//+private package os2 import "base:runtime" import "core:sys/linux" import "core:sync" import "core:mem" // Use the experimental custom heap allocator (over calling `malloc` etc.). // This is a switch because there are thread-safety problems that need to be fixed. // See: https://github.com/odin-lang/Odin/issues/4161 USE_EXPERIMENTAL_ALLOCATOR :: #config(OS2_LINUX_USE_EXPERIMENTAL_ALLOCATOR, false) // NOTEs // // All allocations below DIRECT_MMAP_THRESHOLD exist inside of memory "Regions." A region // consists of a Region_Header and the memory that will be divided into allocations to // send to the user. The memory is an array of "Allocation_Headers" which are 8 bytes. // Allocation_Headers are used to navigate the memory in the region. The "next" member of // the Allocation_Header points to the next header, and the space between the headers // can be used to send to the user. This space between is referred to as "blocks" in the // code. The indexes in the header refer to these blocks instead of bytes. This allows us // to index all the memory in the region with a u16. // // When an allocation request is made, it will use the first free block that can contain // the entire block. If there is an excess number of blocks (as specified by the constant // BLOCK_SEGMENT_THRESHOLD), this extra space will be segmented and left in the free_list. // // To keep the implementation simple, there can never exist 2 free blocks adjacent to each // other. Any freeing will result in attempting to merge the blocks before and after the // newly free'd blocks. // // Any request for size above the DIRECT_MMAP_THRESHOLD will result in the allocation // getting its own individual mmap. Individual mmaps will still get an Allocation_Header // that contains the size with the last bit set to 1 to indicate it is indeed a direct // mmap allocation. // Why not brk? // glibc's malloc utilizes a mix of the brk and mmap system calls. This implementation // does *not* utilize the brk system call to avoid possible conflicts with foreign C // code. Just because we aren't directly using libc, there is nothing stopping the user // from doing it. // What's with all the #no_bounds_check? // When memory is returned from mmap, it technically doesn't get written ... well ... anywhere // until that region is written to by *you*. So, when a new region is created, we call mmap // to get a pointer to some memory, and we claim that memory is a ^Region. Therefor, the // region itself is never formally initialized by the compiler as this would result in writing // zeros to memory that we can already assume are 0. This would also have the effect of // actually commiting this data to memory whether it gets used or not. // // Some variables to play with // // Minimum blocks used for any one allocation MINIMUM_BLOCK_COUNT :: 2 // Number of extra blocks beyond the requested amount where we would segment. // E.g. (blocks) |H0123456| 7 available // |H01H0123| Ask for 2, now 4 available BLOCK_SEGMENT_THRESHOLD :: 4 // Anything above this threshold will get its own memory map. Since regions // are indexed by 16 bit integers, this value should not surpass max(u16) * 6 DIRECT_MMAP_THRESHOLD_USER :: int(max(u16)) // The point at which we convert direct mmap to region. This should be a decent // amount less than DIRECT_MMAP_THRESHOLD to avoid jumping in and out of regions. MMAP_TO_REGION_SHRINK_THRESHOLD :: DIRECT_MMAP_THRESHOLD - PAGE_SIZE * 4 // free_list is dynamic and is initialized in the begining of the region memory // when the region is initialized. Once resized, it can be moved anywhere. FREE_LIST_DEFAULT_CAP :: 32 // // Other constants that should not be touched // // This universally seems to be 4096 outside of uncommon archs. PAGE_SIZE :: 4096 // just rounding up to nearest PAGE_SIZE DIRECT_MMAP_THRESHOLD :: (DIRECT_MMAP_THRESHOLD_USER-1) + PAGE_SIZE - (DIRECT_MMAP_THRESHOLD_USER-1) % PAGE_SIZE // Regions must be big enough to hold DIRECT_MMAP_THRESHOLD - 1 as well // as end right on a page boundary as to not waste space. SIZE_OF_REGION :: DIRECT_MMAP_THRESHOLD + 4 * int(PAGE_SIZE) // size of user memory blocks BLOCK_SIZE :: size_of(Allocation_Header) // number of allocation sections (call them blocks) of the region used for allocations BLOCKS_PER_REGION :: u16((SIZE_OF_REGION - size_of(Region_Header)) / BLOCK_SIZE) // minimum amount of space that can used by any individual allocation (includes header) MINIMUM_ALLOCATION :: (MINIMUM_BLOCK_COUNT * BLOCK_SIZE) + BLOCK_SIZE // This is used as a boolean value for Region_Header.local_addr. CURRENTLY_ACTIVE :: (^^Region)(~uintptr(0)) FREE_LIST_ENTRIES_PER_BLOCK :: BLOCK_SIZE / size_of(u16) MMAP_FLAGS : linux.Map_Flags : {.ANONYMOUS, .PRIVATE} MMAP_PROT : linux.Mem_Protection : {.READ, .WRITE} @thread_local _local_region: ^Region global_regions: ^Region // There is no way of correctly setting the last bit of free_idx or // the last bit of requested, so we can safely use it as a flag to // determine if we are interacting with a direct mmap. REQUESTED_MASK :: 0x7FFFFFFFFFFFFFFF IS_DIRECT_MMAP :: 0x8000000000000000 // Special free_idx value that does not index the free_list. NOT_FREE :: 0x7FFF Allocation_Header :: struct #raw_union { using _: struct { // Block indicies idx: u16, prev: u16, next: u16, free_idx: u16, }, requested: u64, } Region_Header :: struct #align(16) { next_region: ^Region, // points to next region in global_heap (linked list) local_addr: ^^Region, // tracks region ownership via address of _local_region reset_addr: ^^Region, // tracks old local addr for reset free_list: []u16, free_list_len: u16, free_blocks: u16, // number of free blocks in region (includes headers) last_used: u16, // farthest back block that has been used (need zeroing?) _reserved: u16, } Region :: struct { hdr: Region_Header, memory: [BLOCKS_PER_REGION]Allocation_Header, } when USE_EXPERIMENTAL_ALLOCATOR { _heap_allocator_proc :: proc(allocator_data: rawptr, mode: mem.Allocator_Mode, size, alignment: int, old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, mem.Allocator_Error) { // // NOTE(tetra, 2020-01-14): The heap doesn't respect alignment. // Instead, we overallocate by `alignment + size_of(rawptr) - 1`, and insert // padding. We also store the original pointer returned by heap_alloc right before // the pointer we return to the user. // aligned_alloc :: proc(size, alignment: int, old_ptr: rawptr = nil) -> ([]byte, mem.Allocator_Error) { a := max(alignment, align_of(rawptr)) space := size + a - 1 allocated_mem: rawptr if old_ptr != nil { original_old_ptr := mem.ptr_offset((^rawptr)(old_ptr), -1)^ allocated_mem = heap_resize(original_old_ptr, space+size_of(rawptr)) } else { allocated_mem = heap_alloc(space+size_of(rawptr)) } aligned_mem := rawptr(mem.ptr_offset((^u8)(allocated_mem), size_of(rawptr))) ptr := uintptr(aligned_mem) aligned_ptr := (ptr - 1 + uintptr(a)) & -uintptr(a) diff := int(aligned_ptr - ptr) if (size + diff) > space || allocated_mem == nil { return nil, .Out_Of_Memory } aligned_mem = rawptr(aligned_ptr) mem.ptr_offset((^rawptr)(aligned_mem), -1)^ = allocated_mem return mem.byte_slice(aligned_mem, size), nil } aligned_free :: proc(p: rawptr) { if p != nil { heap_free(mem.ptr_offset((^rawptr)(p), -1)^) } } aligned_resize :: proc(p: rawptr, old_size: int, new_size: int, new_alignment: int) -> (new_memory: []byte, err: mem.Allocator_Error) { if p == nil { return nil, nil } return aligned_alloc(new_size, new_alignment, p) } switch mode { case .Alloc, .Alloc_Non_Zeroed: return aligned_alloc(size, alignment) case .Free: aligned_free(old_memory) case .Free_All: return nil, .Mode_Not_Implemented case .Resize, .Resize_Non_Zeroed: if old_memory == nil { return