #force_inline f32be(fmuladd_f32(f32(a), f32(b), f32(c))) } @(require_results) fmuladd_f64le :: proc "contextless" (a, b, c: f64le) -> f64le { return #force_inline f64le(fmuladd_f64(f64(a), f64(b), f64(c))) } @(require_results) fmuladd_f64be :: proc "contextless" (a, b, c: f64be) -> f64be { return #force_inline f64be(fmuladd_f64(f64(a), f64(b), f64(c))) } fmuladd :: proc{ fmuladd_f16, fmuladd_f16le, fmuladd_f16be, fmuladd_f32, fmuladd_f32le, fmuladd_f32be, fmuladd_f64, fmuladd_f64le, fmuladd_f64be, } @(require_results) exp_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(exp_f16(f16(x))) } @(require_results) exp_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(exp_f16(f16(x))) } @(require_results) exp_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(exp_f32(f32(x))) } @(require_results) exp_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(exp_f32(f32(x))) } @(require_results) exp_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(exp_f64(f64(x))) } @(require_results) exp_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(exp_f64(f64(x))) } exp :: proc{ exp_f16, exp_f16le, exp_f16be, exp_f32, exp_f32le, exp_f32be, exp_f64, exp_f64le, exp_f64be, } @(require_results) pow10_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(pow10_f16(f16(x))) } @(require_results) pow10_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(pow10_f16(f16(x))) } @(require_results) pow10_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(pow10_f32(f32(x))) } @(require_results) pow10_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(pow10_f32(f32(x))) } @(require_results) pow10_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(pow10_f64(f64(x))) } @(require_results) pow10_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(pow10_f64(f64(x))) } pow10 :: proc{ pow10_f16, pow10_f16le, pow10_f16be, pow10_f32, pow10_f32le, pow10_f32be, pow10_f64, pow10_f64le, pow10_f64be, } @(require_results) pow10_f16 :: proc "contextless" (n: f16) -> f16 { @(static, rodata) pow10_pos_tab := [?]f16{ 1e00, 1e01, 1e02, 1e03, 1e04, } @(static, rodata) pow10_neg_tab := [?]f16{ 1e-00, 1e-01, 1e-02, 1e-03, 1e-04, 1e-05, 1e-06, 1e-07, } if 0 <= n && n <= 4 { return pow10_pos_tab[uint(n)] } if -7 <= n && n <= 0 { return pow10_neg_tab[uint(-n)] } if n > 0 { return inf_f16(1) } return 0 } @(require_results) pow10_f32 :: proc "contextless" (n: f32) -> f32 { @(static, rodata) pow10_pos_tab := [?]f32{ 1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08, 1e09, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 1e23, 1e24, 1e25, 1e26, 1e27, 1e28, 1e29, 1e30, 1e31, 1e32, 1e33, 1e34, 1e35, 1e36, 1e37, 1e38, } @(static, rodata) pow10_neg_tab := [?]f32{ 1e-00, 1e-01, 1e-02, 1e-03, 1e-04, 1e-05, 1e-06, 1e-07, 1e-08, 1e-09, 1e-10, 1e-11, 1e-12, 1e-13, 1e-14, 1e-15, 1e-16, 1e-17, 1e-18, 1e-19, 1e-20, 1e-21, 1e-22, 1e-23, 1e-24, 1e-25, 1e-26, 1e-27, 1e-28, 1e-29, 1e-30, 1e-31, 1e-32, 1e-33, 1e-34, 1e-35, 1e-36, 1e-37, 1e-38, 1e-39, 1e-40, 1e-41, 1e-42, 1e-43, 1e-44, 1e-45, } if 0 <= n && n <= 38 { return pow10_pos_tab[uint(n)] } if -45 <= n && n <= 0 { return pow10_neg_tab[uint(-n)] } if n > 0 { return inf_f32(1) } return 0 } @(require_results) pow10_f64 :: proc "contextless" (n: f64) -> f64 { @(static, rodata) pow10_tab := [?]f64{ 1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08, 1e09, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 1e23, 1e24, 1e25, 1e26, 1e27, 1e28, 1e29, 1e30, 1e31, } @(static, rodata) pow10_pos_tab32 := [?]f64{ 1e00, 1e32, 1e64, 1e96, 1e128, 1e160, 1e192, 1e224, 1e256, 1e288, } @(static, rodata) pow10_neg_tab32 := [?]f64{ 1e-00, 1e-32, 1e-64, 1e-96, 1e-128, 1e-160, 1e-192, 1e-224, 1e-256, 1e-288, 1e-320, } if 0 <= n && n <= 308 { return pow10_pos_tab32[uint(n)/32] * pow10_tab[uint(n)%32] } if -323 <= n && n <= 0 { return pow10_neg_tab32[uint(-n)/32] / pow10_tab[uint(-n)%32] } if n > 0 { return inf_f64(1) } return 0 } @(require_results) pow2_f64 :: proc "contextless" (#any_int exp: int) -> (res: f64) { switch { case exp >= -1022 && exp <= 1023: // Normal return transmute(f64)(u64(exp + F64_BIAS) << F64_SHIFT) case exp < -1075: // Underflow return f64(0) case exp == -1075: // Underflow. // Note that pow(2, -1075) returns 0h1 on Windows and 0h0 on macOS & Linux. return 0h00000000_00000000 case exp < -1022: // Denormal x := u64(exp + (F64_SHIFT + 1) + F64_BIAS) << F64_SHIFT return f64(1) / (1 << (F64_SHIFT + 1)) * transmute(f64)x case exp > 1023: // Overflow, +Inf return 0h7ff00000_00000000 } unreachable() } @(require_results) pow2_f32 :: proc "contextless" (#any_int exp: int) -> (res: f32) { switch { case exp >= -126 && exp <= 127: // Normal return transmute(f32)(u32(exp + F32_BIAS) << F32_SHIFT) case exp < -151: // Underflow return f32(0) case exp < -126: // Denormal x := u32(exp + (F32_SHIFT + 1) + F32_BIAS) << F32_SHIFT return f32(1) / (1 << (F32_SHIFT + 1)) * transmute(f32)x case exp > 127: // Overflow, +Inf return 0h7f80_0000 } unreachable() } @(require_results) pow2_f16 :: proc "contextless" (#any_int exp: int) -> (res: f16) { switch { case exp >= -14 && exp <= 15: // Normal return transmute(f16)(u16(exp + F16_BIAS) << F16_SHIFT) case exp < -25: // Underflow return 0h0000 case exp == -25: // Underflow return 0h0001 case exp < -14: // Denormal x := u16(exp + (F16_SHIFT + 1) + F16_BIAS) << F16_SHIFT return f16(1) / (1 << (F16_SHIFT + 1)) * transmute(f16)x case exp > 15: // Overflow, +Inf return 0h7c00 } unreachable() } @(require_results) ldexp_f64 :: proc "contextless" (val: f64, exp: int) -> f64 { mask :: F64_MASK shift :: F64_SHIFT bias :: F64_BIAS switch { case val == 0: return val case is_inf(val) || is_nan(val): return val } exp := exp frac, e := normalize_f64(val) exp += e x := transmute(u64)frac exp += int(x>>shift)&mask - bias if exp < -1075 { // underflow return copy_sign(0, frac) } else if exp > 1023 { // overflow if frac < 0 { return inf_f64(-1) } return inf_f64(+1) } m: f64 = 1 if exp < -1022 { // denormal exp += 53 m = 1.0 / (1<<53) } x &~= mask << shift x |= u64(exp+bias) << shift return m * transmute(f64)x } @(require_results) ldexp_f16 :: proc "contextless" (val: f16, exp: int) -> f16 { return f16(ldexp_f64(f64(val), exp)) } @(require_results) ldexp_f32 :: proc "contextless" (val: f32, exp: int) -> f32 { return f32(ldexp_f64(f64(val), exp)) } @(require_results) ldexp_f16le :: proc "contextless" (val: f16le, exp: int) -> f16le { return #force_inline f16le(ldexp_f16(f16(val), exp)) } @(require_results) ldexp_f16be :: proc "contextless" (val: f16be, exp: int) -> f16be { return #force_inline f16be(ldexp_f16(f16(val), exp)) } @(require_results) ldexp_f32le :: proc "contextless" (val: f32le, exp: int) -> f32le { return #force_inline f32le(ldexp_f32(f32(val), exp)) } @(require_results) ldexp_f32be :: proc "contextless" (val: f32be, exp: int) -> f32be { return #force_inline f32be(ldexp_f32(f32(val), exp)) } @(require_results) ldexp_f64le :: proc "contextless" (val: f64le, exp: int) -> f64le { return #force_inline f64le(ldexp_f64(f64(val), exp)) } @(require_results) ldexp_f64be :: proc "contextless" (val: f64be, exp: int) -> f64be { return #force_inline f64be(ldexp_f64(f64(val), exp)) } // ldexp is the inverse of frexp // it returns val * 2**exp. // // Special cases: // ldexp(+0, exp) = +0 // ldexp(-0, exp) = -0 // ldexp(+inf, exp) = +inf // ldexp(-inf, exp) = -inf // ldexp(NaN, exp) = NaN ldexp :: proc{ ldexp_f16, ldexp_f16le, ldexp_f16be, ldexp_f32, ldexp_f32le, ldexp_f32be, ldexp_f64, ldexp_f64le, ldexp_f64be, } @(require_results) log_f16 :: proc "contextless" (x, base: f16) -> f16 { return ln(x) / ln(base) } @(require_results) log_f16le :: proc "contextless" (x, base: f16le) -> f16le { return f16le(log_f16(f16(x), f16(base))) } @(require_results) log_f16be :: proc "contextless" (x, base: f16be) -> f16be { return f16be(log_f16(f16(x), f16(base))) } @(require_results) log_f32 :: proc "contextless" (x, base: f32) -> f32 { return ln(x) / ln(base) } @(require_results) log_f32le :: proc "contextless" (x, base: f32le) -> f32le { return f32le(log_f32(f32(x), f32(base))) } @(require_results) log_f32be :: proc "contextless" (x, base: f32be) -> f32be { return f32be(log_f32(f32(x), f32(base))) } @(require_results) log_f64 :: proc "contextless" (x, base: f64) -> f64 { return ln(x) / ln(base) } @(require_results) log_f64le :: proc "contextless" (x, base: f64le) -> f64le { return f64le(log_f64(f64(x), f64(base))) } @(require_results) log_f64be :: proc "contextless" (x, base: f64be) -> f64be { return f64be(log_f64(f64(x), f64(base))) } log :: proc{ log_f16, log_f16le, log_f16be, log_f32, log_f32le, log_f32be, log_f64, log_f64le, log_f64be, } @(require_results) log2_f16 :: proc "contextless" (x: f16) -> f16 { return log(f16(x), f16(2.0)) } @(require_results) log2_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(log_f16(f16(x), f16(2.0))) } @(require_results) log2_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(log_f16(f16(x), f16(2.0))) } @(require_results) log2_f32 :: proc "contextless" (x: f32) -> f32 { return log(f32(x), f32(2.0)) } @(require_results) log2_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(log_f32(f32(x), f32(2.0))) } @(require_results) log2_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(log_f32(f32(x), f32(2.0))) } @(require_results) log2_f64 :: proc "contextless" (x: f64) -> f64 { return log(f64(x), f64(2.0)) } @(require_results) log2_f64le :: proc "contextless" (x: f64le) -> f64le { return f64le(log_f64(f64(x), f64(2.0))) } @(require_results) log2_f64be :: proc "contextless" (x: f64be) -> f64be { return f64be(log_f64(f64(x), f64(2.0))) } log2 :: proc{ log2_f16, log2_f16le, log2_f16be, log2_f32, log2_f32le, log2_f32be, log2_f64, log2_f64le, log2_f64be, } @(require_results) log10_f16 :: proc "contextless" (x: f16) -> f16 { return ln(x)/LN10 } @(require_results) log10_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(log10_f16(f16(x))) } @(require_results) log10_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(log10_f16(f16(x))) } @(require_results) log10_f32 :: proc "contextless" (x: f32) -> f32 { return ln(x)/LN10 } @(require_results) log10_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(log10_f32(f32(x))) } @(require_results) log10_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(log10_f32(f32(x))) } @(require_results) log10_f64 :: proc "contextless" (x: f64) -> f64 { return ln(x)/LN10 } @(require_results) log10_f64le :: proc "contextless" (x: f64le) -> f64le { return f64le(log10_f64(f64(x))) } @(require_results) log10_f64be :: proc "contextless" (x: f64be) -> f64be { return f64be(log10_f64(f64(x))) } log10 :: proc{ log10_f16, log10_f16le, log10_f16be, log10_f32, log10_f32le, log10_f32be, log10_f64, log10_f64le, log10_f64be, } @(require_results) tan_f16 :: proc "contextless" (θ: f16) -> f16 { return sin(θ)/cos(θ) } @(require_results) tan_f16le :: proc "contextless" (θ: f16le) -> f16le { return f16le(tan_f16(f16(θ))) } @(require_results) tan_f16be :: proc "contextless" (θ: f16be) -> f16be { return f16be(tan_f16(f16(θ))) } @(require_results) tan_f32 :: proc "contextless" (θ: f32) -> f32 { return sin(θ)/cos(θ) } @(require_results) tan_f32le :: proc "contextless" (θ: f32le) -> f32le { return f32le(tan_f32(f32(θ))) } @(require_results) tan_f32be :: proc "contextless" (θ: f32be) -> f32be { return f32be(tan_f32(f32(θ))) } @(require_results) tan_f64 :: proc "contextless" (θ: f64) -> f64 { return sin(θ)/cos(θ) } @(require_results) tan_f64le :: proc "contextless" (θ: f64le) -> f64le { return f64le(tan_f64(f64(θ))) } @(require_results) tan_f64be :: proc "contextless" (θ: f64be) -> f64be { return f64be(tan_f64(f64(θ))) } // Return the tangent of θ in radians. tan :: proc{ tan_f16, tan_f16le, tan_f16be, tan_f32, tan_f32le, tan_f32be, tan_f64, tan_f64le, tan_f64be, } @(require_results) lerp :: proc "contextless" (a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t } @(require_results) saturate :: proc "contextless" (a: $T) -> (x: T) { return clamp(a, 0, 1) } @(require_results) unlerp :: proc "contextless" (a, b, x: $T) -> (t: T) where intrinsics.type_is_float(T), !intrinsics.type_is_array(T) { return (x-a)/(b-a) } @(require_results) remap :: proc "contextless" (old_value, old_min, old_max, new_min, new_max: $T) -> (x: T) where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { old_range := old_max - old_min new_range := new_max - new_min if old_range == 0 { return new_range / 2 } return ((old_value - old_min) / old_range) * new_range + new_min } @(require_results) remap_clamped :: proc "contextless" (old_value, old_min, old_max, new_min, new_max: $T) -> (x: T) where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { remapped := #force_inline remap(old_value, old_min, old_max, new_min, new_max) return clamp(remapped, new_min, new_max) } @(require_results) wrap :: proc "contextless" (x, y: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { tmp := mod(x, y) return y + tmp if tmp < 0 else tmp } @(require_results) angle_diff :: proc "contextless" (a, b: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { dist := wrap(b - a, TAU) return wrap(dist*2, TAU) - dist } @(require_results) angle_lerp :: proc "contextless" (a, b, t: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { return a + angle_diff(a, b) * t } @(require_results) step :: proc "contextless" (edge, x: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { return 0 if x < edge else 1 } @(require_results) smoothstep :: proc "contextless" (edge0, edge1, x: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { t := clamp((x - edge0) / (edge1 - edge0), 0, 1) return t * t * (3 - 2*t) } @(require_results) bias :: proc "contextless" (t, b: $T) -> T where intrinsics.type_is_numeric(T) { return t / (((1/b) - 2) * (1 - t) + 1) } @(require_results) gain :: proc "contextless" (t, g: $T) -> T where intrinsics.type_is_numeric(T) { if t < 0.5 { return bias(t*2, g)*0.5 } return bias(t*2 - 1, 1 - g)*0.5 + 0.5 } @(require_results) sign_f16 :: proc "contextless" (x: f16) -> f16 { return f16(int(0 < x) - int(x < 0)) } @(require_results) sign_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(int(0 < x) - int(x < 0)) } @(require_results) sign_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(int(0 < x) - int(x < 0)) } @(require_results) sign_f32 :: proc "contextless" (x: f32) -> f32 { return f32(int(0 < x) - int(x < 0)) } @(require_results) sign_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(int(0 < x) - int(x < 0)) } @(require_results) sign_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(int(0 < x) - int(x < 0)) } @(require_results) sign_f64 :: proc "contextless" (x: f64) -> f64 { return f64(int(0 < x) - int(x < 0)) } @(require_results) sign_f64le :: proc "contextless" (x: f64le) -> f64le { return f64le(int(0 < x) - int(x < 0)) } @(require_results) sign_f64be :: proc "contextless" (x: f64be) -> f64be { return f64be(int(0 < x) - int(x < 0)) } sign :: proc{ sign_f16, sign_f16le, sign_f16be, sign_f32, sign_f32le, sign_f32be, sign_f64, sign_f64le, sign_f64be, } @(require_results) sign_bit_f16 :: proc "contextless" (x: f16) -> bool { return (transmute(u16)x) & (1<<15) != 0 } @(require_results) sign_bit_f16le :: proc "contextless" (x: f16le) -> bool { return #force_inline sign_bit_f16(f16(x)) } @(require_results) sign_bit_f16be :: proc "contextless" (x: f16be) -> bool { return #force_inline sign_bit_f16(f16(x)) } @(require_results) sign_bit_f32 :: proc "contextless" (x: f32) -> bool { return (transmute(u32)x) & (1<<31) != 0 } @(require_results) sign_bit_f32le :: proc "contextless" (x: f32le) -> bool { return #force_inline sign_bit_f32(f32(x)) } @(require_results) sign_bit_f32be :: proc "contextless" (x: f32be) -> bool { return #force_inline sign_bit_f32(f32(x)) } @(require_results) sign_bit_f64 :: proc "contextless" (x: f64) -> bool { return (transmute(u64)x) & (1<<63) != 0 } @(require_results) sign_bit_f64le :: proc "contextless" (x: f64le) -> bool { return #force_inline sign_bit_f64(f64(x)) } @(require_results) sign_bit_f64be :: proc "contextless" (x: f64be) -> bool { return #force_inline sign_bit_f64(f64(x)) } sign_bit :: proc{ sign_bit_f16, sign_bit_f16le, sign_bit_f16be, sign_bit_f32, sign_bit_f32le, sign_bit_f32be, sign_bit_f64, sign_bit_f64le, sign_bit_f64be, } @(require_results) copy_sign_f16 :: proc "contextless" (x, y: f16) -> f16 { ix := transmute(u16)x iy := transmute(u16)y ix &= 0x7fff ix |= iy & 0x8000 return transmute(f16)ix } @(require_results) copy_sign_f16le :: proc "contextless" (x, y: f16le) -> f16le { return #force_inline f16le(copy_sign_f16(f16(x), f16(y))) } @(require_results) copy_sign_f16be :: proc "contextless" (x, y: f16be) -> f16be { return #force_inline f16be(copy_sign_f16(f16(x), f16(y))) } @(require_results) copy_sign_f32 :: proc "contextless" (x, y: f32) -> f32 { ix := transmute(u32)x iy := transmute(u32)y ix &= 0x7fff_ffff ix |= iy & 0x8000_0000 return transmute(f32)ix } @(require_results) copy_sign_f32le :: proc "contextless" (x, y: f32le) -> f32le { return #force_inline f32le(copy_sign_f32(f32(x), f32(y))) } @(require_results) copy_sign_f32be :: proc "contextless" (x, y: f32be) -> f32be { return #force_inline f32be(copy_sign_f32(f32(x), f32(y))) } @(require_results) copy_sign_f64 :: proc "contextless" (x, y: f64) -> f64 { ix := transmute(u64)x iy := transmute(u64)y ix &= 0x7fff_ffff_ffff_ffff ix |= iy & 0x8000_0000_0000_0000 return transmute(f64)ix } @(require_results) copy_sign_f64le :: proc "contextless" (x, y: f64le) -> f64le { return #force_inline f64le(copy_sign_f64(f64(x), f64(y))) } @(require_results) copy_sign_f64be :: proc "contextless" (x, y: f64be) -> f64be { return #force_inline f64be(copy_sign_f64(f64(x), f64(y))) } copy_sign :: proc{ copy_sign_f16, copy_sign_f16le, copy_sign_f16be, copy_sign_f32, copy_sign_f32le, copy_sign_f32be, copy_sign_f64, copy_sign_f64le, copy_sign_f64be, } @(require_results) to_radians_f16 :: proc "contextless" (degrees: f16) -> f16 { return degrees * RAD_PER_DEG } @(require_results) to_radians_f16le :: proc "contextless" (degrees: f16le) -> f16le { return degrees * RAD_PER_DEG } @(require_results) to_radians_f16be :: proc "contextless" (degrees: f16be) -> f16be { return degrees * RAD_PER_DEG } @(require_results) to_radians_f32 :: proc "contextless" (degrees: f32) -> f32 { return degrees * RAD_PER_DEG } @(require_results) to_radians_f32le :: proc "contextless" (degrees: f32le) -> f32le { return degrees * RAD_PER_DEG } @(require_results) to_radians_f32be :: proc "contextless" (degrees: f32be) -> f32be { return degrees * RAD_PER_DEG } @(require_results) to_radians_f64 :: proc "contextless" (degrees: f64) -> f64 { return degrees * RAD_PER_DEG } @(require_results) to_radians_f64le :: proc "contextless" (degrees: f64le) -> f64le { return degrees * RAD_PER_DEG } @(require_results) to_radians_f64be :: proc "contextless" (degrees: f64be) -> f64be { return degrees * RAD_PER_DEG } @(require_results) to_degrees_f16 :: proc "contextless" (radians: f16) -> f16 { return radians * DEG_PER_RAD } @(require_results) to_degrees_f16le :: proc "contextless" (radians: f16le) -> f16le { return radians * DEG_PER_RAD } @(require_results) to_degrees_f16be :: proc "contextless" (radians: f16be) -> f16be { return radians * DEG_PER_RAD } @(require_results) to_degrees_f32 :: proc "contextless" (radians: f32) -> f32 { return radians * DEG_PER_RAD } @(require_results) to_degrees_f32le :: proc "contextless" (radians: f32le) -> f32le { return radians * DEG_PER_RAD } @(require_results) to_degrees_f32be :: proc "contextless" (radians: f32be) -> f32be { return radians * DEG_PER_RAD } @(require_results) to_degrees_f64 :: proc "contextless" (radians: f64) -> f64 { return radians * DEG_PER_RAD } @(require_results) to_degrees_f64le :: proc "contextless" (radians: f64le) -> f64le { return radians * DEG_PER_RAD } @(require_results) to_degrees_f64be :: proc "contextless" (radians: f64be) -> f64be { return radians * DEG_PER_RAD } to_radians :: proc{ to_radians_f16, to_radians_f16le, to_radians_f16be, to_radians_f32, to_radians_f32le, to_radians_f32be, to_radians_f64, to_radians_f64le, to_radians_f64be, } to_degrees :: proc{ to_degrees_f16, to_degrees_f16le, to_degrees_f16be, to_degrees_f32, to_degrees_f32le, to_degrees_f32be, to_degrees_f64, to_degrees_f64le, to_degrees_f64be, } @(require_results) trunc_f16 :: proc "contextless" (x: f16) -> f16 { trunc_internal :: proc "contextless" (f: f16) -> f16 { mask :: F16_MASK shift :: F16_SHIFT bias :: F16_BIAS if f < 1 { switch { case f < 0: return -trunc_internal(-f) case f == 0: return f case: return 0 } } x := transmute(u16)f e := (x >> shift) & mask - bias if e < shift { x &~= 1 << (shift-e) - 1 } return transmute(f16)x } switch classify(x) { case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf: return x case .Normal, .Subnormal: // carry on } return trunc_internal(x) } @(require_results) trunc_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(trunc_f16(f16(x))) } @(require_results) trunc_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(trunc_f16(f16(x))) } @(require_results) trunc_f32 :: proc "contextless" (x: f32) -> f32 { trunc_internal :: proc "contextless" (f: f32) -> f32 { mask :: F32_MASK shift :: F32_SHIFT bias :: F32_BIAS if f < 1 { switch { case f < 0: return -trunc_internal(-f) case f == 0: return f case: return 0 } } x := transmute(u32)f e := (x >> shift) & mask - bias if e < shift { x &~= 1 << (shift-e) - 1 } return transmute(f32)x } switch classify(x) { case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf: return x case .Normal, .Subnormal: // carry on } return trunc_internal(x) } @(require_results) trunc_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(trunc_f32(f32(x))) } @(require_results) trunc_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(trunc_f32(f32(x))) } @(require_results) trunc_f64 :: proc "contextless" (x: f64) -> f64 { trunc_internal :: proc "contextless" (f: f64) -> f64 { mask :: F64_MASK shift :: F64_SHIFT bias :: F64_BIAS if f < 1 { switch { case f < 0: return -trunc_internal(-f) case f == 0: return f case: return 0 } } x := transmute(u64)f e := (x >> shift) & mask - bias if e < shift { x &~= 1 << (shift-e) - 1 } return transmute(f64)x } switch classify(x) { case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf: return x case .Normal, .Subnormal: // carry on } return trunc_internal(x) } @(require_results) trunc_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(trunc_f64(f64(x))) } @(require_results) trunc_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(trunc_f64(f64(x))) } // Removes the fractional part of the value, i.e. rounds towards zero. trunc :: proc{ trunc_f16, trunc_f16le, trunc_f16be, trunc_f32, trunc_f32le, trunc_f32be, trunc_f64, trunc_f64le, trunc_f64be, } @(require_results) round_f16 :: proc "contextless" (x: f16) -> f16 { // origin: Go /src/math/floor.go // // Copyright (c) 2009 The Go Authors. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. mask :: F16_MASK shift :: F16_SHIFT bias :: F16_BIAS bits := transmute(u16)x e := (bits >> shift) & mask if e < bias { bits &= 0x8000 if e == bias - 1 { bits |= transmute(u16)f16(1) } } else if e < bias + shift { half :: 1 << (shift - 1) mantissa :: (1 << shift) - 1 e -= bias bits += half >> e bits &~= mantissa >> e } return transmute(f16)bits } @(require_results) round_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(round_f16(f16(x))) } @(require_results) round_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(round_f16(f16(x))) } @(require_results) round_f32 :: proc "contextless" (x: f32) -> f32 { // origin: Go /src/math/floor.go // // Copyright (c) 2009 The Go Authors. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. mask :: F32_MASK shift :: F32_SHIFT bias :: F32_BIAS bits := transmute(u32)x e := (bits >> shift) & mask if e < bias { bits &= 0x8000_0000 if e == bias - 1 { bits |= transmute(u32)f32(1) } } else if e < bias + shift { half :: 1 << (shift - 1) mantissa :: (1 << shift) - 1 e -= bias bits += half >> e bits &~= mantissa >> e } return transmute(f32)bits } @(require_results) round_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(round_f32(f32(x))) } @(require_results) round_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(round_f32(f32(x))) } @(require_results) round_f64 :: proc "contextless" (x: f64) -> f64 { // origin: Go /src/math/floor.go // // Copyright (c) 2009 The Go Authors. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. mask :: F64_MASK shift :: F64_SHIFT bias :: F64_BIAS bits := transmute(u64)x e := (bits >> shift) & mask if e < bias { bits &= 0x8000_0000_0000_0000 if e == bias - 1 { bits |= transmute(u64)f64(1) } } else if e < bias + shift { half :: 1 << (shift - 1) mantissa :: (1 << shift) - 1 e -= bias bits += half >> e bits &~= mantissa >> e } return transmute(f64)bits } @(require_results) round_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(round_f64(f64(x))) } @(require_results) round_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(round_f64(f64(x))) } round :: proc{ round_f16, round_f16le, round_f16be, round_f32, round_f32le, round_f32be, round_f64, round_f64le, round_f64be, } @(require_results) ceil_f16 :: proc "contextless" (x: f16) -> f16 { return -floor(-x) } @(require_results) ceil_f16le :: proc "contextless" (x: f16le) -> f16le { return -floor(-x) } @(require_results) ceil_f16be :: proc "contextless" (x: f16be) -> f16be { return -floor(-x) } @(require_results) ceil_f32 :: proc "contextless" (x: f32) -> f32 { return -floor(-x) } @(require_results) ceil_f32le :: proc "contextless" (x: f32le) -> f32le { return -floor(-x) } @(require_results) ceil_f32be :: proc "contextless" (x: f32be) -> f32be { return -floor(-x) } @(require_results) ceil_f64 :: proc "contextless" (x: f64) -> f64 { return -floor(-x) } @(require_results) ceil_f64le :: proc "contextless" (x: f64le) -> f64le { return -floor(-x) } @(require_results) ceil_f64be :: proc "contextless" (x: f64be) -> f64be { return -floor(-x) } ceil :: proc{ ceil_f16, ceil_f16le, ceil_f16be, ceil_f32, ceil_f32le, ceil_f32be, ceil_f64, ceil_f64le, ceil_f64be, } @(require_results) floor_f16 :: proc "contextless" (x: f16) -> f16 { if x == 0 || is_nan(x) || is_inf(x) { return x } if x < 0 { d, fract := modf(-x) if fract != 0.0 { d = d + 1 } return -d } d, _ := modf(x) return d } @(require_results) floor_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(floor_f16(f16(x))) } @(require_results) floor_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(floor_f16(f16(x))) } @(require_results) floor_f32 :: proc "contextless" (x: f32) -> f32 { if x == 0 || is_nan(x) || is_inf(x) { return x } if x < 0 { d, fract := modf(-x) if fract != 0.0 { d = d + 1 } return -d } d, _ := modf(x) return d } @(require_results) floor_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(floor_f32(f32(x))) } @(require_results) floor_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(floor_f32(f32(x))) } @(require_results) floor_f64 :: proc "contextless" (x: f64) -> f64 { if x == 0 || is_nan(x) || is_inf(x) { return x } if x < 0 { d, fract := modf(-x) if fract != 0.0 { d = d + 1 } return -d } d, _ := modf(x) return d } @(require_results) floor_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(floor_f64(f64(x))) } @(require_results) floor_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(floor_f64(f64(x))) } floor :: proc{ floor_f16, floor_f16le, floor_f16be, floor_f32, floor_f32le, floor_f32be, floor_f64, floor_f64le, floor_f64be, } @(require_results) floor_div :: proc "contextless" (x, y: $T) -> T where intrinsics.type_is_integer(T) { a := x / y r := x % y if (r > 0 && y < 0) || (r < 0 && y > 0) { a -= 1 } return a } @(require_results) floor_mod :: proc "contextless" (x, y: $T) -> T where intrinsics.type_is_integer(T) { r := x % y if (r > 0 && y < 0) || (r < 0 && y > 0) { r += y } return r } @(require_results) divmod :: #force_inline proc "contextless" (x, y: $T) -> (div, mod: T) where intrinsics.type_is_integer(T) { div = x / y mod = x % y return } @(require_results) floor_divmod :: #force_inline proc "contextless" (x, y: $T) -> (div, mod: T) where intrinsics.type_is_integer(T) { div = x / y mod = x % y if (div > 0 && y < 0) || (mod < 0 && y > 0) { div -= 1 mod += y } return } @(require_results) modf_f16 :: proc "contextless" (x: f16) -> (int: f16, frac: f16) { shift :: F16_SHIFT mask :: F16_MASK bias :: F16_BIAS if x < 1 { switch { case x < 0: int, frac = modf(-x) return -int, -frac case x == 0: return x, x } return 0, x } i := transmute(u16)x e := uint(i>>shift)&mask - bias if e < shift { i &~= 1<<(shift-e) - 1 } int = transmute(f16)i frac = x - int return } @(require_results) modf_f16le :: proc "contextless" (x: f16le) -> (int: f16le, frac: f16le) { i, f := #force_inline modf_f16(f16(x)) return f16le(i), f16le(f) } @(require_results) modf_f16be :: proc "contextless" (x: f16be) -> (int: f16be, frac: f16be) { i, f := #force_inline modf_f16(f16(x)) return f16be(i), f16be(f) } @(require_results) modf_f32 :: proc "contextless" (x: f32) -> (int: f32, frac: f32) { shift :: F32_SHIFT mask :: F32_MASK bias :: F32_BIAS if x < 1 { switch { case x < 0: int, frac = modf(-x) return -int, -frac case x == 0: return x, x } return 0, x } i := transmute(u32)x e := uint(i>>shift)&mask - bias if e < shift { i &~= 1<<(shift-e) - 1 } int = transmute(f32)i frac = x - int return } @(require_results) modf_f32le :: proc "contextless" (x: f32le) -> (int: f32le, frac: f32le) { i, f := #force_inline modf_f32(f32(x)) return f32le(i), f32le(f) } @(require_results) modf_f32be :: proc "contextless" (x: f32be) -> (int: f32be, frac: f32be) { i, f := #force_inline modf_f32(f32(x)) return f32be(i), f32be(f) } @(require_results) modf_f64 :: proc "contextless" (x: f64) -> (int: f64, frac: f64) { shift :: F64_SHIFT mask :: F64_MASK bias :: F64_BIAS if x < 1 { switch { case x < 0: int, frac = modf(-x) return -int, -frac case x == 0: return x, x } return 0, x } i := transmute(u64)x e := uint(i>>shift)&mask - bias if e < shift { i &~= 1<<(shift-e) - 1 } int = transmute(f64)i frac = x - int return } @(require_results) modf_f64le :: proc "contextless" (x: f64le) -> (int: f64le, frac: f64le) { i, f := #force_inline modf_f64(f64(x)) return f64le(i), f64le(f) } @(require_results) modf_f64be :: proc "contextless" (x: f64be) -> (int: f64be, frac: f64be) { i, f := #force_inline modf_f64(f64(x)) return f64be(i), f64be(f) } modf :: proc{ modf_f16, modf_f16le, modf_f16be, modf_f32, modf_f32le, modf_f32be, modf_f64, modf_f64le, modf_f64be, } split_decimal :: modf @(require_results) mod_f16 :: proc "contextless" (x, y: f16) -> (n: f16) { z := abs(y) n = remainder(abs(x), z) if sign(n) < 0 { n += z } return copy_sign(n, x) } @(require_results) mod_f16le :: proc "contextless" (x, y: f16le) -> (n: f16le) { return #force_inline f16le(mod_f16(f16(x), f16(y))) } @(require_results) mod_f16be :: proc "contextless" (x, y: f16be) -> (n: f16be) { return #force_inline f16be(mod_f16(f16(x), f16(y))) } @(require_results) mod_f32 :: proc "contextless" (x, y: f32) -> (n: f32) { z := abs(y) n = remainder(abs(x), z) if sign(n) < 0 { n += z } return copy_sign(n, x) } @(require_results) mod_f32le :: proc "contextless" (x, y: f32le) -> (n: f32le) { return #force_inline f32le(mod_f32(f32(x), f32(y))) } @(require_results) mod_f32be :: proc "contextless" (x, y: f32be) -> (n: f32be) { return #force_inline f32be(mod_f32(f32(x), f32(y))) } @(require_results) mod_f64 :: proc "contextless" (x, y: f64) -> (n: f64) { z := abs(y) n = remainder(abs(x), z) if sign(n) < 0 { n += z } return copy_sign(n, x) } @(require_results) mod_f64le :: proc "contextless" (x, y: f64le) -> (n: f64le) { return #force_inline f64le(mod_f64(f64(x), f64(y))) } @(require_results) mod_f64be :: proc "contextless" (x, y: f64be) -> (n: f64be) { return #force_inline f64be(mod_f64(f64(x), f64(y))) } mod :: proc{ mod_f16, mod_f16le, mod_f16be, mod_f32, mod_f32le, mod_f32be, mod_f64, mod_f64le, mod_f64be, } @(require_results) remainder_f16 :: proc "contextless" (x, y: f16 ) -> f16 { return x - round(x/y) * y } @(require_results) remainder_f16le :: proc "contextless" (x, y: f16le) -> f16le { return x - round(x/y) * y } @(require_results) remainder_f16be :: proc "contextless" (x, y: f16be) -> f16be { return x - round(x/y) * y } @(require_results) remainder_f32 :: proc "contextless" (x, y: f32 ) -> f32 { return x - round(x/y) * y } @(require_results) remainder_f32le :: proc "contextless" (x, y: f32le) -> f32le { return x - round(x/y) * y } @(require_results) remainder_f32be :: proc "contextless" (x, y: f32be) -> f32be { return x - round(x/y) * y } @(require_results) remainder_f64 :: proc "contextless" (x, y: f64 ) -> f64 { return x - round(x/y) * y } @(require_results) remainder_f64le :: proc "contextless" (x, y: f64le) -> f64le { return x - round(x/y) * y } @(require_results) remainder_f64be :: proc "contextless" (x, y: f64be) -> f64be { return x - round(x/y) * y } remainder :: proc{ remainder_f16, remainder_f16le, remainder_f16be, remainder_f32, remainder_f32le, remainder_f32be, remainder_f64, remainder_f64le, remainder_f64be, } @(require_results) gcd :: proc "contextless" (x, y: $T) -> T where intrinsics.type_is_ordered_numeric(T) { x, y := x, y for y != 0 { x %= y x, y = y, x } return abs(x) } @(require_results) lcm :: proc "contextless" (x, y: $T) -> T where intrinsics.type_is_ordered_numeric(T) { return x / gcd(x, y) * y } @(require_results) normalize_f16 :: proc "contextless" (x: f16) -> (y: f16, exponent: int) { if abs(x) < F16_MIN { return x * (1< (y: f32, exponent: int) { if abs(x) < F32_MIN { return x * (1< (y: f64, exponent: int) { if abs(x) < F64_MIN { return x * (1< (y: f16le, exponent: int) { y0, e := normalize_f16(f16(x)); return f16le(y0), e } @(require_results) normalize_f16be :: proc "contextless" (x: f16be) -> (y: f16be, exponent: int) { y0, e := normalize_f16(f16(x)); return f16be(y0), e } @(require_results) normalize_f32le :: proc "contextless" (x: f32le) -> (y: f32le, exponent: int) { y0, e := normalize_f32(f32(x)); return f32le(y0), e } @(require_results) normalize_f32be :: proc "contextless" (x: f32be) -> (y: f32be, exponent: int) { y0, e := normalize_f32(f32(x)); return f32be(y0), e } @(require_results) normalize_f64le :: proc "contextless" (x: f64le) -> (y: f64le, exponent: int) { y0, e := normalize_f64(f64(x)); return f64le(y0), e } @(require_results) normalize_f64be :: proc "contextless" (x: f64be) -> (y: f64be, exponent: int) { y0, e := normalize_f64(f64(x)); return f64be(y0), e } normalize :: proc{ normalize_f16, normalize_f32, normalize_f64, normalize_f16le, normalize_f16be, normalize_f32le, normalize_f32be, normalize_f64le, normalize_f64be, } @(require_results) frexp_f16 :: proc "contextless" (x: f16) -> (significand: f16, exponent: int) { f, e := frexp_f64(f64(x)) return f16(f), e } @(require_results) frexp_f16le :: proc "contextless" (x: f16le) -> (significand: f16le, exponent: int) { f, e := frexp_f64(f64(x)) return f16le(f), e } @(require_results) frexp_f16be :: proc "contextless" (x: f16be) -> (significand: f16be, exponent: int) { f, e := frexp_f64(f64(x)) return f16be(f), e } @(require_results) frexp_f32 :: proc "contextless" (x: f32) -> (significand: f32, exponent: int) { f, e := frexp_f64(f64(x)) return f32(f), e } @(require_results) frexp_f32le :: proc "contextless" (x: f32le) -> (significand: f32le, exponent: int) { f, e := frexp_f64(f64(x)) return f32le(f), e } @(require_results) frexp_f32be :: proc "contextless" (x: f32be) -> (significand: f32be, exponent: int) { f, e := frexp_f64(f64(x)) return f32be(f), e } @(require_results) frexp_f64 :: proc "contextless" (f: f64) -> (significand: f64, exponent: int) { mask :: F64_MASK shift :: F64_SHIFT bias :: F64_BIAS switch { case f == 0: return 0, 0 case is_inf(f) || is_nan(f): return f, 0 } f := f f, exponent = normalize_f64(f) x := transmute(u64)f exponent += int((x>>shift)&mask) - bias + 1 x &~= mask << shift x |= (-1 + bias) << shift significand = transmute(f64)x return } @(require_results) frexp_f64le :: proc "contextless" (x: f64le) -> (significand: f64le, exponent: int) { f, e := frexp_f64(f64(x)) return f64le(f), e } @(require_results) frexp_f64be :: proc "contextless" (x: f64be) -> (significand: f64be, exponent: int) { f, e := frexp_f64(f64(x)) return f64be(f), e } // frexp breaks the value into a normalized fraction, and an integral power of two // It returns a significand and exponent satisfying x == significand * 2**exponent // with the absolute value of significand in the intervalue of [0.5, 1). // // Special cases: // frexp(+0) = +0, 0 // frexp(-0) = -0, 0 // frexp(+inf) = +inf, 0 // frexp(-inf) = -inf, 0 // frexp(NaN) = NaN, 0 frexp :: proc{ frexp_f16, frexp_f16le, frexp_f16be, frexp_f32, frexp_f32le, frexp_f32be, frexp_f64, frexp_f64le, frexp_f64be, } @(require_results) binomial :: proc "contextless" (n, k: int) -> int { switch { case k <= 0: return 1 case 2*k > n: return binomial(n, n-k) } b := n for i in 2.. int { when size_of(int) == size_of(i64) { @(static, rodata) table := [21]int{ 1, 1, 2, 6, 24, 120, 720, 5_040, 40_320, 362_880, 3_628_800, 39_916_800, 479_001_600, 6_227_020_800, 87_178_291_200, 1_307_674_368_000, 20_922_789_888_000, 355_687_428_096_000, 6_402_373_705_728_000, 121_645_100_408_832_000, 2_432_902_008_176_640_000, } } else { @(static, rodata) table := [13]int{ 1, 1, 2, 6, 24, 120, 720, 5_040, 40_320, 362_880, 3_628_800, 39_916_800, 479_001_600, } } return table[n] } @(require_results) classify_f16 :: proc "contextless" (x: f16) -> Float_Class { switch { case x == 0: i := transmute(i16)x if i < 0 { return .Neg_Zero } return .Zero case x*0.25 == x: if x < 0 { return .Neg_Inf } return .Inf case !(x == x): return .NaN } u := transmute(u16)x exp := int(u>>10) & (1<<5 - 1) if exp == 0 { return .Subnormal } return .Normal } @(require_results) classify_f16le :: proc "contextless" (x: f16le) -> Float_Class { return #force_inline classify_f16(f16(x)) } @(require_results) classify_f16be :: proc "contextless" (x: f16be) -> Float_Class { return #force_inline classify_f16(f16(x)) } @(require_results) classify_f32 :: proc "contextless" (x: f32) -> Float_Class { switch { case x == 0: i := transmute(i32)x if i < 0 { return .Neg_Zero } return .Zero case x*0.5 == x: if x < 0 { return .Neg_Inf } return .Inf case !(x == x): return .NaN } u := transmute(u32)x exp := int(u>>23) & (1<<8 - 1) if exp == 0 { return .Subnormal } return .Normal } @(require_results) classify_f32le :: proc "contextless" (x: f32le) -> Float_Class { return #force_inline classify_f32(f32(x)) } @(require_results) classify_f32be :: proc "contextless" (x: f32be) -> Float_Class { return #force_inline classify_f32(f32(x)) } @(require_results) classify_f64 :: proc "contextless" (x: f64) -> Float_Class { switch { case x == 0: i := transmute(i64)x if i < 0 { return .Neg_Zero } return .Zero case x*0.5 == x: if x < 0 { return .Neg_Inf } return .Inf case !(x == x): return .NaN } u := transmute(u64)x exp := int(u>>52) & (1<<11 - 1) if exp == 0 { return .Subnormal } return .Normal } @(require_results) classify_f64le :: proc "contextless" (x: f64le) -> Float_Class { return #force_inline classify_f64(f64(x)) } @(require_results) classify_f64be :: proc "contextless" (x: f64be) -> Float_Class { return #force_inline classify_f64(f64(x)) } // Returns the `Float_Class` of the value, i.e. whether normal, subnormal, zero, negative zero, NaN, infinity or // negative infinity. classify :: proc{ classify_f16, classify_f16le, classify_f16be, classify_f32, classify_f32le, classify_f32be, classify_f64, classify_f64le, classify_f64be, } @(require_results) is_nan_f16 :: proc "contextless" (x: f16) -> bool { return classify(x) == .NaN } @(require_results) is_nan_f16le :: proc "contextless" (x: f16le) -> bool { return classify(x) == .NaN } @(require_results) is_nan_f16be :: proc "contextless" (x: f16be) -> bool { return classify(x) == .NaN } @(require_results) is_nan_f32 :: proc "contextless" (x: f32) -> bool { return classify(x) == .NaN } @(require_results) is_nan_f32le :: proc "contextless" (x: f32le) -> bool { return classify(x) == .NaN } @(require_results) is_nan_f32be :: proc "contextless" (x: f32be) -> bool { return classify(x) == .NaN } @(require_results) is_nan_f64 :: proc "contextless" (x: f64) -> bool { return classify(x) == .NaN } @(require_results) is_nan_f64le :: proc "contextless" (x: f64le) -> bool { return classify(x) == .NaN } @(require_results) is_nan_f64be :: proc "contextless" (x: f64be) -> bool { return classify(x) == .NaN } is_nan :: proc{ is_nan_f16, is_nan_f16le, is_nan_f16be, is_nan_f32, is_nan_f32le, is_nan_f32be, is_nan_f64, is_nan_f64le, is_nan_f64be, } // is_inf reports whether f is an infinity, according to sign. // If sign > 0, is_inf reports whether f is positive infinity. // If sign < 0, is_inf reports whether f is negative infinity. // If sign == 0, is_inf reports whether f is either infinity. @(require_results) is_inf_f16 :: proc "contextless" (x: f16, sign: int = 0) -> bool { class := classify(x) switch { case sign > 0: return class == .Inf case sign < 0: return class == .Neg_Inf } return class == .Inf || class == .Neg_Inf } @(require_results) is_inf_f16le :: proc "contextless" (x: f16le, sign: int = 0) -> bool { return #force_inline is_inf_f16(f16(x), sign) } @(require_results) is_inf_f16be :: proc "contextless" (x: f16be, sign: int = 0) -> bool { return #force_inline is_inf_f16(f16(x), sign) } @(require_results) is_inf_f32 :: proc "contextless" (x: f32, sign: int = 0) -> bool { class := classify(x) switch { case sign > 0: return class == .Inf case sign < 0: return class == .Neg_Inf } return class == .Inf || class == .Neg_Inf } @(require_results) is_inf_f32le :: proc "contextless" (x: f32le, sign: int = 0) -> bool { return #force_inline is_inf_f32(f32(x), sign) } @(require_results) is_inf_f32be :: proc "contextless" (x: f32be, sign: int = 0) -> bool { return #force_inline is_inf_f32(f32(x), sign) } @(require_results) is_inf_f64 :: proc "contextless" (x: f64, sign: int = 0) -> bool { class := classify(x) switch { case sign > 0: return class == .Inf case sign < 0: return class == .Neg_Inf } return class == .Inf || class == .Neg_Inf } @(require_results) is_inf_f64le :: proc "contextless" (x: f64le, sign: int = 0) -> bool { return #force_inline is_inf_f64(f64(x), sign) } @(require_results) is_inf_f64be :: proc "contextless" (x: f64be, sign: int = 0) -> bool { return #force_inline is_inf_f64(f64(x), sign) } is_inf :: proc{ is_inf_f16, is_inf_f16le, is_inf_f16be, is_inf_f32, is_inf_f32le, is_inf_f32be, is_inf_f64, is_inf_f64le, is_inf_f64be, } @(require_results) inf_f16 :: proc "contextless" (sign: int) -> f16 { return f16(inf_f64(sign)) } @(require_results) inf_f16le :: proc "contextless" (sign: int) -> f16le { return f16le(inf_f64(sign)) } @(require_results) inf_f16be :: proc "contextless" (sign: int) -> f16be { return f16be(inf_f64(sign)) } @(require_results) inf_f32 :: proc "contextless" (sign: int) -> f32 { return f32(inf_f64(sign)) } @(require_results) inf_f32le :: proc "contextless" (sign: int) -> f32le { return f32le(inf_f64(sign)) } @(require_results) inf_f32be :: proc "contextless" (sign: int) -> f32be { return f32be(inf_f64(sign)) } @(require_results) inf_f64 :: proc "contextless" (sign: int) -> f64 { if sign >= 0 { return 0h7ff00000_00000000 } else { return 0hfff00000_00000000 } } @(require_results) inf_f64le :: proc "contextless" (sign: int) -> f64le { return f64le(inf_f64(sign)) } @(require_results) inf_f64be :: proc "contextless" (sign: int) -> f64be { return f64be(inf_f64(sign)) } @(require_results) nan_f16 :: proc "contextless" () -> f16 { return f16(nan_f64()) } @(require_results) nan_f16le :: proc "contextless" () -> f16le { return f16le(nan_f64()) } @(require_results) nan_f16be :: proc "contextless" () -> f16be { return f16be(nan_f64()) } @(require_results) nan_f32 :: proc "contextless" () -> f32 { return f32(nan_f64()) } @(require_results) nan_f32le :: proc "contextless" () -> f32le { return f32le(nan_f64()) } @(require_results) nan_f32be :: proc "contextless" () -> f32be { return f32be(nan_f64()) } @(require_results) nan_f64 :: proc "contextless" () -> f64 { return 0h7ff80000_00000001 } @(require_results) nan_f64le :: proc "contextless" () -> f64le { return f64le(nan_f64()) } @(require_results) nan_f64be :: proc "contextless" () -> f64be { return f64be(nan_f64()) } @(require_results) is_power_of_two :: proc "contextless" (x: int) -> bool { return x > 0 && (x & (x-1)) == 0 } @(require_results) next_power_of_two :: proc "contextless" (x: int) -> int { k := x -1 when size_of(int) == 8 { k = k | (k >> 32) } k = k | (k >> 16) k = k | (k >> 8) k = k | (k >> 4) k = k | (k >> 2) k = k | (k >> 1) k += 1 + int(x <= 0) return k } @(require_results) sum :: proc "contextless" (x: $T/[]$E) -> (res: E) where intrinsics.type_is_numeric(E) { for i in x { res += i } return } @(require_results) prod :: proc "contextless" (x: $T/[]$E) -> (res: E) where intrinsics.type_is_numeric(E) { res = 1 for i in x { res *= i } return } cumsum_inplace :: proc "contextless" (x: $T/[]$E) where intrinsics.type_is_numeric(E) { for i in 1.. T where intrinsics.type_is_numeric(E) { N := min(len(dst), len(src)) if N > 0 { dst[0] = src[0] for i in 1.. f16 { // TODO(bill): Better atan2_f16 return f16(atan2_f64(f64(y), f64(x))) } @(require_results) atan2_f16le :: proc "contextless" (y, x: f16le) -> f16le { // TODO(bill): Better atan2_f16 return f16le(atan2_f64(f64(y), f64(x))) } @(require_results) atan2_f16be :: proc "contextless" (y, x: f16be) -> f16be { // TODO(bill): Better atan2_f16 return f16be(atan2_f64(f64(y), f64(x))) } @(require_results) atan2_f32 :: proc "contextless" (y, x: f32) -> f32 { // TODO(bill): Better atan2_f32 return f32(atan2_f64(f64(y), f64(x))) } @(require_results) atan2_f32le :: proc "contextless" (y, x: f32le) -> f32le { // TODO(bill): Better atan2_f32 return f32le(atan2_f64(f64(y), f64(x))) } @(require_results) atan2_f32be :: proc "contextless" (y, x: f32be) -> f32be { // TODO(bill): Better atan2_f32 return f32be(atan2_f64(f64(y), f64(x))) } @(require_results) atan2_f64 :: proc "contextless" (y, x: f64) -> f64 { // TODO(bill): Faster atan2_f64 if possible // The original C code: // Stephen L. Moshier // moshier@na-net.ornl.gov NAN :: 0h7fff_ffff_ffff_ffff INF :: 0h7FF0_0000_0000_0000 PI :: 0h4009_21fb_5444_2d18 atan :: proc "contextless" (x: f64) -> f64 { if x == 0 { return x } if x > 0 { return s_atan(x) } return -s_atan(-x) } // s_atan reduces its argument (known to be positive) to the range [0, 0.66] and calls x_atan. s_atan :: proc "contextless" (x: f64) -> f64 { MORE_BITS :: 6.123233995736765886130e-17 // pi/2 = PIO2 + MORE_BITS TAN3PI08 :: 2.41421356237309504880 // tan(3*pi/8) if x <= 0.66 { return x_atan(x) } if x > TAN3PI08 { return PI/2 - x_atan(1/x) + MORE_BITS } return PI/4 + x_atan((x-1)/(x+1)) + 0.5*MORE_BITS } // x_atan evaluates a series valid in the range [0, 0.66]. x_atan :: proc "contextless" (x: f64) -> f64 { P0 :: -8.750608600031904122785e-01 P1 :: -1.615753718733365076637e+01 P2 :: -7.500855792314704667340e+01 P3 :: -1.228866684490136173410e+02 P4 :: -6.485021904942025371773e+01 Q0 :: +2.485846490142306297962e+01 Q1 :: +1.650270098316988542046e+02 Q2 :: +4.328810604912902668951e+02 Q3 :: +4.853903996359136964868e+02 Q4 :: +1.945506571482613964425e+02 z := x * x z = z * ((((P0*z+P1)*z+P2)*z+P3)*z + P4) / (((((z+Q0)*z+Q1)*z+Q2)*z+Q3)*z + Q4) z = x*z + x return z } switch { case is_nan(y) || is_nan(x): return NAN case y == 0: if x >= 0 && !sign_bit(x) { return copy_sign(0.0, y) } return copy_sign(PI, y) case x == 0: return copy_sign(PI/2, y) case is_inf(x, 0): if is_inf(x, 1) { if is_inf(y, 0) { return copy_sign(PI/4, y) } return copy_sign(0, y) } if is_inf(y, 0) { return copy_sign(3*PI/4, y) } return copy_sign(PI, y) case is_inf(y, 0): return copy_sign(PI/2, y) } q := atan(y / x) if x < 0 { if q <= 0 { return q + PI } return q - PI } return q } @(require_results) atan2_f64le :: proc "contextless" (y, x: f64le) -> f64le { // TODO(bill): Better atan2_f32 return f64le(atan2_f64(f64(y), f64(x))) } @(require_results) atan2_f64be :: proc "contextless" (y, x: f64be) -> f64be { // TODO(bill): Better atan2_f32 return f64be(atan2_f64(f64(y), f64(x))) } /* Return the arc tangent of y/x in radians. Defined on the domain [-∞, ∞] for x and y with a range of [-π, π] Special cases: atan2(y, NaN) = NaN atan2(NaN, x) = NaN atan2(+0, x>=0) = + 0 atan2(-0, x>=0) = - 0 atan2(+0, x<=-0) = + π atan2(-0, x<=-0) = - π atan2(y>0, 0) = + π/2 atan2(y<0, 0) = - π/2 atan2(+∞, +∞) = + π/4 atan2(-∞, +∞) = - π/4 atan2(+∞, -∞) = 3π/4 atan2(-∞, -∞) = - 3π/4 atan2(y, +∞) = 0 atan2(y>0, -∞) = + π atan2(y<0, -∞) = - π atan2(+∞, x) = + π/2 atan2(-∞, x) = - π/2 */ atan2 :: proc{ atan2_f64, atan2_f32, atan2_f16, atan2_f64le, atan2_f64be, atan2_f32le, atan2_f32be, atan2_f16le, atan2_f16be, } // Return the arc tangent of x, in radians. Defined on the domain of [-∞, ∞] with a range of [-π/2, π/2] @(require_results) atan :: proc "contextless" (x: $T) -> T where intrinsics.type_is_float(T) { return atan2(x, 1) } @(require_results) asin_f64 :: proc "contextless" (x: f64) -> f64 { /* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ pio2_hi :: 0h3FF921FB54442D18 pio2_lo :: 0h3C91A62633145C07 pS0 :: 0h3FC5555555555555 pS1 :: 0hBFD4D61203EB6F7D pS2 :: 0h3FC9C1550E884455 pS3 :: 0hBFA48228B5688F3B pS4 :: 0h3F49EFE07501B288 pS5 :: 0h3F023DE10DFDF709 qS1 :: 0hC0033A271C8A2D4B qS2 :: 0h40002AE59C598AC8 qS3 :: 0hBFE6066C1B8D0159 qS4 :: 0h3FB3B8C5B12E9282 R :: #force_inline proc "contextless" (z: f64) -> f64 { p, q: f64 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))) q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4))) return p/q } x := x z, r, s: f64 dwords := transmute([2]u32)x hx := dwords[1] ix := hx & 0x7fffffff /* |x| >= 1 or nan */ if ix >= 0x3ff00000 { lx := dwords[0] if (ix-0x3ff00000 | lx) == 0 { /* asin(1) = +-pi/2 with inexact */ return x*pio2_hi + 1e-120 } return 0/(x-x) } /* |x| < 0.5 */ if ix < 0x3fe00000 { /* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */ if ix < 0x3e500000 && ix >= 0x00100000 { return x } return x + x*R(x*x) } /* 1 > |x| >= 0.5 */ z = (1 - abs(x))*0.5 s = sqrt(z) r = R(z) if ix >= 0x3fef3333 { /* if |x| > 0.975 */ x = pio2_hi-(2*(s+s*r)-pio2_lo) } else { f, c: f64 /* f+c = sqrt(z) */ f = s (^u64)(&f)^ &= 0xffffffff_00000000 c = (z-f*f)/(s+f) x = 0.5*pio2_hi - (2*s*r - (pio2_lo-2*c) - (0.5*pio2_hi-2*f)) } return -x if hx >> 31 != 0 else x } @(require_results) asin_f64le :: proc "contextless" (x: f64le) -> f64le { return f64le(asin_f64(f64(x))) } @(require_results) asin_f64be :: proc "contextless" (x: f64be) -> f64be { return f64be(asin_f64(f64(x))) } @(require_results) asin_f32 :: proc "contextless" (x: f32) -> f32 { return f32(asin_f64(f64(x))) } @(require_results) asin_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(asin_f64(f64(x))) } @(require_results) asin_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(asin_f64(f64(x))) } @(require_results) asin_f16 :: proc "contextless" (x: f16) -> f16 { return f16(asin_f64(f64(x))) } @(require_results) asin_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(asin_f64(f64(x))) } @(require_results) asin_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(asin_f64(f64(x))) } // Return the arc sine of x, in radians. Defined on the domain of [-1, 1] with a range of [-π/2, π/2] asin :: proc{ asin_f64, asin_f32, asin_f16, asin_f64le, asin_f64be, asin_f32le, asin_f32be, asin_f16le, asin_f16be, } @(require_results) acos_f64 :: proc "contextless" (x: f64) -> f64 { /* origin: FreeBSD /usr/src/lib/msun/src/e_acos.c */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ pio2_hi :: 0h3FF921FB54442D18 pio2_lo :: 0h3C91A62633145C07 pS0 :: 0h3FC5555555555555 pS1 :: 0hBFD4D61203EB6F7D pS2 :: 0h3FC9C1550E884455 pS3 :: 0hBFA48228B5688F3B pS4 :: 0h3F49EFE07501B288 pS5 :: 0h3F023DE10DFDF709 qS1 :: 0hC0033A271C8A2D4B qS2 :: 0h40002AE59C598AC8 qS3 :: 0hBFE6066C1B8D0159 qS4 :: 0h3FB3B8C5B12E9282 R :: #force_inline proc "contextless" (z: f64) -> f64 { p, q: f64 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))) q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4))) return p/q } z, w, s, c, df: f64 dwords := transmute([2]u32)x hx := dwords[1] ix := hx & 0x7fffffff /* |x| >= 1 or nan */ if ix >= 0x3ff00000 { lx := dwords[0] if (ix-0x3ff00000 | lx) == 0 { /* acos(1)=0, acos(-1)=pi */ if hx >> 31 != 0 { return 2*pio2_hi + 1e-120 } return 0 } return 0/(x-x) } /* |x| < 0.5 */ if ix < 0x3fe00000 { if ix <= 0x3c600000 { /* |x| < 2**-57 */ return pio2_hi + 1e-120 } return pio2_hi - (x - (pio2_lo-x*R(x*x))) } /* x < -0.5 */ if hx >> 31 != 0 { z = (1.0+x)*0.5 s = sqrt(z) w = R(z)*s-pio2_lo return 2*(pio2_hi - (s+w)) } /* x > 0.5 */ z = (1.0-x)*0.5 s = sqrt(z) df = s (^u64)(&df)^ &= 0xffffffff_00000000 c = (z-df*df)/(s+df) w = R(z)*s+c return 2*(df+w) } @(require_results) acos_f64le :: proc "contextless" (x: f64le) -> f64le { return f64le(acos_f64(f64(x))) } @(require_results) acos_f64be :: proc "contextless" (x: f64be) -> f64be { return f64be(acos_f64(f64(x))) } @(require_results) acos_f32 :: proc "contextless" (x: f32) -> f32 { return f32(acos_f64(f64(x))) } @(require_results) acos_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(acos_f64(f64(x))) } @(require_results) acos_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(acos_f64(f64(x))) } @(require_results) acos_f16 :: proc "contextless" (x: f16) -> f16 { return f16(acos_f64(f64(x))) } @(require_results) acos_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(acos_f64(f64(x))) } @(require_results) acos_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(acos_f64(f64(x))) } // Return the arc cosine of x, in radians. Defined on the domain of [-1, 1] with a range of [0, π]. acos :: proc{ acos_f64, acos_f32, acos_f16, acos_f64le, acos_f64be, acos_f32le, acos_f32be, acos_f16le, acos_f16be, } @(require_results) sinh :: proc "contextless" (x: $T) -> T where intrinsics.type_is_float(T) { return copy_sign(((exp(x) - exp(-x))*0.5), x) } @(require_results) cosh :: proc "contextless" (x: $T) -> T where intrinsics.type_is_float(T) { return ((exp(x) + exp(-x))*0.5) } @(require_results) tanh :: proc "contextless" (y: $T) -> T where intrinsics.type_is_float(T) { P0 :: -9.64399179425052238628e-1 P1 :: -9.92877231001918586564e1 P2 :: -1.61468768441708447952e3 Q0 :: +1.12811678491632931402e2 Q1 :: +2.23548839060100448583e3 Q2 :: +4.84406305325125486048e3 MAXLOG :: 8.8029691931113054295988e+01 // log(2**127) x := f64(y) z := abs(x) switch { case z > 0.5*MAXLOG: if x < 0 { return -1 } return 1 case z >= 0.625: s := exp(2 * z) z = 1 - 2/(s+1) if x < 0 { z = -z } case: if x == 0 { return T(x) } s := x * x z = x + x*s*((P0*s+P1)*s+P2)/(((s+Q0)*s+Q1)*s+Q2) } return T(z) } @(require_results) asinh :: proc "contextless" (y: $T) -> T where intrinsics.type_is_float(T) { // The original C code, the long comment, and the constants // below are from FreeBSD's /usr/src/lib/msun/src/s_asinh.c // and came with this notice. // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunPro, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== LN2 :: 0h3FE62E42FEFA39EF NEAR_ZERO :: 1.0 / (1 << 28) LARGE :: 1 << 28 x := f64(y) if is_nan(x) || is_inf(x) { return T(x) } sign := false if x < 0 { x = -x sign = true } temp: f64 switch { case x > LARGE: temp = ln(x) + LN2 case x > 2: temp = ln(2*x + 1/(sqrt(x*x + 1) + x)) case x < NEAR_ZERO: temp = x case: temp = log1p(x + x*x/(1 + sqrt(1 + x*x))) } if sign { temp = -temp } return T(temp) } @(require_results) acosh :: proc "contextless" (y: $T) -> T where intrinsics.type_is_float(T) { // The original C code, the long comment, and the constants // below are from FreeBSD's /usr/src/lib/msun/src/e_acosh.c // and came with this notice. // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunPro, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== LARGE :: 1<<28 LN2 :: 0h3FE62E42FEFA39EF x := f64(y) switch { case x < 1 || is_nan(x): return T(nan_f64()) case x == 1: return 0 case x >= LARGE: return T(ln(x) + LN2) case x > 2: return T(ln(2*x - 1/(x+sqrt(x*x-1)))) } t := x-1 return T(log1p(t + sqrt(2*t + t*t))) } @(require_results) atanh :: proc "contextless" (y: $T) -> T where intrinsics.type_is_float(T) { // The original C code, the long comment, and the constants // below are from FreeBSD's /usr/src/lib/msun/src/e_atanh.c // and came with this notice. // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunPro, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== NEAR_ZERO :: 1.0 / (1 << 28) x := f64(y) switch { case x < -1 || x > 1 || is_nan(x): return T(nan_f64()) case x == 1: return T(inf_f64(1)) case x == -1: return T(inf_f64(-1)) } sign := false if x < 0 { x = -x sign = true } temp: f64 switch { case x < NEAR_ZERO: temp = x case x < 0.5: temp = x + x temp = 0.5 * log1p(temp + temp*x/(1-x)) case: temp = 0.5 * log1p((x+x)/(1-x)) } if sign { temp = -temp } return T(temp) } @(require_results) ilogb_f16 :: proc "contextless" (val: f16) -> int { switch { case val == 0: return int(min(i32)) case is_nan(val): return int(max(i32)) case is_inf(val): return int(max(i32)) } x, exp := normalize_f16(val) return int(((transmute(u16)x)>>F16_SHIFT)&F16_MASK) - F16_BIAS + exp } @(require_results) ilogb_f32 :: proc "contextless" (val: f32) -> int { switch { case val == 0: return int(min(i32)) case is_nan(val): return int(max(i32)) case is_inf(val): return int(max(i32)) } x, exp := normalize_f32(val) return int(((transmute(u32)x)>>F32_SHIFT)&F32_MASK) - F32_BIAS + exp } @(require_results) ilogb_f64 :: proc "contextless" (val: f64) -> int { switch { case val == 0: return int(min(i32)) case is_nan(val): return int(max(i32)) case is_inf(val): return int(max(i32)) } x, exp := normalize_f64(val) return int(((transmute(u64)x)>>F64_SHIFT)&F64_MASK) - F64_BIAS + exp } @(require_results) ilogb_f16le :: proc "contextless" (value: f16le) -> int { return ilogb_f16(f16(value)) } @(require_results) ilogb_f16be :: proc "contextless" (value: f16be) -> int { return ilogb_f16(f16(value)) } @(require_results) ilogb_f32le :: proc "contextless" (value: f32le) -> int { return ilogb_f32(f32(value)) } @(require_results) ilogb_f32be :: proc "contextless" (value: f32be) -> int { return ilogb_f32(f32(value)) } @(require_results) ilogb_f64le :: proc "contextless" (value: f64le) -> int { return ilogb_f64(f64(value)) } @(require_results) ilogb_f64be :: proc "contextless" (value: f64be) -> int { return ilogb_f64(f64(value)) } ilogb :: proc { ilogb_f16, ilogb_f32, ilogb_f64, ilogb_f16le, ilogb_f16be, ilogb_f32le, ilogb_f32be, ilogb_f64le, ilogb_f64be, } @(require_results) logb_f16 :: proc "contextless" (val: f16) -> f16 { switch { case val == 0: return inf_f16(-1) case is_inf(val): return inf_f16(+1) case is_nan(val): return val } return f16(ilogb(val)) } @(require_results) logb_f32 :: proc "contextless" (val: f32) -> f32 { switch { case val == 0: return inf_f32(-1) case is_inf(val): return inf_f32(+1) case is_nan(val): return val } return f32(ilogb(val)) } @(require_results) logb_f64 :: proc "contextless" (val: f64) -> f64 { switch { case val == 0: return