package math import "intrinsics" _ :: intrinsics; Float_Class :: enum { Normal, // an ordinary nonzero floating point value Subnormal, // a subnormal floating point value Zero, // zero Neg_Zero, // the negative zero NaN, // Not-A-Number (NaN) Inf, // positive infinity Neg_Inf, // negative infinity }; TAU :: 6.28318530717958647692528676655900576; PI :: 3.14159265358979323846264338327950288; E :: 2.71828182845904523536; τ :: TAU; π :: PI; e :: E; SQRT_TWO :: 1.41421356237309504880168872420969808; SQRT_THREE :: 1.73205080756887729352744634150587236; SQRT_FIVE :: 2.23606797749978969640917366873127623; LN2 :: 0.693147180559945309417232121458176568; LN10 :: 2.30258509299404568401799145468436421; MAX_F64_PRECISION :: 16; // Maximum number of meaningful digits after the decimal point for 'f64' MAX_F32_PRECISION :: 8; // Maximum number of meaningful digits after the decimal point for 'f32' MAX_F16_PRECISION :: 4; // Maximum number of meaningful digits after the decimal point for 'f16' RAD_PER_DEG :: TAU/360.0; DEG_PER_RAD :: 360.0/TAU; @(default_calling_convention="none") foreign _ { @(link_name="llvm.sqrt.f16") sqrt_f16 :: proc(x: f16) -> f16 ---; @(link_name="llvm.sqrt.f32") sqrt_f32 :: proc(x: f32) -> f32 ---; @(link_name="llvm.sqrt.f64") sqrt_f64 :: proc(x: f64) -> f64 ---; @(link_name="llvm.sin.f16") sin_f16 :: proc(θ: f16) -> f16 ---; @(link_name="llvm.sin.f32") sin_f32 :: proc(θ: f32) -> f32 ---; @(link_name="llvm.sin.f64") sin_f64 :: proc(θ: f64) -> f64 ---; @(link_name="llvm.cos.f16") cos_f16 :: proc(θ: f16) -> f16 ---; @(link_name="llvm.cos.f32") cos_f32 :: proc(θ: f32) -> f32 ---; @(link_name="llvm.cos.f64") cos_f64 :: proc(θ: f64) -> f64 ---; @(link_name="llvm.pow.f16") pow_f16 :: proc(x, power: f16) -> f16 ---; @(link_name="llvm.pow.f32") pow_f32 :: proc(x, power: f32) -> f32 ---; @(link_name="llvm.pow.f64") pow_f64 :: proc(x, power: f64) -> f64 ---; @(link_name="llvm.fmuladd.f16") fmuladd_f16 :: proc(a, b, c: f16) -> f16 ---; @(link_name="llvm.fmuladd.f32") fmuladd_f32 :: proc(a, b, c: f32) -> f32 ---; @(link_name="llvm.fmuladd.f64") fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---; @(link_name="llvm.log.f16") ln_f16 :: proc(x: f16) -> f16 ---; @(link_name="llvm.log.f32") ln_f32 :: proc(x: f32) -> f32 ---; @(link_name="llvm.log.f64") ln_f64 :: proc(x: f64) -> f64 ---; @(link_name="llvm.exp.f16") exp_f16 :: proc(x: f16) -> f16 ---; @(link_name="llvm.exp.f32") exp_f32 :: proc(x: f32) -> f32 ---; @(link_name="llvm.exp.f64") exp_f64 :: proc(x: f64) -> f64 ---; @(link_name="llvm.ldexp.f16") ldexp_f16 :: proc(val: f16, exp: i32) -> f16 ---; @(link_name="llvm.ldexp.f32") ldexp_f32 :: proc(val: f32, exp: i32) -> f32 ---; @(link_name="llvm.ldexp.f64") ldexp_f64 :: proc(val: f64, exp: i32) -> f64 ---; } sqrt :: proc{sqrt_f16, sqrt_f32, sqrt_f64}; sin :: proc{sin_f16, sin_f32, sin_f64}; cos :: proc{cos_f16, cos_f32, cos_f64}; pow :: proc{pow_f16, pow_f32, pow_f64}; fmuladd :: proc{fmuladd_f16, fmuladd_f32, fmuladd_f64}; ln :: proc{ln_f16, ln_f32, ln_f64}; exp :: proc{exp_f16, exp_f32, exp_f64}; ldexp :: proc{ldexp_f16, ldexp_f32, ldexp_f64}; log_f16 :: proc(x, base: f16) -> f16 { return ln(x) / ln(base); } log_f32 :: proc(x, base: f32) -> f32 { return ln(x) / ln(base); } log_f64 :: proc(x, base: f64) -> f64 { return ln(x) / ln(base); } log :: proc{log_f16, log_f32, log_f64}; log2_f16 :: proc(x: f16) -> f16 { return ln(x)/LN2; } log2_f32 :: proc(x: f32) -> f32 { return ln(x)/LN2; } log2_f64 :: proc(x: f64) -> f64 { return ln(x)/LN2; } log2 :: proc{log2_f16, log2_f32, log2_f64}; log10_f16 :: proc(x: f16) -> f16 { return ln(x)/LN10; } log10_f32 :: proc(x: f32) -> f32 { return ln(x)/LN10; } log10_f64 :: proc(x: f64) -> f64 { return ln(x)/LN10; } log10 :: proc{log10_f16, log10_f32, log10_f64}; tan_f16 :: proc(θ: f16) -> f16 { return sin(θ)/cos(θ); } tan_f32 :: proc(θ: f32) -> f32 { return sin(θ)/cos(θ); } tan_f64 :: proc(θ: f64) -> f64 { return sin(θ)/cos(θ); } tan :: proc{tan_f16, tan_f32, tan_f64}; lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; } saturate :: proc(a: $T) -> (x: T) { return clamp(a, 0, 1); }; unlerp_f16 :: proc(a, b, x: f16) -> (t: f16) { return (x-a)/(b-a); } unlerp_f32 :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); } unlerp_f64 :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); } unlerp :: proc{unlerp_f16, unlerp_f32, unlerp_f64}; wrap :: proc(x, y: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { tmp := mod(x, y); return y + tmp if tmp < 0 else tmp; } angle_diff :: proc(a, b: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { dist := wrap(b - a, TAU); return wrap(dist*2, TAU) - dist; } angle_lerp :: proc(a, b, t: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { return a + angle_diff(a, b) * t; } step :: proc(edge, x: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { return 0 if x < edge else 1; } smoothstep :: proc(edge0, edge1, x: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { t := clamp((x - edge0) / (edge1 - edge0), 0, 1); return t * t * (3 - 2*t); } bias :: proc(t, b: $T) -> T where intrinsics.type_is_numeric(T) { return t / (((1/b) - 2) * (1 - t) + 1); } gain :: proc(t, g: $T) -> T where intrinsics.type_is_numeric(T) { if t < 0.5 { return bias(t*2, g)*0.5; } return bias(t*2 - 1, 1 - g)*0.5 + 0.5; } sign_f16 :: proc(x: f16) -> f16 { return f16(int(0 < x) - int(x < 0)); } sign_f32 :: proc(x: f32) -> f32 { return f32(int(0 < x) - int(x < 0)); } sign_f64 :: proc(x: f64) -> f64 { return f64(int(0 < x) - int(x < 0)); } sign :: proc{sign_f16, sign_f32, sign_f64}; sign_bit_f16 :: proc(x: f16) -> bool { return (transmute(u16)x) & (1<<15) != 0; } sign_bit_f32 :: proc(x: f32) -> bool { return (transmute(u32)x) & (1<<31) != 0; } sign_bit_f64 :: proc(x: f64) -> bool { return (transmute(u64)x) & (1<<63) != 0; } sign_bit :: proc{sign_bit_f16, sign_bit_f32, sign_bit_f64}; copy_sign_f16 :: proc(x, y: f16) -> f16 { ix := transmute(u16)x; iy := transmute(u16)y; ix &= 0x7fff; ix |= iy & 0x8000; return transmute(f16)ix; } copy_sign_f32 :: proc(x, y: f32) -> f32 { ix := transmute(u32)x; iy := transmute(u32)y; ix &= 0x7fff_ffff; ix |= iy & 0x8000_0000; return transmute(f32)ix; } copy_sign_f64 :: proc(x, y: f64) -> f64 { ix := transmute(u64)x; iy := transmute(u64)y; ix &= 0x7fff_ffff_ffff_ffff; ix |= iy & 0x8000_0000_0000_0000; return transmute(f64)ix; } copy_sign :: proc{copy_sign_f16, copy_sign_f32, copy_sign_f64}; to_radians_f16 :: proc(degrees: f16) -> f16 { return degrees * RAD_PER_DEG; } to_radians_f32 :: proc(degrees: f32) -> f32 { return degrees * RAD_PER_DEG; } to_radians_f64 :: proc(degrees: f64) -> f64 { return degrees * RAD_PER_DEG; } to_degrees_f16 :: proc(radians: f16) -> f16 { return radians * DEG_PER_RAD; } to_degrees_f32 :: proc(radians: f32) -> f32 { return radians * DEG_PER_RAD; } to_degrees_f64 :: proc(radians: f64) -> f64 { return radians * DEG_PER_RAD; } to_radians :: proc{to_radians_f16, to_radians_f32, to_radians_f64}; to_degrees :: proc{to_degrees_f16, to_degrees_f32, to_degrees_f64}; trunc_f16 :: proc(x: f16) -> f16 { trunc_internal :: proc(f: f16) -> f16 { mask :: 0x1f; shift :: 16 - 6; bias :: 0xf; if f < 1 { switch { case f < 0: return -trunc_internal(-f); case f == 0: return f; case: return 0; } } x := transmute(u16)f; e := (x >> shift) & mask - bias; if e < shift { x &= ~(1 << (shift-e)) - 1; } return transmute(f16)x; } switch classify(x) { case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf: return