package bytes import "base:intrinsics" import "core:mem" import "core:simd" import "core:unicode" import "core:unicode/utf8" when ODIN_ARCH == .amd64 && intrinsics.has_target_feature("avx2") { @(private) SCANNER_INDICES_256 : simd.u8x32 : { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, } @(private) SCANNER_SENTINEL_MAX_256: simd.u8x32 : u8(0x00) @(private) SCANNER_SENTINEL_MIN_256: simd.u8x32 : u8(0xff) @(private) SIMD_REG_SIZE_256 :: 32 } @(private) SCANNER_INDICES_128 : simd.u8x16 : { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, } @(private) SCANNER_SENTINEL_MAX_128: simd.u8x16 : u8(0x00) @(private) SCANNER_SENTINEL_MIN_128: simd.u8x16 : u8(0xff) @(private) SIMD_REG_SIZE_128 :: 16 clone :: proc(s: []byte, allocator := context.allocator, loc := #caller_location) -> []byte { c := make([]byte, len(s), allocator, loc) copy(c, s) return c[:len(s)] } clone_safe :: proc(s: []byte, allocator := context.allocator, loc := #caller_location) -> (data: []byte, err: mem.Allocator_Error) { c := make([]byte, len(s), allocator, loc) or_return copy(c, s) return c[:len(s)], nil } ptr_from_slice :: ptr_from_bytes ptr_from_bytes :: proc(str: []byte) -> ^byte { d := transmute(mem.Raw_String)str return d.data } truncate_to_byte :: proc(str: []byte, b: byte) -> []byte { n := index_byte(str, b) if n < 0 { n = len(str) } return str[:n] } truncate_to_rune :: proc(str: []byte, r: rune) -> []byte { n := index_rune(str, r) if n < 0 { n = len(str) } return str[:n] } // Compares two strings, returning a value representing which one comes first lexiographically. // -1 for `a`; 1 for `b`, or 0 if they are equal. compare :: proc(lhs, rhs: []byte) -> int { return mem.compare(lhs, rhs) } contains_rune :: proc(s: []byte, r: rune) -> int { for c, offset in string(s) { if c == r { return offset } } return -1 } contains :: proc(s, substr: []byte) -> bool { return index(s, substr) >= 0 } contains_any :: proc(s, chars: []byte) -> bool { return index_any(s, chars) >= 0 } rune_count :: proc(s: []byte) -> int { return utf8.rune_count(s) } equal :: proc(a, b: []byte) -> bool { return string(a) == string(b) } equal_fold :: proc(u, v: []byte) -> bool { s, t := string(u), string(v) loop: for s != "" && t != "" { sr, tr: rune if s[0] < utf8.RUNE_SELF { sr, s = rune(s[0]), s[1:] } else { r, size := utf8.decode_rune_in_string(s) sr, s = r, s[size:] } if t[0] < utf8.RUNE_SELF { tr, t = rune(t[0]), t[1:] } else { r, size := utf8.decode_rune_in_string(t) tr, t = r, t[size:] } if tr == sr { // easy case continue loop } if tr < sr { tr, sr = sr, tr } if tr < utf8.RUNE_SELF { switch sr { case 'A'..='Z': if tr == (sr+'a')-'A' { continue loop } } return false } // TODO(bill): Unicode folding return false } return s == t } has_prefix :: proc(s, prefix: []byte) -> bool { return len(s) >= len(prefix) && string(s[0:len(prefix)]) == string(prefix) } has_suffix :: proc(s, suffix: []byte) -> bool { return len(s) >= len(suffix) && string(s[len(s)-len(suffix):]) == string(suffix) } join :: proc(a: [][]byte, sep: []byte, allocator := context.allocator) -> []byte { if len(a) == 0 { return nil } n := len(sep) * (len(a) - 1) for s in a { n += len(s) } b := make([]byte, n, allocator) i := copy(b, a[0]) for s in a[1:] { i += copy(b[i:], sep) i += copy(b[i:], s) } return b } join_safe :: proc(a: [][]byte, sep: []byte, allocator := context.allocator) -> (data: []byte, err: mem.Allocator_Error) { if len(a) == 0 { return nil, nil } n := len(sep) * (len(a) - 1) for s in a { n += len(s) } b := make([]byte, n, allocator) or_return i := copy(b, a[0]) for s in a[1:] { i += copy(b[i:], sep) i += copy(b[i:], s) } return b, nil } concatenate :: proc(a: [][]byte, allocator := context.allocator) -> []byte { if len(a) == 0 { return nil } n := 0 for s in a { n += len(s) } b := make([]byte, n, allocator) i := 0 for s in a { i += copy(b[i:], s) } return b } concatenate_safe :: proc(a: [][]byte, allocator := context.allocator) -> (data: []byte, err: mem.Allocator_Error) { if len(a) == 0 { return nil, nil } n := 0 for s in a { n += len(s) } b := make([]byte, n, allocator) or_return i := 0 for s in a { i += copy(b[i:], s) } return b, nil } @private _split :: proc(s, sep: []byte, sep_save, n: int, allocator := context.allocator) -> [][]byte { s, n := s, n if n == 0 { return nil } if sep == nil { l := utf8.rune_count(s) if n < 0 || n > l { n = l } res := make([dynamic][]byte, n, allocator) for i := 0; i < n-1; i += 1 { _, w := utf8.decode_rune(s) res[i] = s[:w] s = s[w:] } if n > 0 { res[n-1] = s } return res[:] } if n < 0 { n = count(s, sep) + 1 } res := make([dynamic][]byte, n, allocator) n -= 1 i := 0 for ; i < n; i += 1 { m := index(s, sep) if m < 0 { break } res[i] = s[:m+sep_save] s = s[m+len(sep):] } res[i] = s return res[:i+1] } split :: proc(s, sep: []byte, allocator := context.allocator) -> [][]byte { return _split(s, sep, 0, -1, allocator) } split_n :: proc(s, sep: []byte, n: int, allocator := context.allocator) -> [][]byte { return _split(s, sep, 0, n, allocator) } split_after :: proc(s, sep: []byte, allocator := context.allocator) -> [][]byte { return _split(s, sep, len(sep), -1, allocator) } split_after_n :: proc(s, sep: []byte, n: int, allocator := context.allocator) -> [][]byte { return _split(s, sep, len(sep), n, allocator) } @private _split_iterator :: proc(s: ^[]byte, sep: []byte, sep_save: int) -> (res: []byte, ok: bool) { if len(sep) == 0 { res = s[:] ok = true s^ = s[len(s):] return } m := index(s^, sep) if m < 0 { // not found res = s[:] ok = len(res) != 0 s^ = s[len(s):] } else { res = s[:m+sep_save] ok = true s^ = s[m+len(sep):] } return } split_iterator :: proc(s: ^[]byte, sep: []byte) -> ([]byte, bool) { return _split_iterator(s, sep, 0) } split_after_iterator :: proc(s: ^[]byte, sep: []byte) -> ([]byte, bool) { return _split_iterator(s, sep, len(sep)) } /* Scan a slice of bytes for a specific byte. This procedure safely handles slices of any length, including empty slices. Inputs: - data: A slice of bytes. - c: The byte to search for. Returns: - index: The index of the byte `c`, or -1 if it was not found. */ index_byte :: proc "contextless" (s: []byte, c: byte) -> (index: int) #no_bounds_check { i, l := 0, len(s) // Guard against small strings. On modern systems, it is ALWAYS // worth vectorizing assuming there is a hardware vector unit, and // the data size is large enough. if l < SIMD_REG_SIZE_128 { for /**/; i < l; i += 1 { if s[i] == c { return i } } return -1 } c_vec: simd.u8x16 = c when !simd.IS_EMULATED { // Note: While this is something that could also logically take // advantage of AVX512, the various downclocking and power // consumption related woes make premature to have a dedicated // code path. when ODIN_ARCH == .amd64 && intrinsics.has_target_feature("avx2") { c_vec_256: simd.u8x32 = c s_vecs: [4]simd.u8x32 = --- c_vecs: [4]simd.u8x32 = --- m_vec: [4]u8 = --- // Scan 128-byte chunks, using 256-bit SIMD. for nr_blocks := l / (4 * SIMD_REG_SIZE_256); nr_blocks > 0; nr_blocks -= 1 { #unroll for j in 0..<4 { s_vecs[j] = intrinsics.unaligned_load(cast(^simd.u8x32)raw_data(s[i+j*SIMD_REG_SIZE_256:])) c_vecs[j] = simd.lanes_eq(s_vecs[j], c_vec_256) m_vec[j] = simd.reduce_or(c_vecs[j]) } if m_vec[0] | m_vec[1] | m_vec[2] | m_vec[3] > 0 { #unroll for j in 0..