inf_f64(-1) case is_inf(val): return inf_f64(+1) case is_nan(val): return val } return f64(ilogb(val)) } @(require_results) logb_f16le :: proc "contextless" (value: f16le) -> f16le { return f16le(logb_f16(f16(value))) } @(require_results) logb_f16be :: proc "contextless" (value: f16be) -> f16be { return f16be(logb_f16(f16(value))) } @(require_results) logb_f32le :: proc "contextless" (value: f32le) -> f32le { return f32le(logb_f32(f32(value))) } @(require_results) logb_f32be :: proc "contextless" (value: f32be) -> f32be { return f32be(logb_f32(f32(value))) } @(require_results) logb_f64le :: proc "contextless" (value: f64le) -> f64le { return f64le(logb_f64(f64(value))) } @(require_results) logb_f64be :: proc "contextless" (value: f64be) -> f64be { return f64be(logb_f64(f64(value))) } logb :: proc { logb_f16, logb_f32, logb_f64, logb_f16le, logb_f16be, logb_f32le, logb_f32be, logb_f64le, logb_f64be, } @(require_results) nextafter_f16 :: proc "contextless" (x, y: f16) -> (r: f16) { switch { case is_nan(x) || is_nan(y): r = nan_f16() case x == y: r = x case x == 0: r = copy_sign_f16(1, y) case (y > x) == (x > 0): r = transmute(f16)(transmute(u16)x + 1) case: r = transmute(f16)(transmute(u16)x - 1) } return } @(require_results) nextafter_f32 :: proc "contextless" (x, y: f32) -> (r: f32) { switch { case is_nan(x) || is_nan(y): r = nan_f32() case x == y: r = x case x == 0: r = copy_sign_f32(1, y) case (y > x) == (x > 0): r = transmute(f32)(transmute(u32)x + 1) case: r = transmute(f32)(transmute(u32)x - 1) } return } @(require_results) nextafter_f64 :: proc "contextless" (x, y: f64) -> (r: f64) { switch { case is_nan(x) || is_nan(y): r = nan_f64() case x == y: r = x case x == 0: r = copy_sign_f64(1, y) case (y > x) == (x > 0): r = transmute(f64)(transmute(u64)x + 1) case: r = transmute(f64)(transmute(u64)x - 1) } return } @(require_results) nextafter_f16le :: proc "contextless" (x, y: f16le) -> (r: f16le) { return f16le(nextafter_f16(f16(x), f16(y))) } @(require_results) nextafter_f16be :: proc "contextless" (x, y: f16be) -> (r: f16be) { return f16be(nextafter_f16(f16(x), f16(y))) } @(require_results) nextafter_f32le :: proc "contextless" (x, y: f32le) -> (r: f32le) { return f32le(nextafter_f32(f32(x), f32(y))) } @(require_results) nextafter_f32be :: proc "contextless" (x, y: f32be) -> (r: f32be) { return f32be(nextafter_f32(f32(x), f32(y))) } @(require_results) nextafter_f64le :: proc "contextless" (x, y: f64le) -> (r: f64le) { return f64le(nextafter_f64(f64(x), f64(y))) } @(require_results) nextafter_f64be :: proc "contextless" (x, y: f64be) -> (r: f64be) { return f64be(nextafter_f64(f64(x), f64(y))) } nextafter :: proc{ nextafter_f16, nextafter_f16le, nextafter_f16be, nextafter_f32, nextafter_f32le, nextafter_f32be, nextafter_f64, nextafter_f64le, nextafter_f64be, } @(require_results) signbit_f16 :: proc "contextless" (x: f16) -> bool { return (transmute(u16)x)&(1<<15) != 0 } @(require_results) signbit_f32 :: proc "contextless" (x: f32) -> bool { return (transmute(u32)x)&(1<<31) != 0 } @(require_results) signbit_f64 :: proc "contextless" (x: f64) -> bool { return (transmute(u64)x)&(1<<63) != 0 } @(require_results) signbit_f16le :: proc "contextless" (x: f16le) -> bool { return signbit_f16(f16(x)) } @(require_results) signbit_f32le :: proc "contextless" (x: f32le) -> bool { return signbit_f32(f32(x)) } @(require_results) signbit_f64le :: proc "contextless" (x: f64le) -> bool { return signbit_f64(f64(x)) } @(require_results) signbit_f16be :: proc "contextless" (x: f16be) -> bool { return signbit_f16(f16(x)) } @(require_results) signbit_f32be :: proc "contextless" (x: f32be) -> bool { return signbit_f32(f32(x)) } @(require_results) signbit_f64be :: proc "contextless" (x: f64be) -> bool { return signbit_f64(f64(x)) } signbit :: proc{ signbit_f16, signbit_f16le, signbit_f16be, signbit_f32, signbit_f32le, signbit_f32be, signbit_f64, signbit_f64le, signbit_f64be, } @(require_results) hypot_f16 :: proc "contextless" (x, y: f16) -> (r: f16) { p, q := abs(x), abs(y) switch { case is_inf(p, 1) || is_inf(q, 1): return inf_f16(1) case is_nan(p) || is_nan(q): return nan_f16() } if p < q { p, q = q, p } if p == 0 { return 0 } q = q / p return p * sqrt(1+q*q) } @(require_results) hypot_f32 :: proc "contextless" (x, y: f32) -> (r: f32) { p, q := abs(x), abs(y) switch { case is_inf(p, 1) || is_inf(q, 1): return inf_f32(1) case is_nan(p) || is_nan(q): return nan_f32() } if p < q { p, q = q, p } if p == 0 { return 0 } q = q / p return p * sqrt(1+q*q) } @(require_results) hypot_f64 :: proc "contextless" (x, y: f64) -> (r: f64) { p, q := abs(x), abs(y) switch { case is_inf(p, 1) || is_inf(q, 1): return inf_f64(1) case is_nan(p) || is_nan(q): return nan_f64() } if p < q { p, q = q, p } if p == 0 { return 0 } q = q / p return p * sqrt(1+q*q) } @(require_results) hypot_f16le :: proc "contextless" (x, y: f16le) -> (r: f16le) { return f16le(hypot_f16(f16(x), f16(y))) } @(require_results) hypot_f16be :: proc "contextless" (x, y: f16be) -> (r: f16be) { return f16be(hypot_f16(f16(x), f16(y))) } @(require_results) hypot_f32le :: proc "contextless" (x, y: f32le) -> (r: f32le) { return f32le(hypot_f32(f32(x), f32(y))) } @(require_results) hypot_f32be :: proc "contextless" (x, y: f32be) -> (r: f32be) { return f32be(hypot_f32(f32(x), f32(y))) } @(require_results) hypot_f64le :: proc "contextless" (x, y: f64le) -> (r: f64le) { return f64le(hypot_f64(f64(x), f64(y))) } @(require_results) hypot_f64be :: proc "contextless" (x, y: f64be) -> (r: f64be) { return f64be(hypot_f64(f64(x), f64(y))) } // hypot returns Sqrt(p*p + q*q), taking care to avoid unnecessary overflow and underflow. // // Special cases: // hypot(±Inf, q) = +Inf // hypot(p, ±Inf) = +Inf // hypot(NaN, q) = NaN // hypot(p, NaN) = NaN hypot :: proc{ hypot_f16, hypot_f16le, hypot_f16be, hypot_f32, hypot_f32le, hypot_f32be, hypot_f64, hypot_f64le, hypot_f64be, } @(require_results) count_digits_of_base :: proc "contextless" (value: $T, $base: int) -> (digits: int) where intrinsics.type_is_integer(T) { #assert(base >= 2, "base must be 2 or greater.") value := value when !intrinsics.type_is_unsigned(T) { value = abs(value) } when base == 2 { digits = max(1, 8 * size_of(T) - int(intrinsics.count_leading_zeros(value))) } else when intrinsics.count_ones(base) == 1 { free_bits := 8 * size_of(T) - int(intrinsics.count_leading_zeros(value)) digits, free_bits = divmod(free_bits, intrinsics.constant_log2(base)) if free_bits > 0 { digits += 1 } digits = max(1, digits) } else { digits = 1 base := cast(T)base for value >= base { value /= base digits += 1 } } return } F16_DIG :: 3 F16_EPSILON :: 0.00097656 F16_GUARD :: 0 F16_MANT_DIG :: 11 F16_MAX :: 65504.0 F16_MAX_10_EXP :: 4 F16_MAX_EXP :: 15 F16_MIN :: 6.10351562e-5 F16_MIN_10_EXP :: -4 F16_MIN_EXP :: -14 F16_NORMALIZE :: 0 F16_RADIX :: 2 F16_ROUNDS :: 1 F32_DIG :: 6 F32_EPSILON :: 1.192092896e-07 F32_GUARD :: 0 F32_MANT_DIG :: 24 F32_MAX :: 3.402823466e+38 F32_MAX_10_EXP :: 38 F32_MAX_EXP :: 128 F32_MIN :: 1.175494351e-38 F32_MIN_10_EXP :: -37 F32_MIN_EXP :: -125 F32_NORMALIZE :: 0 F32_RADIX :: 2 F32_ROUNDS :: 1 F64_DIG :: 15 // Number of representable decimal digits. F64_EPSILON :: 2.2204460492503131e-016 // Smallest number such that `1.0 + F64_EPSILON != 1.0`. F64_MANT_DIG :: 53 // Number of bits in the mantissa. F64_MAX :: 1.7976931348623158e+308 // Maximum representable value. F64_MAX_10_EXP :: 308 // Maximum base-10 exponent yielding normalized value. F64_MAX_EXP :: 1024 // One greater than the maximum possible base-2 exponent yielding normalized value. F64_MIN :: 2.2250738585072014e-308 // Minimum positive normalized value. F64_MIN_10_EXP :: -307 // Minimum base-10 exponent yielding normalized value. F64_MIN_EXP :: -1021 // One greater than the minimum possible base-2 exponent yielding normalized value. F64_RADIX :: 2 // Exponent radix. F64_ROUNDS :: 1 // Addition rounding: near. F16_MASK :: 0x1f F16_SHIFT :: 16 - 6 F16_BIAS :: 0xf F32_MASK :: 0xff F32_SHIFT :: 32 - 9 F32_BIAS :: 0x7f F64_MASK :: 0x7ff F64_SHIFT :: 64 - 12 F64_BIAS :: 0x3ff INF_F16 :: f16(0h7C00) NEG_INF_F16 :: f16(0hFC00) SNAN_F16 :: f16(0h7C01) QNAN_F16 :: f16(0h7E01) INF_F32 :: f32(0h7F80_0000) NEG_INF_F32 :: f32(0hFF80_0000) SNAN_F32 :: f32(0hFF80_0001) QNAN_F32 :: f32(0hFFC0_0001) INF_F64 :: f64(0h7FF0_0000_0000_0000) NEG_INF_F64 :: f64(0hFFF0_0000_0000_0000) SNAN_F64 :: f64(0h7FF0_0000_0000_0001) QNAN_F64 :: f64(0h7FF8_0000_0000_0001)