aligned_alloc(size, alignment) } return aligned_resize(old_memory, old_size, size, alignment) case .Query_Features: set := (^mem.Allocator_Mode_Set)(old_memory) if set != nil { set^ = {.Alloc, .Free, .Resize, .Query_Features} } return nil, nil case .Query_Info: return nil, .Mode_Not_Implemented } return nil, nil } } else { _heap_allocator_proc :: runtime.heap_allocator_proc } heap_alloc :: proc(size: int) -> rawptr { if size >= DIRECT_MMAP_THRESHOLD { return _direct_mmap_alloc(size) } // atomically check if the local region has been stolen if _local_region != nil { res := sync.atomic_compare_exchange_strong_explicit( &_local_region.hdr.local_addr, &_local_region, CURRENTLY_ACTIVE, .Acquire, .Relaxed, ) if res != &_local_region { // At this point, the region has been stolen and res contains the unexpected value expected := res if res != CURRENTLY_ACTIVE { expected = res res = sync.atomic_compare_exchange_strong_explicit( &_local_region.hdr.local_addr, expected, CURRENTLY_ACTIVE, .Acquire, .Relaxed, ) } if res != expected { _local_region = nil } } } size := size size = _round_up_to_nearest(size, BLOCK_SIZE) blocks_needed := u16(max(MINIMUM_BLOCK_COUNT, size / BLOCK_SIZE)) // retrieve a region if new thread or stolen if _local_region == nil { _local_region, _ = _region_retrieve_with_space(blocks_needed) if _local_region == nil { return nil } } defer sync.atomic_store_explicit(&_local_region.hdr.local_addr, &_local_region, .Release) // At this point we have a usable region. Let's find the user some memory idx: u16 local_region_idx := _region_get_local_idx() back_idx := -1 infinite: for { for i := 0; i < int(_local_region.hdr.free_list_len); i += 1 { idx = _local_region.hdr.free_list[i] #no_bounds_check if _get_block_count(_local_region.memory[idx]) >= blocks_needed { break infinite } } sync.atomic_store_explicit(&_local_region.hdr.local_addr, &_local_region, .Release) _local_region, back_idx = _region_retrieve_with_space(blocks_needed, local_region_idx, back_idx) } user_ptr, used := _region_get_block(_local_region, idx, blocks_needed) _local_region.hdr.free_blocks -= (used + 1) // If this memory was ever used before, it now needs to be zero'd. if idx < _local_region.hdr.last_used { mem.zero(user_ptr, int(used) * BLOCK_SIZE) } else { _local_region.hdr.last_used = idx + used } return user_ptr } heap_resize :: proc(old_memory: rawptr, new_size: int) -> rawptr #no_bounds_check { alloc := _get_allocation_header(old_memory) if alloc.requested & IS_DIRECT_MMAP > 0 { return _direct_mmap_resize(alloc, new_size) } if new_size > DIRECT_MMAP_THRESHOLD { return _direct_mmap_from_region(alloc, new_size) } return _region_resize(alloc, new_size) } heap_free :: proc(memory: rawptr) { alloc := _get_allocation_header(memory) if alloc.requested & IS_DIRECT_MMAP == IS_DIRECT_MMAP { _direct_mmap_free(alloc) return } assert(alloc.free_idx == NOT_FREE) _region_find_and_assign_local(alloc) _region_local_free(alloc) sync.atomic_store_explicit(&_local_region.hdr.local_addr, &_local_region, .Release) } // // Regions // _new_region :: proc() -> ^Region #no_bounds_check { ptr, errno := linux.mmap(0, uint(SIZE_OF_REGION), MMAP_PROT, MMAP_FLAGS, -1, 0) if errno != .NONE { return nil } new_region := (^Region)(ptr) new_region.hdr.local_addr = CURRENTLY_ACTIVE new_region.hdr.reset_addr = &_local_region free_list_blocks := _round_up_to_nearest(FREE_LIST_DEFAULT_CAP, FREE_LIST_ENTRIES_PER_BLOCK) _region_assign_free_list(new_region, &new_region.memory[1], u16(free_list_blocks) * FREE_LIST_ENTRIES_PER_BLOCK) // + 2 to account for free_list's allocation header first_user_block := len(new_region.hdr.free_list) / FREE_LIST_ENTRIES_PER_BLOCK + 2 // first allocation header (this is a free list) new_region.memory[0].next = u16(first_user_block) new_region.memory[0].free_idx = NOT_FREE new_region.memory[first_user_block].idx = u16(first_user_block) new_region.memory[first_user_block].next = BLOCKS_PER_REGION - 1 // add the first user block to the free list new_region.hdr.free_list[0] = u16(first_user_block) new_region.hdr.free_list_len = 1 new_region.hdr.free_blocks = _get_block_count(new_region.memory[first_user_block]) + 1 for r := sync.atomic_compare_exchange_strong(&global_regions, nil, new_region); r != nil; r = sync.atomic_compare_exchange_strong(&r.hdr.next_region, nil, new_region) {} return new_region } _region_resize :: proc(alloc: ^Allocation_Header, new_size: int, alloc_is_free_list: bool = false) -> rawptr #no_bounds_check { assert(alloc.free_idx == NOT_FREE) old_memory := mem.ptr_offset(alloc, 1) old_block_count := _get_block_count(alloc^) new_block_count := u16( max(MINIMUM_BLOCK_COUNT, _round_up_to_nearest(new_size, BLOCK_SIZE) / BLOCK_SIZE), ) if new_block_count < old_block_count { if new_block_count - old_block_count >= MINIMUM_BLOCK_COUNT { _region_find_and_assign_local(alloc) _region_segment(_local_region, alloc, new_block_count, alloc.free_idx) new_block_count = _get_block_count(alloc^) sync.atomic_store_explicit(&_local_region.hdr.local_addr, &_local_region, .Release) } // need to zero anything within the new block that that lies beyond new_size extra_bytes := int(new_block_count * BLOCK_SIZE) - new_size extra_bytes_ptr := mem.ptr_offset((^u8)(alloc), new_size + BLOCK_SIZE) mem.zero(extra_bytes_ptr, extra_bytes) return old_memory } if !alloc_is_free_list { _region_find_and_assign_local(alloc) } defer if !alloc_is_free_list { sync.atomic_store_explicit(&_local_region.hdr.local_addr, &_local_region, .Release) } // First, let's see if we can grow in place. if alloc.next != BLOCKS_PER_REGION - 1 && _local_region.memory[alloc.next].free_idx != NOT_FREE { next_alloc := _local_region.memory[alloc.next] total_available := old_block_count + _get_block_count(next_alloc) + 1 if total_available >= new_block_count { alloc.next = next_alloc.next _local_region.memory[alloc.next].prev = alloc.idx if total_available - new_block_count > BLOCK_SEGMENT_THRESHOLD { _region_segment(_local_region, alloc, new_block_count, next_alloc.free_idx) } else { _region_free_list_remove(_local_region, next_alloc.free_idx) } mem.zero(&_local_region.memory[next_alloc.idx], int(alloc.next - next_alloc.idx) * BLOCK_SIZE) _local_region.hdr.last_used = max(alloc.next, _local_region.hdr.last_used) _local_region.hdr.free_blocks -= (_get_block_count(alloc^) - old_block_count) if alloc_is_free_list { _region_assign_free_list(_local_region, old_memory, _get_block_count(alloc^)) } return old_memory } } // If we made it this far, we need to resize, copy, zero and free. region_iter := _local_region local_region_idx := _region_get_local_idx() back_idx := -1 idx: u16 infinite: for { for i := 0; i < len(region_iter.hdr.free_list); i += 1 { idx = region_iter.hdr.free_list[i] if _get_block_count(region_iter.memory[idx]) >= new_block_count { break infinite } } if region_iter != _local_region { sync.atomic_store_explicit( ®ion_iter.hdr.local_addr, region_iter.hdr.reset_addr, .Release, ) } region_iter, back_idx = _region_retrieve_with_space(new_block_count, local_region_idx, back_idx) } if region_iter != _local_region { sync.atomic_store_explicit( ®ion_iter.hdr.local_addr, region_iter.hdr.reset_addr, .Release, ) } // copy from old memory new_memory, used_blocks := _region_get_block(region_iter, idx, new_block_count) mem.copy(new_memory, old_memory, int(old_block_count * BLOCK_SIZE)) // zero any new memory addon_section := mem.ptr_offset((^Allocation_Header)(new_memory), old_block_count) new_blocks := used_blocks - old_block_count mem.zero(addon_section, int(new_blocks) * BLOCK_SIZE) region_iter.hdr.free_blocks -= (used_blocks + 1) // Set free_list before freeing. if alloc_is_free_list { _region_assign_free_list(_local_region, new_memory, used_blocks) } // free