<4 { if m_vec[j] > 0 { sel := simd.select(c_vecs[j], SCANNER_INDICES_256, SCANNER_SENTINEL_MIN_256) off := simd.reduce_min(sel) return i + j * SIMD_REG_SIZE_256 + int(off) } } } i += 4 * SIMD_REG_SIZE_256 } // Scan 64-byte chunks, using 256-bit SIMD. for nr_blocks := (l - i) / (2 * SIMD_REG_SIZE_256); nr_blocks > 0; nr_blocks -= 1 { #unroll for j in 0..<2 { s_vecs[j] = intrinsics.unaligned_load(cast(^simd.u8x32)raw_data(s[i+j*SIMD_REG_SIZE_256:])) c_vecs[j] = simd.lanes_eq(s_vecs[j], c_vec_256) m_vec[j] = simd.reduce_or(c_vecs[j]) } if m_vec[0] | m_vec[1] > 0 { #unroll for j in 0..<2 { if m_vec[j] > 0 { sel := simd.select(c_vecs[j], SCANNER_INDICES_256, SCANNER_SENTINEL_MIN_256) off := simd.reduce_min(sel) return i + j * SIMD_REG_SIZE_256 + int(off) } } } i += 2 * SIMD_REG_SIZE_256 } } else { s_vecs: [4]simd.u8x16 = --- c_vecs: [4]simd.u8x16 = --- m_vecs: [4]u8 = --- // Scan 64-byte chunks, using 128-bit SIMD. for nr_blocks := l / (4 * SIMD_REG_SIZE_128); nr_blocks > 0; nr_blocks -= 1 { #unroll for j in 0..<4 { s_vecs[j]= intrinsics.unaligned_load(cast(^simd.u8x16)raw_data(s[i+j*SIMD_REG_SIZE_128:])) c_vecs[j] = simd.lanes_eq(s_vecs[j], c_vec) m_vecs[j] = simd.reduce_or(c_vecs[j]) } if m_vecs[0] | m_vecs[1] | m_vecs[2] | m_vecs[3] > 0 { #unroll for j in 0..<4 { if m_vecs[j] > 0 { sel := simd.select(c_vecs[j], SCANNER_INDICES_128, SCANNER_SENTINEL_MIN_128) off := simd.reduce_min(sel) return i + j * SIMD_REG_SIZE_128 + int(off) } } } i += 4 * SIMD_REG_SIZE_128 } } } // Scan the remaining SIMD register sized chunks. // // Apparently LLVM does ok with 128-bit SWAR, so this path is also taken // on potato targets. Scanning more at a time when LLVM is emulating SIMD // likely does not buy much, as all that does is increase GP register // pressure. for nr_blocks := (l - i) / SIMD_REG_SIZE_128; nr_blocks > 0; nr_blocks -= 1 { s0 := intrinsics.unaligned_load(cast(^simd.u8x16)raw_data(s[i:])) c0 := simd.lanes_eq(s0, c_vec) if simd.reduce_or(c0) > 0 { sel := simd.select(c0, SCANNER_INDICES_128, SCANNER_SENTINEL_MIN_128) off := simd.reduce_min(sel) return i + int(off) } i += SIMD_REG_SIZE_128 } // Scan serially for the remainder. for /**/; i < l; i += 1 { if s[i] == c { return i } } return -1 } /* Scan a slice of bytes for a specific byte, starting from the end and working backwards to the start. This procedure safely handles slices of any length, including empty slices. Inputs: - data: A slice of bytes. - c: The byte to search for. Returns: - index: The index of the byte `c`, or -1 if it was not found. */ last_index_byte :: proc "contextless" (s: []byte, c: byte) -> int #no_bounds_check { i := len(s) // Guard against small strings. On modern systems, it is ALWAYS // worth vectorizing assuming there is a hardware vector unit, and // the data size is large enough. if i < SIMD_REG_SIZE_128 { #reverse for ch, j in s { if ch == c { return j } } return -1 } c_vec: simd.u8x16 = c when !simd.IS_EMULATED { // Note: While this is something that could also logically take // advantage of AVX512, the various downclocking and power // consumption related woes make premature to have a dedicated // code path. when ODIN_ARCH == .amd64 && intrinsics.has_target_feature("avx2") { c_vec_256: simd.u8x32 = c s_vecs: [4]simd.u8x32 = --- c_vecs: [4]simd.u8x32 = --- m_vec: [4]u8 = --- // Scan 128-byte chunks, using 256-bit SIMD. for i >= 4 * SIMD_REG_SIZE_256 { i -= 4 * SIMD_REG_SIZE_256 #unroll for j in 0..<4 { s_vecs[j] = intrinsics.unaligned_load(cast(^simd.u8x32)raw_data(s[i+j*SIMD_REG_SIZE_256:])) c_vecs[j] = simd.lanes_eq(s_vecs[j], c_vec_256) m_vec[j] = simd.reduce_or(c_vecs[j]) } if m_vec[0] | m_vec[1] | m_vec[2] | m_vec[3] > 0 { #unroll for j in 0..