#+build windows package net /* Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures. For other protocols and their features, see subdirectories of this package. */ /* Copyright 2022 Tetralux Copyright 2022 Colin Davidson Copyright 2022 Jeroen van Rijn . Copyright 2024 Feoramund . Made available under Odin's BSD-3 license. List of contributors: Tetralux: Initial implementation Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver Jeroen van Rijn: Cross platform unification, code style, documentation Feoramund: FreeBSD platform code */ import "core:c" import win "core:sys/windows" import "core:time" Socket_Option :: enum c.int { // bool: Whether the address that this socket is bound to can be reused by other sockets. // This allows you to bypass the cooldown period if a program dies while the socket is bound. Reuse_Address = win.SO_REUSEADDR, // bool: Whether other programs will be inhibited from binding the same endpoint as this socket. Exclusive_Addr_Use = win.SO_EXCLUSIVEADDRUSE, // bool: When true, keepalive packets will be automatically be sent for this connection. TODO: verify this understanding Keep_Alive = win.SO_KEEPALIVE, // bool: When true, client connections will immediately be sent a TCP/IP RST response, rather than being accepted. Conditional_Accept = win.SO_CONDITIONAL_ACCEPT, // bool: If true, when the socket is closed, but data is still waiting to be sent, discard that data. Dont_Linger = win.SO_DONTLINGER, // bool: When true, 'out-of-band' data sent over the socket will be read by a normal net.recv() call, the same as normal 'in-band' data. Out_Of_Bounds_Data_Inline = win.SO_OOBINLINE, // bool: When true, disables send-coalescing, therefore reducing latency. TCP_Nodelay = win.TCP_NODELAY, // win.LINGER: Customizes how long (if at all) the socket will remain open when there // is some remaining data waiting to be sent, and net.close() is called. Linger = win.SO_LINGER, // win.DWORD: The size, in bytes, of the OS-managed receive-buffer for this socket. Receive_Buffer_Size = win.SO_RCVBUF, // win.DWORD: The size, in bytes, of the OS-managed send-buffer for this socket. Send_Buffer_Size = win.SO_SNDBUF, // win.DWORD: For blocking sockets, the time in milliseconds to wait for incoming data to be received, before giving up and returning .Timeout. // For non-blocking sockets, ignored. // Use a value of zero to potentially wait forever. Receive_Timeout = win.SO_RCVTIMEO, // win.DWORD: For blocking sockets, the time in milliseconds to wait for outgoing data to be sent, before giving up and returning .Timeout. // For non-blocking sockets, ignored. // Use a value of zero to potentially wait forever. Send_Timeout = win.SO_SNDTIMEO, // bool: Allow sending to, receiving from, and binding to, a broadcast address. Broadcast = win.SO_BROADCAST, } Shutdown_Manner :: enum c.int { Receive = win.SD_RECEIVE, Send = win.SD_SEND, Both = win.SD_BOTH, } @(init, private) ensure_winsock_initialized :: proc "contextless" () { win.ensure_winsock_initialized() } @(private) _create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (socket: Any_Socket, err: Create_Socket_Error) { c_type, c_protocol, c_family: c.int switch family { case .IP4: c_family = win.AF_INET case .IP6: c_family = win.AF_INET6 case: unreachable() } switch protocol { case .TCP: c_type = win.SOCK_STREAM; c_protocol = win.IPPROTO_TCP case .UDP: c_type = win.SOCK_DGRAM; c_protocol = win.IPPROTO_UDP case: unreachable() } sock := win.socket(c_family, c_type, c_protocol) if sock == win.INVALID_SOCKET { err = _create_socket_error() return } switch protocol { case .TCP: return TCP_Socket(sock), nil case .UDP: return UDP_Socket(sock), nil case: unreachable() } } @(private) _dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := DEFAULT_TCP_OPTIONS) -> (socket: TCP_Socket, err: Network_Error) { if endpoint.port == 0 { err = .Port_Required return } family := family_from_endpoint(endpoint) sock := create_socket(family, .TCP) or_return socket = sock.