old memory _region_local_free(alloc) return new_memory } _region_local_free :: proc(alloc: ^Allocation_Header) #no_bounds_check { alloc := alloc add_to_free_list := true _local_region.hdr.free_blocks += _get_block_count(alloc^) + 1 // try to merge with prev if alloc.idx > 0 && _local_region.memory[alloc.prev].free_idx != NOT_FREE { _local_region.memory[alloc.prev].next = alloc.next _local_region.memory[alloc.next].prev = alloc.prev alloc = &_local_region.memory[alloc.prev] add_to_free_list = false } // try to merge with next if alloc.next < BLOCKS_PER_REGION - 1 && _local_region.memory[alloc.next].free_idx != NOT_FREE { old_next := alloc.next alloc.next = _local_region.memory[old_next].next _local_region.memory[alloc.next].prev = alloc.idx if add_to_free_list { _local_region.hdr.free_list[_local_region.memory[old_next].free_idx] = alloc.idx alloc.free_idx = _local_region.memory[old_next].free_idx } else { // NOTE: We have aleady merged with prev, and now merged with next. // Now, we are actually going to remove from the free_list. _region_free_list_remove(_local_region, _local_region.memory[old_next].free_idx) } add_to_free_list = false } // This is the only place where anything is appended to the free list. if add_to_free_list { fl := _local_region.hdr.free_list alloc.free_idx = _local_region.hdr.free_list_len fl[alloc.free_idx] = alloc.idx _local_region.hdr.free_list_len += 1 if int(_local_region.hdr.free_list_len) == len(fl) { free_alloc := _get_allocation_header(mem.raw_data(_local_region.hdr.free_list)) _region_resize(free_alloc, len(fl) * 2 * size_of(fl[0]), true) } } } _region_assign_free_list :: proc(region: ^Region, memory: rawptr, blocks: u16) { raw_free_list := transmute(mem.Raw_Slice)region.hdr.free_list raw_free_list.len = int(blocks) * FREE_LIST_ENTRIES_PER_BLOCK raw_free_list.data = memory region.hdr.free_list = transmute([]u16)(raw_free_list) } _region_retrieve_with_space :: proc(blocks: u16, local_idx: int = -1, back_idx: int = -1) -> (^Region, int) { r: ^Region idx: int for r = global_regions; r != nil; r = r.hdr.next_region { if idx == local_idx || idx < back_idx || r.hdr.free_blocks < blocks { idx += 1 continue } idx += 1 local_addr: ^^Region = sync.atomic_load(&r.hdr.local_addr) if local_addr != CURRENTLY_ACTIVE { res := sync.atomic_compare_exchange_strong_explicit( &r.hdr.local_addr, local_addr, CURRENTLY_ACTIVE, .Acquire, .Relaxed, ) if res == local_addr { r.hdr.reset_addr = local_addr return r, idx } } } return _new_region(), idx } _region_retrieve_from_addr :: proc(addr: rawptr) -> ^Region { r: ^Region for r = global_regions; r != nil; r = r.hdr.next_region { if _region_contains_mem(r, addr) { return r } } unreachable() } _region_get_block :: proc(region: ^Region, idx, blocks_needed: u16) -> (rawptr, u16) #no_bounds_check { alloc := ®ion.memory[idx] assert(alloc.free_idx != NOT_FREE) assert(alloc.next > 0) block_count := _get_block_count(alloc^) if block_count - blocks_needed > BLOCK_SEGMENT_THRESHOLD { _region_segment(region, alloc, blocks_needed, alloc.free_idx) } else { _region_free_list_remove(region, alloc.free_idx) } alloc.free_idx = NOT_FREE return mem.ptr_offset(alloc, 1), _get_block_count(alloc^) } _region_segment :: proc(region: ^Region, alloc: ^Allocation_Header, blocks, new_free_idx: u16) #no_bounds_check { old_next := alloc.next alloc.next = alloc.idx + blocks + 1 region.memory[old_next].prev = alloc.next // Initialize alloc.next allocation header here. region.memory[alloc.next].prev = alloc.idx region.memory[alloc.next].next = old_next region.memory[alloc.next].idx = alloc.next region.memory[alloc.next].free_idx = new_free_idx // Replace our original spot in the free_list with new segment. region.hdr.free_list[new_free_idx] = alloc.next } _region_get_local_idx :: proc() -> int { idx: int for r := global_regions; r != nil; r = r.hdr.next_region { if r == _local_region { return idx } idx += 1 } return -1 } _region_find_and_assign_local :: proc(alloc: ^Allocation_Header) { // Find the region that contains this memory if !