<4 { if m_vec[3-j] > 0 { sel := simd.select(c_vecs[3-j], SCANNER_INDICES_256, SCANNER_SENTINEL_MAX_256) off := simd.reduce_max(sel) return i + (3-j) * SIMD_REG_SIZE_256 + int(off) } } } } // Scan 64-byte chunks, using 256-bit SIMD. for i >= 2 * SIMD_REG_SIZE_256 { i -= 2 * SIMD_REG_SIZE_256 #unroll for j in 0..<2 { s_vecs[j] = intrinsics.unaligned_load(cast(^simd.u8x32)raw_data(s[i+j*SIMD_REG_SIZE_256:])) c_vecs[j] = simd.lanes_eq(s_vecs[j], c_vec_256) m_vec[j] = simd.reduce_or(c_vecs[j]) } if m_vec[0] | m_vec[1] > 0 { #unroll for j in 0..<2 { if m_vec[1-j] > 0 { sel := simd.select(c_vecs[1-j], SCANNER_INDICES_256, SCANNER_SENTINEL_MAX_256) off := simd.reduce_max(sel) return i + (1-j) * SIMD_REG_SIZE_256 + int(off) } } } } } else { s_vecs: [4]simd.u8x16 = --- c_vecs: [4]simd.u8x16 = --- m_vecs: [4]u8 = --- // Scan 64-byte chunks, using 128-bit SIMD. for i >= 4 * SIMD_REG_SIZE_128 { i -= 4 * SIMD_REG_SIZE_128 #unroll for j in 0..<4 { s_vecs[j] = intrinsics.unaligned_load(cast(^simd.u8x16)raw_data(s[i+j*SIMD_REG_SIZE_128:])) c_vecs[j] = simd.lanes_eq(s_vecs[j], c_vec) m_vecs[j] = simd.reduce_or(c_vecs[j]) } if m_vecs[0] | m_vecs[1] | m_vecs[2] | m_vecs[3] > 0 { #unroll for j in 0..<4 { if m_vecs[3-j] > 0 { sel := simd.select(c_vecs[3-j], SCANNER_INDICES_128, SCANNER_SENTINEL_MAX_128) off := simd.reduce_max(sel) return i + (3-j) * SIMD_REG_SIZE_128 + int(off) } } } } } } // Scan the remaining SIMD register sized chunks. // // Apparently LLVM does ok with 128-bit SWAR, so this path is also taken // on potato targets. Scanning more at a time when LLVM is emulating SIMD // likely does not buy much, as all that does is increase GP register // pressure. for i >= SIMD_REG_SIZE_128 { i -= SIMD_REG_SIZE_128 s0 := intrinsics.unaligned_load(cast(^simd.u8x16)raw_data(s[i:])) c0 := simd.lanes_eq(s0, c_vec) if simd.reduce_or(c0) > 0 { sel := simd.select(c0, SCANNER_INDICES_128, SCANNER_SENTINEL_MAX_128) off := simd.reduce_max(sel) return i + int(off) } } // Scan serially for the remainder. for i > 0 { i -= 1 if s[i] == c { return i } } return -1 } @private PRIME_RABIN_KARP :: 16777619 index :: proc(s, substr: []byte) -> int { hash_str_rabin_karp :: proc(s: []byte) -> (hash: u32 = 0, pow: u32 = 1) { for i := 0; i < len(s); i += 1 { hash = hash*PRIME_RABIN_KARP + u32(s[i]) } sq := u32(PRIME_RABIN_KARP) for i := len(s); i > 0; i >>= 1 { if (i & 1) != 0 { pow *= sq } sq *= sq } return } n := len(substr) switch { case n == 0: return 0 case n == 1: return index_byte(s, substr[0]) case n == len(s): if string(s) == string(substr) { return 0 } return -1 case n > len(s): return -1 } hash, pow := hash_str_rabin_karp(substr) h: u32 for i := 0; i < n; i += 1 { h = h*PRIME_RABIN_KARP + u32(s[i]) } if h == hash && string(s[:n]) == string(substr) { return 0 } for i := n; i < len(s); /**/ { h *= PRIME_RABIN_KARP h += u32(s[i]) h -= pow * u32(s[i-n]) i += 1 if h == hash && string(s[i-n:i]) == string(substr) { return i - n } } return -1 } last_index :: proc(s, substr: []byte) -> int { hash_str_rabin_karp_reverse :: proc(s: []byte) -> (hash: u32 = 0, pow: u32 = 1) { for i := len(s) - 1; i >= 0; i -= 1 { hash = hash*PRIME_RABIN_KARP + u32(s[i]) } sq := u32(PRIME_RABIN_KARP) for i := len(s); i > 0; i >>= 1 { if (i & 1) != 0 { pow *= sq } sq *= sq } return } n := len(substr) switch { case n == 0: return len(s) case n == 1: return last_index_byte(s, substr[0]) case n == len(s): return 0 if string(substr) == string(s) else -1 case n > len(s): return -1 } hash, pow := hash_str_rabin_karp_reverse(substr) last := len(s) - n h: u32 for i := len(s)-1; i >= last; i -= 1 { h = h*PRIME_RABIN_KARP + u32(s[i]) } if h == hash && string(s[last:]) == string(substr) { return last } for i := last-1; i >= 0; i -= 1 { h *= PRIME_RABIN_KARP h += u32(s[i]) h -= pow * u32(s[i+n]) if h == hash && string(s[i:i+n]) == string(substr) { return i } } return -1 } index_any :: proc(s, chars: []byte) -> int { if chars == nil { return -1 } // TODO(bill): Optimize for r, i in s { for c in chars { if r == c { return i } } } return -1 } last_index_any :: proc(s, chars: []byte) -> int { if chars == nil { return -1 } for i := len(s); i > 0; { r, w := utf8.decode_last_rune(s[:i]) i -= w for c in string(chars) { if r == c { return i } } } return -1 } count :: proc(s, substr: []byte) -> int { if len(substr) == 0 { // special case return rune_count(s) + 1 } if len(substr) == 1 { c := substr[0] switch len(s) { case 0: return 0 case 1: return int(s[0] == c) } n := 0 for i := 0; i < len(s); i += 1 { if s[i] == c { n += 1 } } return n } // TODO(bill): Use a non-brute for approach n := 0 str := s for { i := index(str, substr) if i == -1 { return n } n += 1 str = str[i+len(substr):] } return n } repeat :: proc(s: []byte, count: int, allocator := context.allocator) -> []byte { if count < 0 { panic("bytes: negative repeat count") } else if count > 0 && (len(s)*count)/count != len(s) { panic("bytes: repeat count will cause an overflow") } b := make([]byte, len(s)*count, allocator) i := copy(b, s) for i < len(b) { // 2^N trick to reduce the need to copy copy(b[i:], b[:i]) i *= 2 } return b } replace_all :: proc(s, old, new: []byte, allocator := context.allocator) -> (output: []byte, was_allocation: bool) { return replace(s, old, new, -1, allocator) } // if n < 0, no limit on the number of replacements replace :: proc(s, old, new: []byte, n: int, allocator := context.allocator) -> (output: []byte, was_allocation: bool) { if string(old) == string(new) || n == 0 { was_allocation = false output = s return } byte_count := n if m := count(s, old); m == 0 { was_allocation = false output = s return } else if n < 0 || m < n { byte_count = m } t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator) was_allocation = true w := 0 start := 0 for i := 0; i < byte_count; i += 1 { j := start if len(old) == 0 { if i > 0 { _, width := utf8.decode_rune(s[start:]) j += width } } else { j += index(s[start:], old) } w += copy(t[w:], s[start:j]) w += copy(t[w:], new) start = j + len(old) } w += copy(t[w:], s[start:]) output = t[0:w] return } remove :: proc(s, key: []byte, n: int, allocator := context.allocator) -> (output: []byte, was_allocation: bool) { return replace(s, key, {}, n, allocator) } remove_all :: proc(s, key: []byte, allocator := context.allocator) -> (output: []byte, was_allocation: bool) { return remove(s, key, -1, allocator) } @(private) _ascii_space := [256]u8{'\t' = 1, '\n' = 1, '\v' = 1, '\f' = 1, '\r' = 1, ' ' = 1} is_ascii_space :: proc(r: rune) -> bool { if r < utf8.RUNE_SELF { return _ascii_space[u8(r)] != 0 } return false } is_space :: proc(r: rune) -> bool { if r < 0x2000 { switch r { case '\t', '\n', '\v', '\f', '\r', ' ', 0x85, 0xa0, 0x1680: return true } } else { if r <= 0x200a { return true } switch r { case 0x2028, 0x2029, 0x202f, 0x205f, 0x3000: return true } } return false } is_null :: proc(r: rune) -> bool { return r == 0x0000 } index_proc :: proc(s: []byte, p: proc(rune) -> bool, truth := true) -> int { for r, i in string(s) { if p(r) == truth { return i } } return -1 } index_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int { for r, i in string(s) { if p(state, r) == truth { return i } } return -1 } last_index_proc :: proc(s: []byte, p: proc(rune) -> bool, truth := true) -> int { // TODO(bill): Probably use Rabin-Karp Search for i := len(s); i > 0; { r, size := utf8.decode_last_rune(s[:i]) i -= size if p(r) == truth { return i } } return -1 } last_index_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int { // TODO(bill): Probably use Rabin-Karp Search for i := len(s); i > 0; { r, size := utf8.decode_last_rune(s[:i]) i -= size if p(state, r) == truth { return i } } return -1 } trim_left_proc :: proc(s: []byte, p: proc(rune) -> bool) -> []byte { i := index_proc(s, p, false) if i == -1 { return nil } return s[i:] } index_rune :: proc(s: []byte, r: rune) -> int { switch { case u32(r) < utf8.RUNE_SELF: return index_byte(s, byte(r)) case r == utf8.RUNE_ERROR: for c, i in string(s) { if c == utf8.RUNE_ERROR { return i } } return -1 case !utf8.valid_rune(r): return -1 } b, w := utf8.encode_rune(r) return index(s, b[:w]) } trim_left_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr) -> []byte { i := index_proc_with_state(s, p, state, false) if i == -1 { return nil } return s[i:] } trim_right_proc :: proc(s: []byte, p: proc(rune) -> bool) -> []byte { i := last_index_proc(s, p, false) if i >= 0 && s[i] >= utf8.RUNE_SELF { _, w := utf8.decode_rune(s[i:]) i += w } else { i += 1 } return s[0:i] } trim_right_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr) -> []byte { i := last_index_proc_with_state(s, p, state, false) if i >= 0 && s[i] >= utf8.RUNE_SELF { _, w := utf8.decode_rune(s[i:]) i += w } else { i += 1 } return s[0:i] } is_in_cutset :: proc(state: rawptr, r: rune) -> bool { if state == nil { return false } cutset := (^string)(state)^ for c in cutset { if r == c { return true } } return false } trim_left :: proc(s: []byte, cutset: []byte) -> []byte { if s == nil || cutset == nil { return s } state := cutset return trim_left_proc_with_state(s, is_in_cutset, &state) } trim_right :: proc(s: []byte, cutset: []byte) -> []byte { if s == nil || cutset == nil { return s } state := cutset return trim_right_proc_with_state(s, is_in_cutset, &state) } trim :: proc(s: []byte, cutset: []byte) -> []byte { return trim_right(trim_left(s, cutset), cutset) } trim_left_space :: proc(s: []byte) -> []byte { return trim_left_proc(s, is_space) } trim_right_space :: proc(s: []byte) -> []byte { return trim_right_proc(s, is_space) } trim_space :: proc(s: []byte) -> []byte { return trim_right_space(trim_left_space(s)) } trim_left_null :: proc(s: []byte) -> []byte { return trim_left_proc(s, is_null) } trim_right_null :: proc(s: []byte) -> []byte { return trim_right_proc(s, is_null) } trim_null :: proc(s: []byte) -> []byte { return trim_right_null(trim_left_null(s)) } trim_prefix :: proc(s, prefix: []byte) -> []byte { if has_prefix(s, prefix) { return s[len(prefix):] } return s } trim_suffix :: proc(s, suffix: []byte) -> []byte { if has_suffix(s, suffix) { return s[:len(s)-len(suffix)] } return s } split_multi :: proc(s: []byte, substrs: [][]byte, skip_empty := false, allocator := context.allocator) -> [][]byte #no_bounds_check { if s == nil || len(substrs) <= 0 { return nil } sublen := len(substrs[0]) for substr in substrs[1:] { sublen = min(sublen, len(substr)) } shared := len(s) - sublen if shared <= 0 { return nil } // number, index, last n, i, l := 0, 0, 0 // count results first_pass: for i <= shared { for substr in substrs { if string(s[i:i+sublen]) == string(substr) { if !skip_empty || i - l > 0 { n += 1 } i += sublen l = i continue first_pass } } _, skip := utf8.decode_rune(s[i:]) i += skip } if !skip_empty || len(s) - l > 0 { n += 1 } if n < 1 { // no results return nil } buf := make([][]byte, n, allocator) n, i, l = 0, 0, 0 // slice results second_pass: for i <= shared { for substr in substrs { if string(s[i:i+sublen]) == string(substr) { if !skip_empty || i - l > 0 { buf[n] = s[l:i] n += 1 } i += sublen l = i continue second_pass } } _, skip := utf8.decode_rune(s[i:]) i += skip } if !skip_empty || len(s) - l > 0 { buf[n] = s[l:] } return buf } split_multi_iterator :: proc(s: ^[]byte, substrs: [][]byte, skip_empty := false) -> ([]byte, bool) #no_bounds_check { if s == nil || s^ == nil || len(substrs) <= 0 { return nil, false } sublen := len(substrs[0]) for substr in substrs[1:] { sublen = min(sublen, len(substr)) } shared := len(s) - sublen if shared <= 0 { return nil, false } // index, last i, l := 0, 0 loop: for i <= shared { for substr in substrs { if string(s[i:i+sublen]) == string(substr) { if !skip_empty || i - l > 0 { res := s[l:i] s^ = s[i:] return res, true } i += sublen l = i continue loop } } _, skip := utf8.decode_rune(s[i:]) i += skip } if !skip_empty || len(s) - l > 0 { res := s[l:] s^ = s[len(s):] return res, true } return nil, false } // Scrubs invalid utf-8 characters and replaces them with the replacement string // Adjacent invalid bytes are only replaced once scrub :: proc(s: []byte, replacement: []byte, allocator := context.allocator) -> []byte { str := s b: Buffer buffer_init_allocator(&b, 0, len(s), allocator) has_error := false cursor := 0 origin := str for len(str) > 0 { r, w := utf8.decode_rune(str) if r == utf8.RUNE_ERROR { if !has_error { has_error = true buffer_write(&b, origin[:cursor]) } } else if has_error { has_error = false buffer_write(&b, replacement) origin = origin[cursor:] cursor = 0 } cursor += w str = str[w:] } return buffer_to_bytes(&b) } reverse :: proc(s: []byte, allocator := context.allocator) -> []byte { str := s n := len(str) buf := make([]byte, n) i := n for len(str) > 0 { _, w := utf8.decode_rune(str) i -= w copy(buf[i:], str[:w]) str = str[w:] } return buf } expand_tabs :: proc(s: []byte, tab_size: int, allocator := context.allocator) -> []byte { if tab_size <= 0 { panic("tab size must be positive") } if s == nil { return nil } b: Buffer buffer_init_allocator(&b, 0, len(s), allocator) str := s column: int for len(str) > 0 { r, w := utf8.decode_rune(str) if r == '\t' { expand := tab_size - column%tab_size for i := 0; i < expand; i += 1 { buffer_write_byte(&b, ' ') } column += expand } else { if r == '\n' { column = 0 } else { column += w } buffer_write_rune(&b, r) } str = str[w:] } return buffer_to_bytes(&b) } partition :: proc(str, sep: []byte) -> (head, match, tail: []byte) { i := index(str, sep) if i == -1 { head = str return } head = str[:i] match = str[i:i+len(sep)] tail = str[i+len(sep):] return } center_justify :: centre_justify // NOTE(bill): Because Americans exist // centre_justify returns a byte slice with a pad byte slice at boths sides if the str's rune length is smaller than length centre_justify :: proc(str: []byte, length: int, pad: []byte, allocator := context.allocator) -> []byte { n := rune_count(str) if n >= length || pad == nil { return clone(str, allocator) } remains := length-1 pad_len := rune_count(pad) b: Buffer buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator) write_pad_string(&b, pad, pad_len, remains/2) buffer_write(&b, str) write_pad_string(&b, pad, pad_len, (remains+1)/2) return buffer_to_bytes(&b) } // left_justify returns a byte slice with a pad byte slice at left side if the str's rune length is smaller than length left_justify :: proc(str: []byte, length: int, pad: []byte, allocator := context.allocator) -> []byte { n := rune_count(str) if n >= length || pad == nil { return clone(str, allocator) } remains := length-1 pad_len := rune_count(pad) b: Buffer buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator) buffer_write(&b, str) write_pad_string(&b, pad, pad_len, remains) return buffer_to_bytes(&b) } // right_justify returns a byte slice with a pad byte slice at right side if the str's rune length is smaller than length right_justify :: proc(str: []byte, length: int, pad: []byte, allocator := context.allocator) -> []byte { n := rune_count(str) if n >= length || pad == nil { return clone(str, allocator) } remains := length-1 pad_len := rune_count(pad) b: Buffer buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator) write_pad_string(&b, pad, pad_len, remains) buffer_write(&b, str) return buffer_to_bytes(&b) } @private write_pad_string :: proc(b: ^Buffer, pad: []byte, pad_len, remains: int) { repeats := remains / pad_len for i := 0; i < repeats; i += 1 { buffer_write(b, pad) } n := remains % pad_len p := pad for i := 0; i < n; i += 1 { r, width := utf8.decode_rune(p) buffer_write_rune(b, r) p = p[width:] } } // fields splits the byte slice s around each instance of one or more consecutive white space character, defined by unicode.is_space // returning a slice of subslices of s or an empty slice if s only contains white space fields :: proc(s: []byte, allocator := context.allocator) -> [][]byte #no_bounds_check { n := 0 was_space := 1 set_bits := u8(0) // check to see for i in 0..= utf8.RUNE_SELF { return fields_proc(s, unicode.is_space, allocator) } if n == 0 { return nil } a := make([][]byte, n, allocator) na := 0 field_start := 0 i := 0 for i < len(s) && _ascii_space[s[i]] != 0 { i += 1 } field_start = i for i < len(s) { if _ascii_space[s[i]] == 0 { i += 1 continue } a[na] = s[field_start : i] na += 1 i += 1 for i < len(s) && _ascii_space[s[i]] != 0 { i += 1 } field_start = i } if field_start < len(s) { a[na] = s[field_start:] } return a } // fields_proc splits the byte slice s at each run of unicode code points `ch` satisfying f(ch) // returns a slice of subslices of s // If all code points in s satisfy f(ch) or string is empty, an empty slice is returned // // fields_proc makes no guarantee about the order in which it calls f(ch) // it assumes that `f` always returns the same value for a given ch fields_proc :: proc(s: []byte, f: proc(rune) -> bool, allocator := context.allocator) -> [][]byte #no_bounds_check { subslices := make([dynamic][]byte, 0, 32, allocator) start, end := -1, -1 for r, offset in string(s) { end = offset if f(r) { if start >= 0 { append(&subslices, s[start : end]) // -1 could be used, but just speed it up through bitwise not // gotta love 2's complement start = ~start } } else { if start < 0 { start = end } } } if start >= 0 { append(&subslices, s[start : len(s)]) } return subslices[:] } // alias returns true iff a and b have a non-zero length, and any part of // a overlaps with b. alias :: proc "contextless" (a, b: []byte) -> bool { a_len, b_len := len(a), len(b) if a_len == 0 || b_len == 0 { return false } a_start, b_start := uintptr(raw_data(a)), uintptr(raw_data(b)) a_end, b_end := a_start + uintptr(a_len-1), b_start + uintptr(b_len-1) return a_start <= b_end && b_start <= a_end } // alias_inexactly returns true iff a and b have a non-zero length, // the base pointer of a and b are NOT equal, and any part of a overlaps // with b (ie: `alias(a, b)` with an exception that returns false for // `a == b`, `b = a[:len(a)-69]` and similar conditions). alias_inexactly :: proc "contextless" (a, b: []byte) -> bool { if raw_data(a) == raw_data(b) { return false } return alias(a, b) }