#+build darwin package net /* Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures. For other protocols and their features, see subdirectories of this package. */ /* Copyright 2022 Tetralux Copyright 2022 Colin Davidson Copyright 2022 Jeroen van Rijn . Copyright 2024 Feoramund . Made available under Odin's BSD-3 license. List of contributors: Tetralux: Initial implementation Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver Jeroen van Rijn: Cross platform unification, code style, documentation Feoramund: FreeBSD platform code */ import "core:c" import "core:sys/posix" import "core:time" Socket_Option :: enum c.int { Broadcast = c.int(posix.Sock_Option.BROADCAST), Reuse_Address = c.int(posix.Sock_Option.REUSEADDR), Keep_Alive = c.int(posix.Sock_Option.KEEPALIVE), Out_Of_Bounds_Data_Inline = c.int(posix.Sock_Option.OOBINLINE), TCP_Nodelay = c.int(posix.TCP_NODELAY), Linger = c.int(posix.Sock_Option.LINGER), Receive_Buffer_Size = c.int(posix.Sock_Option.RCVBUF), Send_Buffer_Size = c.int(posix.Sock_Option.SNDBUF), Receive_Timeout = c.int(posix.Sock_Option.RCVTIMEO), Send_Timeout = c.int(posix.Sock_Option.SNDTIMEO), } Shutdown_Manner :: enum c.int { Receive = c.int(posix.SHUT_RD), Send = c.int(posix.SHUT_WR), Both = c.int(posix.SHUT_RDWR), } @(private) _create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (socket: Any_Socket, err: Create_Socket_Error) { c_type: posix.Sock c_protocol: posix.Protocol c_family: posix.AF switch family { case .IP4: c_family = .INET case .IP6: c_family = .INET6 case: unreachable() } switch protocol { case .TCP: c_type = .STREAM; c_protocol = .TCP case .UDP: c_type = .DGRAM; c_protocol = .UDP case: unreachable() } sock := posix.socket(c_family, c_type, c_protocol) if sock < 0 { err = _create_socket_error() return } switch protocol { case .TCP: return TCP_Socket(sock), nil case .UDP: return UDP_Socket(sock), nil case: unreachable() } } @(private) _dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := DEFAULT_TCP_OPTIONS) -> (skt: TCP_Socket, err: Network_Error) { if endpoint.port == 0 { return 0, .Port_Required } family := family_from_endpoint(endpoint) sock := create_socket(family, .TCP) or_return skt = sock.(TCP_Socket) // NOTE(tetra): This is so that if we crash while the socket is open, we can // bypass the cooldown period, and allow the next run of the program to // use the same address immediately. _ = set_option(skt, .Reuse_Address, true) sockaddr := _endpoint_to_sockaddr(endpoint) if posix.connect(posix.FD(skt), (^posix.sockaddr)(&sockaddr), posix.socklen_t(sockaddr.ss_len)) != .OK { err = _dial_error() close(skt) } return } @(private) _bind :: proc(skt: Any_Socket, ep: Endpoint) -> (err: Bind_Error) { sockaddr := _endpoint_to_sockaddr(ep) s := any_socket_to_socket(skt) if posix.bind(posix.FD(s), (^posix.sockaddr)(&sockaddr), posix.socklen_t(sockaddr.ss_len)) != .OK { err = _bind_error() } return } @(private) _listen_tcp :: proc(interface_endpoint: Endpoint, backlog := 1000) -> (skt: TCP_Socket, err: Network_Error) { assert(backlog > 0 && i32(backlog) < max(i32)) family := family_from_endpoint(interface_endpoint) sock := create_socket(family, .TCP) or_return skt = sock.