_region_contains_mem(_local_region, alloc) { _local_region = _region_retrieve_from_addr(alloc) } // At this point, _local_region is set correctly. Spin until acquired res: ^^Region for res != &_local_region { res = sync.atomic_compare_exchange_strong_explicit( &_local_region.hdr.local_addr, &_local_region, CURRENTLY_ACTIVE, .Acquire, .Relaxed, ) } } _region_contains_mem :: proc(r: ^Region, memory: rawptr) -> bool #no_bounds_check { if r == nil { return false } mem_int := uintptr(memory) return mem_int >= uintptr(&r.memory[0]) && mem_int <= uintptr(&r.memory[BLOCKS_PER_REGION - 1]) } _region_free_list_remove :: proc(region: ^Region, free_idx: u16) #no_bounds_check { // pop, swap and update allocation hdr if n := region.hdr.free_list_len - 1; free_idx != n { region.hdr.free_list[free_idx] = region.hdr.free_list[n] alloc_idx := region.hdr.free_list[free_idx] region.memory[alloc_idx].free_idx = free_idx } region.hdr.free_list_len -= 1 } // // Direct mmap // _direct_mmap_alloc :: proc(size: int) -> rawptr { mmap_size := _round_up_to_nearest(size + BLOCK_SIZE, PAGE_SIZE) new_allocation, errno := linux.mmap(0, uint(mmap_size), MMAP_PROT, MMAP_FLAGS, -1, 0) if errno != .NONE { return nil } alloc := (^Allocation_Header)(uintptr(new_allocation)) alloc.requested = u64(size) // NOTE: requested = requested size alloc.requested += IS_DIRECT_MMAP return rawptr(mem.ptr_offset(alloc, 1)) } _direct_mmap_resize :: proc(alloc: ^Allocation_Header, new_size: int) -> rawptr { old_requested := int(alloc.requested & REQUESTED_MASK) old_mmap_size := _round_up_to_nearest(old_requested + BLOCK_SIZE, PAGE_SIZE) new_mmap_size := _round_up_to_nearest(new_size + BLOCK_SIZE, PAGE_SIZE) if int(new_mmap_size) < MMAP_TO_REGION_SHRINK_THRESHOLD { return _direct_mmap_to_region(alloc, new_size) } else if old_requested == new_size { return mem.ptr_offset(alloc, 1) } new_allocation, errno := linux.mremap(alloc, uint(old_mmap_size), uint(new_mmap_size), {.MAYMOVE}) if errno != .NONE { return nil } new_header := (^Allocation_Header)(uintptr(new_allocation)) new_header.requested = u64(new_size) new_header.requested += IS_DIRECT_MMAP if new_mmap_size > old_mmap_size { // new section may not be pointer aligned, so cast to ^u8 new_section := mem.ptr_offset((^u8)(new_header), old_requested + BLOCK_SIZE) mem.zero(new_section, new_mmap_size - old_mmap_size) } return mem.ptr_offset(new_header, 1) } _direct_mmap_from_region :: proc(alloc: ^Allocation_Header, new_size: int) -> rawptr { new_memory := _direct_mmap_alloc(new_size) if new_memory != nil { old_memory := mem.ptr_offset(alloc, 1) mem.copy(new_memory, old_memory, int(_get_block_count(alloc^)) * BLOCK_SIZE) } _region_find_and_assign_local(alloc) _region_local_free(alloc) sync.atomic_store_explicit(&_local_region.hdr.local_addr, &_local_region, .Release) return new_memory } _direct_mmap_to_region :: proc(alloc: ^Allocation_Header, new_size: int) -> rawptr { new_memory := heap_alloc(new_size) if new_memory != nil { mem.copy(new_memory, mem.ptr_offset(alloc, -1), new_size) _direct_mmap_free(alloc) } return new_memory } _direct_mmap_free :: proc(alloc: ^Allocation_Header) { requested := int(alloc.requested & REQUESTED_MASK) mmap_size := _round_up_to_nearest(requested + BLOCK_SIZE, PAGE_SIZE) linux.munmap(alloc, uint(mmap_size)) } // // Util // _get_block_count :: #force_inline proc(alloc: Allocation_Header) -> u16 { return alloc.next - alloc.idx - 1 } _get_allocation_header :: #force_inline proc(raw_mem: rawptr) -> ^Allocation_Header { return mem.ptr_offset((^Allocation_Header)(raw_mem), -1) } _round_up_to_nearest :: #force_inline proc(size, round: int) -> int { return (size-1) + round - (size-1) % round }