//+build !js package math import "base:intrinsics" @(default_calling_convention="none", private="file") foreign _ { @(link_name="llvm.sin.f16", require_results) _sin_f16 :: proc(θ: f16) -> f16 --- @(link_name="llvm.sin.f32", require_results) _sin_f32 :: proc(θ: f32) -> f32 --- @(link_name="llvm.sin.f64", require_results) _sin_f64 :: proc(θ: f64) -> f64 --- @(link_name="llvm.cos.f16", require_results) _cos_f16 :: proc(θ: f16) -> f16 --- @(link_name="llvm.cos.f32", require_results) _cos_f32 :: proc(θ: f32) -> f32 --- @(link_name="llvm.cos.f64", require_results) _cos_f64 :: proc(θ: f64) -> f64 --- @(link_name="llvm.pow.f16", require_results) _pow_f16 :: proc(x, power: f16) -> f16 --- @(link_name="llvm.pow.f32", require_results) _pow_f32 :: proc(x, power: f32) -> f32 --- @(link_name="llvm.pow.f64", require_results) _pow_f64 :: proc(x, power: f64) -> f64 --- @(link_name="llvm.fmuladd.f16", require_results) _fmuladd_f16 :: proc(a, b, c: f16) -> f16 --- @(link_name="llvm.fmuladd.f32", require_results) _fmuladd_f32 :: proc(a, b, c: f32) -> f32 --- @(link_name="llvm.fmuladd.f64", require_results) _fmuladd_f64 :: proc(a, b, c: f64) -> f64 --- @(link_name="llvm.exp.f16", require_results) _exp_f16 :: proc(x: f16) -> f16 --- @(link_name="llvm.exp.f32", require_results) _exp_f32 :: proc(x: f32) -> f32 --- @(link_name="llvm.exp.f64", require_results) _exp_f64 :: proc(x: f64) -> f64 --- } @(require_results) sin_f16 :: proc "contextless" (θ: f16) -> f16 { return _sin_f16(θ) } @(require_results) sin_f32 :: proc "contextless" (θ: f32) -> f32 { return _sin_f32(θ) } @(require_results) sin_f64 :: proc "contextless" (θ: f64) -> f64 { return _sin_f64(θ) } @(require_results) cos_f16 :: proc "contextless" (θ: f16) -> f16 { return _cos_f16(θ) } @(require_results) cos_f32 :: proc "contextless" (θ: f32) -> f32 { return _cos_f32(θ) } @(require_results) cos_f64 :: proc "contextless" (θ: f64) -> f64 { return _cos_f64(θ) } @(require_results) pow_f16 :: proc "contextless" (x, power: f16) -> f16 { return _pow_f16(x, power) } @(require_results) pow_f32 :: proc "contextless" (x, power: f32) -> f32 { return _pow_f32(x, power) } @(require_results) pow_f64 :: proc "contextless" (x, power: f64) -> f64 { return _pow_f64(x, power) } @(require_results) fmuladd_f16 :: proc "contextless" (a, b, c: f16) -> f16 { return _fmuladd_f16(a, b, c) } @(require_results) fmuladd_f32 :: proc "contextless" (a, b, c: f32) -> f32 { return _fmuladd_f32(a, b, c) } @(require_results) fmuladd_f64 :: proc "contextless" (a, b, c: f64) -> f64 { return _fmuladd_f64(a, b, c) } @(require_results) exp_f16 :: proc "contextless" (x: f16) -> f16 { return _exp_f16(x) } @(require_results) exp_f32 :: proc "contextless" (x: f32) -> f32 { return _exp_f32(x) } @(require_results) exp_f64 :: proc "contextless" (x: f64) -> f64 { return _exp_f64(x) } @(require_results) sqrt_f16 :: proc "contextless" (x: f16) -> f16 { return intrinsics.sqrt(x) } @(require_results) sqrt_f32 :: proc "contextless" (x: f32) -> f32 { return intrinsics.sqrt(x) } @(require_results) sqrt_f64 :: proc "contextless" (x: f64) -> f64 { return intrinsics.sqrt(x) } @(require_results) ln_f64 :: proc "contextless" (x: f64) -> f64 { // The original C code, the long comment, and the constants // below are from FreeBSD's /usr/src/lib/msun/src/e_log.c // and came with this notice. // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunPro, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== // // __ieee754_log(x) // Return the logarithm of x // // Method : // 1. Argument Reduction: find k and f such that // x = 2**k * (1+f), // where sqrt(2)/2 < 1+f < sqrt(2) . // // 2. Approximation of log(1+f). // Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) // = 2s + 2/3 s**3 + 2/5 s**5 + ....., // = 2s + s*R // We use a special Reme algorithm on [0,0.1716] to generate // a polynomial of degree 14 to approximate R. The maximum error // of this polynomial approximation is bounded by 2**-58.45. In // other words, // 2 4 6 8 10 12 14 // R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s +L6*s +L7*s // (the values of L1 to L7 are listed in the program) and // | 2 14 | -58.45 // | L1*s +...+L7*s - R(z) | <= 2 // | | // Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. // In order to guarantee error in log below 1ulp, we compute log by // log(1+f) = f - s*(f - R) (if f is not too large) // log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) // // 3. Finally, log(x) = k*Ln2 + log(1+f). // = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo))) // Here Ln2 is split into two floating point number: // Ln2_hi + Ln2_lo, // where n*Ln2_hi is always exact for |n| < 2000. // // Special cases: // log(x) is NaN with signal if x < 0 (including -INF) ; // log(+INF) is +INF; log(0) is -INF with signal; // log(NaN) is that NaN with no signal. // // Accuracy: // according to an error analysis, the error is always less than // 1 ulp (unit in the last place). // // Constants: // The hexadecimal values are the intended ones for the following // constants. The decimal values may be used, provided that the // compiler will convert from decimal to binary accurately enough // to produce the hexadecimal values shown. LN2_HI :: 0h3fe62e42_fee00000 // 6.93147180369123816490e-01 LN2_LO :: 0h3dea39ef_35793c76 // 1.90821492927058770002e-10 L1 :: 0h3fe55555_55555593 // 6.666666666666735130e-01 L2 :: 0h3fd99999_9997fa04 // 3.999999999940941908e-01 L3 :: 0h3fd24924_94229359 // 2.857142874366239149e-01 L4 :: 0h3fcc71c5_1d8e78af // 2.222219843214978396e-01 L5 :: 0h3fc74664_96cb03de // 1.818357216161805012e-01 L6 :: 0h3fc39a09_d078c69f // 1.531383769920937332e-01 L7 :: 0h3fc2f112_df3e5244 // 1.479819860511658591e-01 switch { case is_nan(x) || is_inf(x, 1): return x case x < 0: return nan_f64() case x == 0: return inf_f64(-1) } // reduce f1, ki := frexp(x) if f1 < SQRT_TWO/2 { f1 *= 2 ki -= 1 } f := f1 - 1 k := f64(ki) // compute s := f / (2 + f) s2 := s * s s4 := s2 * s2 t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7))) t2 := s4 * (L2 + s4*(L4+s4*L6)) R := t1 + t2 hfsq := 0.5 * f * f return k*LN2_HI - ((hfsq - (s*(hfsq+R) + k*LN2_LO)) - f) } @(require_results) ln_f16 :: proc "contextless" (x: f16) -> f16 { return #force_inline f16(ln_f64(f64(x))) } @(require_results) ln_f32 :: proc "contextless" (x: f32) -> f32 { return #force_inline f32(ln_f64(f64(x))) } @(require_results) ln_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(ln_f64(f64(x))) } @(require_results) ln_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(ln_f64(f64(x))) } @(require_results) ln_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(ln_f64(f64(x))) } @(require_results) ln_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(ln_f64(f64(x))) } @(require_results) ln_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(ln_f64(f64(x))) } @(require_results) ln_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(ln_f64(f64(x))) } ln :: proc{ ln_f16, ln_f16le, ln_f16be, ln_f32, ln_f32le, ln_f32be, ln_f64, ln_f64le, ln_f64be, }