(TCP_Socket) defer if err != nil { close(skt) } // NOTE(tetra): This is so that if we crash while the socket is open, we can // bypass the cooldown period, and allow the next run of the program to // use the same address immediately. // _ = set_option(sock, .Reuse_Address, true) bind(sock, interface_endpoint) or_return if posix.listen(posix.FD(skt), i32(backlog)) != .OK { err = _listen_error() } return } @(private) _bound_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Socket_Info_Error) { addr: posix.sockaddr_storage addr_len := posix.socklen_t(size_of(addr)) if posix.getsockname(posix.FD(any_socket_to_socket(sock)), (^posix.sockaddr)(&addr), &addr_len) != .OK { err = _socket_info_error() return } ep = _sockaddr_to_endpoint(&addr) return } @(private) _peer_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Socket_Info_Error) { addr: posix.sockaddr_storage addr_len := posix.socklen_t(size_of(addr)) if posix.getpeername(posix.FD(any_socket_to_socket(sock)), (^posix.sockaddr)(&addr), &addr_len) != .OK { err = _socket_info_error() return } ep = _sockaddr_to_endpoint(&addr) return } @(private) _accept_tcp :: proc(sock: TCP_Socket, options := DEFAULT_TCP_OPTIONS) -> (client: TCP_Socket, source: Endpoint, err: Accept_Error) { addr: posix.sockaddr_storage addr_len := posix.socklen_t(size_of(addr)) client_sock := posix.accept(posix.FD(sock), (^posix.sockaddr)(&addr), &addr_len) if client_sock < 0 { err = _accept_error() return } client = TCP_Socket(client_sock) source = _sockaddr_to_endpoint(&addr) return } @(private) _close :: proc(skt: Any_Socket) { s := any_socket_to_socket(skt) posix.close(posix.FD(s)) } @(private) _recv_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_read: int, err: TCP_Recv_Error) { if len(buf) <= 0 { return } res := posix.recv(posix.FD(skt), raw_data(buf), len(buf), {}) if res < 0 { err = _tcp_recv_error() return } return int(res), nil } @(private) _recv_udp :: proc(skt: UDP_Socket, buf: []byte) -> (bytes_read: int, remote_endpoint: Endpoint, err: UDP_Recv_Error) { if len(buf) <= 0 { return } from: posix.sockaddr_storage fromsize := posix.socklen_t(size_of(from)) res := posix.recvfrom(posix.FD(skt), raw_data(buf), len(buf), {}, (^posix.sockaddr)(&from), &fromsize) if res < 0 { err = _udp_recv_error() return } bytes_read = int(res) remote_endpoint = _sockaddr_to_endpoint(&from) return } @(private) _send_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_written: int, err: TCP_Send_Error) { for bytes_written < len(buf) { limit := min(int(max(i32)), len(buf) - bytes_written) remaining := buf[bytes_written:][:limit] res := posix.send(posix.FD(skt), raw_data(remaining), len(remaining), {.NOSIGNAL}) if res < 0 { err = _tcp_send_error() return } bytes_written += int(res) } return } @(private) _send_udp :: proc(skt: UDP_Socket, buf: []byte, to: Endpoint) -> (bytes_written: int, err: UDP_Send_Error) { toaddr := _endpoint_to_sockaddr(to) for bytes_written < len(buf) { limit := min(1<<31, len(buf) - bytes_written) remaining := buf[bytes_written:][:limit] res := posix.sendto(posix.FD(skt), raw_data(remaining), len(remaining), {.NOSIGNAL}, (^posix.sockaddr)(&toaddr), posix.socklen_t(toaddr.ss_len)) if res < 0 { err = _udp_send_error() return } bytes_written += int(res) } return } @(private) _shutdown :: proc(skt: Any_Socket, manner: Shutdown_Manner) -> (err: Shutdown_Error) { s := any_socket_to_socket(skt) if posix.shutdown(posix.FD(s), posix.Shut(manner)) != .OK { err = _shutdown_error() } return } @(private) _set_option :: proc(s: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Socket_Option_Error { level := posix.SOL_SOCKET if option != .TCP_Nodelay else posix.IPPROTO_TCP // NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool; // it _has_ to be a b32. // I haven't tested if you can give more than that. bool_value: b32 int_value: posix.socklen_t timeval_value: posix.timeval ptr: rawptr len: posix.socklen_t switch option { case .Broadcast, .Reuse_Address, .Keep_Alive, .Out_Of_Bounds_Data_Inline, .TCP_Nodelay: // TODO: verify whether these are options or not on Linux // .Broadcast, // .Conditional_Accept, // .Dont_Linger: switch x in value { case bool, b8: x2 := x bool_value = b32((^bool)(&x2)^) case b16: bool_value = b32(x) case b32: bool_value = b32(x) case b64: bool_value = b32(x) case: panic("set_option() value must be a boolean here", loc) } ptr = &bool_value len = size_of(bool_value) case .Linger, .Send_Timeout, .Receive_Timeout: t := value.