(TCP_Socket) // NOTE(tetra): This is so that if we crash while the socket is open, we can // bypass the cooldown period, and allow the next run of the program to // use the same address immediately. _ = set_option(socket, .Reuse_Address, true) sockaddr := _endpoint_to_sockaddr(endpoint) res := win.connect(win.SOCKET(socket), &sockaddr, size_of(sockaddr)) if res < 0 { err = _dial_error() close(socket) return {}, err } if options.no_delay { _ = set_option(sock, .TCP_Nodelay, true) // NOTE(tetra): Not vital to succeed; error ignored } return } @(private) _bind :: proc(socket: Any_Socket, ep: Endpoint) -> (err: Bind_Error) { sockaddr := _endpoint_to_sockaddr(ep) sock := any_socket_to_socket(socket) res := win.bind(win.SOCKET(sock), &sockaddr, size_of(sockaddr)) if res < 0 { err = _bind_error() } return } @(private) _listen_tcp :: proc(interface_endpoint: Endpoint, backlog := 1000) -> (socket: TCP_Socket, err: Network_Error) { family := family_from_endpoint(interface_endpoint) sock := create_socket(family, .TCP) or_return socket = sock.(TCP_Socket) defer if err != nil { close(socket) } // NOTE(tetra): While I'm not 100% clear on it, my understanding is that this will // prevent hijacking of the server's endpoint by other applications. set_option(socket, .Exclusive_Addr_Use, true) or_return bind(sock, interface_endpoint) or_return if res := win.listen(win.SOCKET(socket), i32(backlog)); res == win.SOCKET_ERROR { err = _listen_error() } return } @(private) _bound_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Socket_Info_Error) { sockaddr: win.SOCKADDR_STORAGE_LH sockaddrlen := c.int(size_of(sockaddr)) if win.getsockname(win.SOCKET(any_socket_to_socket(sock)), &sockaddr, &sockaddrlen) == win.SOCKET_ERROR { err = _socket_info_error() return } ep = _sockaddr_to_endpoint(&sockaddr) return } @(private) _peer_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Socket_Info_Error) { sockaddr: win.SOCKADDR_STORAGE_LH sockaddrlen := c.int(size_of(sockaddr)) res := win.getpeername(win.SOCKET(any_socket_to_socket(sock)), &sockaddr, &sockaddrlen) if res < 0 { err = _socket_info_error() return } ep = _sockaddr_to_endpoint(&sockaddr) return } @(private) _accept_tcp :: proc(sock: TCP_Socket, options := DEFAULT_TCP_OPTIONS) -> (client: TCP_Socket, source: Endpoint, err: Accept_Error) { for { sockaddr: win.SOCKADDR_STORAGE_LH sockaddrlen := c.int(size_of(sockaddr)) client_sock := win.accept(win.SOCKET(sock), &sockaddr, &sockaddrlen) if int(client_sock) == win.SOCKET_ERROR { e := win.WSAGetLastError() if e == win.WSAECONNRESET { // NOTE(tetra): Reset just means that a client that connection immediately lost the connection. // There's no need to concern the user with this, so we handle it for them. // On Linux, this error isn't possible in the first place according the man pages, so we also // can do this to match the behaviour. continue } err = _accept_error() return } client = TCP_Socket(client_sock) source = _sockaddr_to_endpoint(&sockaddr) if options.no_delay { _ = set_option(client, .TCP_Nodelay, true) // NOTE(tetra): Not vital to succeed; error ignored } return } } @(private) _close :: proc(socket: Any_Socket) { if s := any_socket_to_socket(socket); s != {} { win.closesocket(win.SOCKET(s)) } } @(private) _recv_tcp :: proc(socket: TCP_Socket, buf: []byte) -> (bytes_read: int, err: TCP_Recv_Error) { if len(buf) <= 0 { return } res := win.recv(win.SOCKET(socket), raw_data(buf), c.int(len(buf)), 0) if res < 0 { err = _tcp_recv_error() return } return int(res), nil } @(private) _recv_udp :: proc(socket: UDP_Socket, buf: []byte) -> (bytes_read: int, remote_endpoint: Endpoint, err: UDP_Recv_Error) { if len(buf) <= 0 { return } from: win.SOCKADDR_STORAGE_LH fromsize := c.int(size_of(from)) res := win.recvfrom(win.SOCKET(socket), raw_data(buf), c.int(len(buf)), 0, &from, &fromsize) if res < 0 { err = _udp_recv_error() return } bytes_read = int(res) remote_endpoint = _sockaddr_to_endpoint(&from) return } @(private) _send_tcp :: proc(socket: TCP_Socket, buf: []byte) -> (bytes_written: int, err: TCP_Send_Error) { for bytes_written < len(buf) { limit := min(int(max(i32)), len(buf) - bytes_written) remaining := buf[bytes_written:] res := win.send(win.SOCKET(socket), raw_data(remaining), c.int(limit), 0) if res < 0 { err = _tcp_send_error() return } bytes_written += int(res) } return } @(private) _send_udp :: proc(socket: UDP_Socket, buf: []byte, to: Endpoint) -> (bytes_written: int, err: UDP_Send_Error) { toaddr := _endpoint_to_sockaddr(to) for bytes_written < len(buf) { limit := min(int(max(i32)), len(buf) - bytes_written) remaining := buf[bytes_written:] res := win.sendto(win.SOCKET(socket), raw_data(remaining), c.int(limit), 0, &toaddr, size_of(toaddr)) if res < 0 { err = _udp_send_error() return } bytes_written += int(res) } return } @(private) _shutdown :: proc(socket: Any_Socket, manner: Shutdown_Manner) -> (err: Shutdown_Error) { s := any_socket_to_socket(socket) res := win.shutdown(win.SOCKET(s), c.int(manner)) if res < 0 { return _shutdown_error() } return } @(private) _set_option :: proc(s: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Socket_Option_Error { level := win.SOL_SOCKET if option != .TCP_Nodelay else win.IPPROTO_TCP bool_value: b32 int_value: i32 linger_value: win.LINGER ptr: rawptr len: c.int switch option { case .Reuse_Address, .Exclusive_Addr_Use, .Keep_Alive, .Out_Of_Bounds_Data_Inline, .TCP_Nodelay, .Broadcast, .Conditional_Accept, .Dont_Linger: switch x in value { case bool, b8: x2 := x bool_value = b32((^bool)(&x2)^) case b16: bool_value = b32(x) case b32: bool_value = b32(x) case b64: bool_value = b32(x) case: panic("set_option() value must be a boolean here", loc) } ptr = &bool_value len = size_of(bool_value) case .Linger: t := value.(time.Duration) or_else panic("set_option() value must be a time.Duration here", loc) num_secs := i64(time.duration_seconds(t)) if num_secs > i64(max(u16)) { return .Invalid_Value } linger_value.l_onoff = 1 linger_value.l_linger = c.ushort(num_secs) ptr = &linger_value len = size_of(linger_value) case .Receive_Timeout, .Send_Timeout: t := value.(time.Duration) or_else panic("set_option() value must be a time.Duration here", loc) int_value = i32(time.duration_milliseconds(t)) ptr = &int_value len = size_of(int_value) case .Receive_Buffer_Size, .Send_Buffer_Size: switch i in value { case i8, u8: i2 := i; int_value = c.int((^u8)(&i2)^) case i16, u16: i2 := i; int_value = c.int((^u16)(&i2)^) case i32, u32: i2 := i; int_value = c.int((^u32)(&i2)^) case i64, u64: i2 := i; int_value = c.int((^u64)(&i2)^) case i128, u128: i2 := i; int_value = c.int((^u128)(&i2)^) case int, uint: i2 := i; int_value = c.int((^uint)(&i2)^) case: panic("set_option() value must be an integer here", loc) } ptr = &int_value len = size_of(int_value) } socket := any_socket_to_socket(s) res := win.setsockopt(win.SOCKET(socket), c.int(level), c.int(option), ptr, len) if res < 0 { return _socket_option_error() } return nil } @(private) _set_blocking :: proc(socket: Any_Socket, should_block: bool) -> (err: Set_Blocking_Error) { socket := any_socket_to_socket(socket) arg: win.DWORD = 0 if should_block else 1 res := win.ioctlsocket(win.SOCKET(socket), transmute(win.c_long)win.FIONBIO, &arg) if res == win.SOCKET_ERROR { return _set_blocking_error() } return nil } @(private) _endpoint_to_sockaddr :: proc(ep: Endpoint) -> (sockaddr: win.SOCKADDR_STORAGE_LH) { switch a in ep.address { case IP4_Address: (^win.sockaddr_in)(&sockaddr)^ = win.sockaddr_in { sin_port = u16be(win.USHORT(ep.port)), sin_addr = transmute(win.in_addr) a, sin_family = u16(win.AF_INET), } return case IP6_Address: (^win.sockaddr_in6)(&sockaddr)^ = win.sockaddr_in6 { sin6_port = u16be(win.USHORT(ep.port)), sin6_addr = transmute(win.in6_addr) a, sin6_family = u16(win.AF_INET6), } return } unreachable() } @(private) _sockaddr_to_endpoint :: proc(native_addr: ^win.SOCKADDR_STORAGE_LH) -> (ep: Endpoint) { switch native_addr.ss_family { case u16(win.AF_INET): addr := cast(^win.sockaddr_in) native_addr port := int(addr.sin_port) ep = Endpoint { address = IP4_Address(transmute([4]byte) addr.sin_addr), port = port, } case u16(win.AF_INET6): addr := cast(^win.sockaddr_in6) native_addr port := int(addr.sin6_port) ep = Endpoint { address = IP6_Address(transmute([8]u16be) addr.sin6_addr), port = port, } case: panic("native_addr is neither IP4 or IP6 address") } return }