package mem import "core:runtime" DEFAULT_ALIGNMENT :: 2*align_of(rawptr); Allocator_Mode :: enum byte { Alloc, Free, Free_All, Resize, } Allocator_Proc :: #type proc(allocator_data: rawptr, mode: Allocator_Mode, size, alignment: int, old_memory: rawptr, old_size: int, flags: u64 = 0, location := #caller_location) -> rawptr; Allocator :: struct { procedure: Allocator_Proc, data: rawptr, } alloc_with_allocator :: inline proc(a: Allocator, size: int, alignment: int = DEFAULT_ALIGNMENT, loc := #caller_location) -> rawptr { if size == 0 do return nil; return a.procedure(a.data, Allocator_Mode.Alloc, size, alignment, nil, 0, 0, loc); } alloc :: inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, loc := #caller_location) -> rawptr { return alloc_with_allocator(context.allocator, size, alignment, loc); } free_ptr_with_allocator :: inline proc(a: Allocator, ptr: rawptr, loc := #caller_location) { if ptr == nil do return; if a.procedure == nil do return; a.procedure(a.data, Allocator_Mode.Free, 0, 0, ptr, 0, 0, loc); } free :: inline proc(ptr: rawptr, loc := #caller_location) do free_ptr_with_allocator(context.allocator, ptr, loc); free_all_with_allocator :: inline proc(a: Allocator, loc := #caller_location) { a.procedure(a.data, Allocator_Mode.Free_All, 0, 0, nil, 0, 0, loc); } free_all :: inline proc(loc := #caller_location) { free_all_with_allocator(context.allocator, loc); } resize_with_allocator :: inline proc(a: Allocator, ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, loc := #caller_location) -> rawptr { if new_size == 0 { free_ptr_with_allocator(a, ptr, loc); return nil; } return a.procedure(a.data, Allocator_Mode.Resize, new_size, alignment, ptr, old_size, 0, loc); } resize :: inline proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, loc := #caller_location) -> rawptr { return resize_with_allocator(context.allocator, ptr, old_size, new_size, alignment, loc); } delete_string :: proc(str: string, loc := #caller_location) { free(raw_data(str), loc); } delete_cstring :: proc(str: cstring, loc := #caller_location) { free((^byte)(str), loc); } delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) { free(raw_data(array), loc); } delete_slice :: proc(array: $T/[]$E, loc := #caller_location) { free(raw_data(array), loc); } delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) { raw := transmute(Raw_Map)m; delete_dynamic_array(raw.hashes, loc); free(raw.entries.data, loc); } delete :: proc[ delete_string, delete_cstring, delete_dynamic_array, delete_slice, delete_map, ]; new :: inline proc(T: type, loc := #caller_location) -> ^T { ptr := (^T)(alloc(size_of(T), align_of(T), loc)); if ptr != nil do ptr^ = T{}; return ptr; } new_clone :: inline proc(data: $T, loc := #caller_location) -> ^T { ptr := (^T)(alloc(size_of(T), align_of(T), loc)); if ptr != nil do ptr^ = data; return ptr; } new_with_allocator :: inline proc(a: Allocator, T: type, loc := #caller_location) -> ^T { ptr := (^T)(alloc_with_allocator(a, size_of(T), align_of(T), loc)); if ptr != nil do ptr^ = T{}; return ptr; } new_clone_with_allocator :: inline proc(a: Allocator, data: $T, loc := #caller_location) -> ^T { ptr := (^T)(alloc_with_allocator(a, size_of(T), align_of(T), loc)); if ptr != nil do ptr^ = data; return ptr; } make_slice :: proc(T: type/[]$E, auto_cast len: int, loc := #caller_location) -> T { runtime.make_slice_error_loc(loc, len); data := alloc(size_of(E)*len, align_of(E)); s := Raw_Slice{data, len}; return transmute(T)s; } make_dynamic_array :: proc(T: type/[dynamic]$E, loc := #caller_location) -> T { return make_dynamic_array_len_cap(T, 0, 16, loc); } make_dynamic_array_len :: proc(T: type/[dynamic]$E, auto_cast len: int, loc := #caller_location) -> T { return make_dynamic_array_len_cap(T, len, len, loc); } make_dynamic_array_len_cap :: proc(T: type/[dynamic]$E, auto_cast len: int, auto_cast cap: int, loc := #caller_location) -> T { runtime.make_dynamic_array_error_loc(loc, len, cap); data := alloc(size_of(E)*cap, align_of(E)); s := Raw_Dynamic_Array{data, len, cap, context.allocator}; return transmute(T)s; } make_map :: proc(T: type/map[$K]$E, auto_cast cap: int = 16, loc := #caller_location) -> T { runtime.make_map_expr_error_loc(loc, cap); m: T; reserve_map(&m, cap); return m; } make :: proc[ make_slice, make_dynamic_array, make_dynamic_array_len, make_dynamic_array_len_cap, make_map, ]; default_resize_align :: proc(old_memory: rawptr, old_size, new_size, alignment: int, loc := #caller_location) -> rawptr { if old_memory == nil do return alloc(new_size, alignment, loc); if new_size == 0 { free(old_memory, loc); return nil; } if new_size == old_size do return old_memory; new_memory := alloc(new_size, alignment, loc); if new_memory == nil do return nil; copy(new_memory, old_memory, min(old_size, new_size));; free(old_memory, loc); return new_memory; } nil_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode, size, alignment: int, old_memory: rawptr, old_size: int, flags: u64 = 0, loc := #caller_location) -> rawptr { return nil; } nil_allocator :: proc() -> Allocator { return Allocator{ procedure = nil_allocator_proc, data = nil, }; } Pool :: struct { block_size: int, out_band_size: int, alignment: int, unused_blocks: [dynamic]rawptr, used_blocks: [dynamic]rawptr, out_band_allocations: [dynamic]rawptr, current_block: rawptr, current_pos: rawptr, bytes_left: int, block_allocator: Allocator, } POOL_BLOCK_SIZE_DEFAULT :: 65536; POOL_OUT_OF_BAND_SIZE_DEFAULT :: 6554; pool_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode, size, alignment: int, old_memory: rawptr, old_size: int, flags: u64 = 0, loc := #caller_location) -> rawptr { pool := (^Pool)(allocator_data); switch mode { case Allocator_Mode.Alloc: return pool_alloc(pool, size); case Allocator_Mode.Free: panic("Allocator_Mode.Free is not supported for a pool"); case Allocator_Mode.Free_All: pool_free_all(pool); case Allocator_Mode.Resize: panic("Allocator_Mode.Resize is not supported for a pool"); } return nil; } pool_allocator :: proc(pool: ^Pool) -> Allocator { return Allocator{ procedure = pool_allocator_proc, data = pool, }; } pool_init :: proc(pool: ^Pool, block_allocator := Allocator{} , array_allocator := Allocator{}, block_size := POOL_BLOCK_SIZE_DEFAULT, out_band_size := POOL_OUT_OF_BAND_SIZE_DEFAULT, alignment := 8) { pool.block_size = block_size; pool.out_band_size = out_band_size; pool.alignment = alignment; if block_allocator.procedure == nil { block_allocator = context.allocator; } if array_allocator.procedure == nil { array_allocator = context.allocator; } pool.block_allocator = block_allocator; pool.out_band_allocations.allocator = array_allocator; pool. unused_blocks.allocator = array_allocator; pool. used_blocks.allocator = array_allocator; } pool_destroy :: proc(using pool: ^Pool) { pool_free_all(pool); delete(unused_blocks); delete(used_blocks); zero(pool, size_of(pool^)); } pool_alloc :: proc(using pool: ^Pool, bytes: int) -> rawptr { cycle_new_block :: proc(using pool: ^Pool) { if block_allocator.procedure == nil { panic("You must call pool_init on a Pool before using it"); } if current_block != nil { append(&used_blocks, current_block); } new_block: rawptr; if len(unused_blocks) > 0 { new_block = pop(&unused_blocks); } else { new_block = block_allocator.procedure(block_allocator.data, Allocator_Mode.Alloc, block_size, alignment, nil, 0); } bytes_left = block_size; current_pos = new_block; current_block = new_block; } extra := alignment - (bytes % alignment); bytes += extra; if bytes >= out_band_size { assert(block_allocator.procedure != nil); memory := block_allocator.procedure(block_allocator.data, Allocator_Mode.Alloc, block_size, alignment, nil, 0); if memory != nil { append(&out_band_allocations, (^byte)(memory)); } return memory; } if bytes_left < bytes { cycle_new_block(pool); if current_block == nil { return nil; } } memory := current_pos; current_pos = ptr_offset((^byte)(current_pos), bytes); bytes_left -= bytes; return memory; } pool_reset :: proc(using pool: ^Pool) { if current_block != nil { append(&unused_blocks, current_block); current_block = nil; } for block in used_blocks { append(&unused_blocks, block); } clear(&used_blocks); for a in out_band_allocations { free_ptr_with_allocator(block_allocator, a); } clear(&out_band_allocations); } pool_free_all :: proc(using pool: ^Pool) { pool_reset(pool); for block in unused_blocks { free_ptr_with_allocator(block_allocator, block); } clear(&unused_blocks); }