(time.Duration) or_else panic("set_option() value must be a time.Duration here", loc) micros := i64(time.duration_microseconds(t)) timeval_value.tv_usec = posix.suseconds_t(micros % 1e6) timeval_value.tv_sec = posix.time_t(micros - i64(timeval_value.tv_usec)) / 1e6 ptr = &timeval_value len = size_of(timeval_value) case .Receive_Buffer_Size, .Send_Buffer_Size: // TODO: check for out of range values and return .Value_Out_Of_Range? switch i in value { case i8, u8: i2 := i; int_value = posix.socklen_t((^u8)(&i2)^) case i16, u16: i2 := i; int_value = posix.socklen_t((^u16)(&i2)^) case i32, u32: i2 := i; int_value = posix.socklen_t((^u32)(&i2)^) case i64, u64: i2 := i; int_value = posix.socklen_t((^u64)(&i2)^) case i128, u128: i2 := i; int_value = posix.socklen_t((^u128)(&i2)^) case int, uint: i2 := i; int_value = posix.socklen_t((^uint)(&i2)^) case: panic("set_option() value must be an integer here", loc) } ptr = &int_value len = size_of(int_value) } skt := any_socket_to_socket(s) if posix.setsockopt(posix.FD(skt), i32(level), posix.Sock_Option(option), ptr, len) != .OK { return _socket_option_error() } return nil } @(private) _set_blocking :: proc(socket: Any_Socket, should_block: bool) -> (err: Set_Blocking_Error) { socket := any_socket_to_socket(socket) flags_ := posix.fcntl(posix.FD(socket), .GETFL, 0) if flags_ < 0 { return _set_blocking_error() } flags := transmute(posix.O_Flags)flags_ if should_block { flags -= {.NONBLOCK} } else { flags += {.NONBLOCK} } if posix.fcntl(posix.FD(socket), .SETFL, flags) < 0 { return _set_blocking_error() } return nil } @private _endpoint_to_sockaddr :: proc(ep: Endpoint) -> (sockaddr: posix.sockaddr_storage) { switch a in ep.address { case IP4_Address: (^posix.sockaddr_in)(&sockaddr)^ = posix.sockaddr_in { sin_port = u16be(ep.port), sin_addr = transmute(posix.in_addr)a, sin_family = .INET, sin_len = size_of(posix.sockaddr_in), } return case IP6_Address: (^posix.sockaddr_in6)(&sockaddr)^ = posix.sockaddr_in6 { sin6_port = u16be(ep.port), sin6_addr = transmute(posix.in6_addr)a, sin6_family = .INET6, sin6_len = size_of(posix.sockaddr_in6), } return } unreachable() } @private _sockaddr_to_endpoint :: proc(native_addr: ^posix.sockaddr_storage) -> (ep: Endpoint) { #partial switch native_addr.ss_family { case .INET: addr := cast(^posix.sockaddr_in)native_addr port := int(addr.sin_port) ep = Endpoint { address = IP4_Address(transmute([4]byte)addr.sin_addr), port = port, } case .INET6: addr := cast(^posix.sockaddr_in6)native_addr port := int(addr.sin6_port) ep = Endpoint { address = IP6_Address(transmute([8]u16be)addr.sin6_addr), port = port, } case: panic("native_addr is neither IP4 or IP6 address") } return } @(private) _sockaddr_basic_to_endpoint :: proc(native_addr: ^posix.sockaddr) -> (ep: Endpoint) { #partial switch native_addr.sa_family { case .INET: addr := cast(^posix.sockaddr_in)native_addr port := int(addr.sin_port) ep = Endpoint { address = IP4_Address(transmute([4]byte)addr.sin_addr), port = port, } case .INET6: addr := cast(^posix.sockaddr_in6)native_addr port := int(addr.sin6_port) ep = Endpoint { address = IP6_Address(transmute([8]u16be)addr.sin6_addr), port = port, } case: panic("native_addr is neither IP4 or IP6 address") } return }