x; case .Normal, .Subnormal: // carry on } return trunc_internal(x); } trunc_f32 :: proc(x: f32) -> f32 { trunc_internal :: proc(f: f32) -> f32 { mask :: 0xff; shift :: 32 - 9; bias :: 0x7f; if f < 1 { switch { case f < 0: return -trunc_internal(-f); case f == 0: return f; case: return 0; } } x := transmute(u32)f; e := (x >> shift) & mask - bias; if e < shift { x &= ~(1 << (shift-e)) - 1; } return transmute(f32)x; } switch classify(x) { case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf: return x; case .Normal, .Subnormal: // carry on } return trunc_internal(x); } trunc_f64 :: proc(x: f64) -> f64 { trunc_internal :: proc(f: f64) -> f64 { mask :: 0x7ff; shift :: 64 - 12; bias :: 0x3ff; if f < 1 { switch { case f < 0: return -trunc_internal(-f); case f == 0: return f; case: return 0; } } x := transmute(u64)f; e := (x >> shift) & mask - bias; if e < shift { x &= ~(1 << (shift-e)) - 1; } return transmute(f64)x; } switch classify(x) { case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf: return x; case .Normal, .Subnormal: // carry on } return trunc_internal(x); } trunc :: proc{trunc_f16, trunc_f32, trunc_f64}; round_f16 :: proc(x: f16) -> f16 { return ceil(x - 0.5) if x < 0 else floor(x + 0.5); } round_f32 :: proc(x: f32) -> f32 { return ceil(x - 0.5) if x < 0 else floor(x + 0.5); } round_f64 :: proc(x: f64) -> f64 { return ceil(x - 0.5) if x < 0 else floor(x + 0.5); } round :: proc{round_f16, round_f32, round_f64}; ceil_f16 :: proc(x: f16) -> f16 { return -floor(-x); } ceil_f32 :: proc(x: f32) -> f32 { return -floor(-x); } ceil_f64 :: proc(x: f64) -> f64 { return -floor(-x); } ceil :: proc{ceil_f16, ceil_f32, ceil_f64}; floor_f16 :: proc(x: f16) -> f16 { if x == 0 || is_nan(x) || is_inf(x) { return x; } if x < 0 { d, fract := modf(-x); if fract != 0.0 { d = d + 1; } return -d; } d, _ := modf(x); return d; } floor_f32 :: proc(x: f32) -> f32 { if x == 0 || is_nan(x) || is_inf(x) { return x; } if x < 0 { d, fract := modf(-x); if fract != 0.0 { d = d + 1; } return -d; } d, _ := modf(x); return d; } floor_f64 :: proc(x: f64) -> f64 { if x == 0 || is_nan(x) || is_inf(x) { return x; } if x < 0 { d, fract := modf(-x); if fract != 0.0 { d = d + 1; } return -d; } d, _ := modf(x); return d; } floor :: proc{floor_f16, floor_f32, floor_f64}; floor_div :: proc(x, y: $T) -> T where intrinsics.type_is_integer(T) { a := x / y; r := x % y; if (r > 0 && y < 0) || (r < 0 && y > 0) { a -= 1; } return a; } floor_mod :: proc(x, y: $T) -> T where intrinsics.type_is_integer(T) { r := x % y; if (r > 0 && y < 0) || (r < 0 && y > 0) { r += y; } return r; } modf_f16 :: proc(x: f16) -> (int: f16, frac: f16) { shift :: 16 - 5 - 1; mask :: 0x1f; bias :: 15; if x < 1 { switch { case x < 0: int, frac = modf(-x); return -int, -frac; case x == 0: return x, x; } return 0, x; } i := transmute(u16)x; e := uint(i>>shift)&mask - bias; if e < shift { i &~= 1<<(shift-e) - 1; } int = transmute(f16)i; frac = x - int; return; } modf_f32 :: proc(x: f32) -> (int: f32, frac: f32) { shift :: 32 - 8 - 1; mask :: 0xff; bias :: 127; if x < 1 { switch { case x < 0: int, frac = modf(-x); return -int, -frac; case x == 0: return x, x; } return 0, x; } i := transmute(u32)x; e := uint(i>>shift)&mask - bias; if e < shift { i &~= 1<<(shift-e) - 1; } int = transmute(f32)i; frac = x - int; return; } modf_f64 :: proc(x: f64) -> (int: f64, frac: f64) { shift :: 64 - 11 - 1; mask :: 0x7ff; bias :: 1023; if x < 1 { switch { case x < 0: int, frac = modf(-x); return -int, -frac; case x == 0: return x, x; } return 0, x; } i := transmute(u64)x; e := uint(i>>shift)&mask - bias; if e < shift { i &~= 1<<(shift-e) - 1; } int = transmute(f64)i; frac = x - int; return; } modf :: proc{modf_f16, modf_f32, modf_f64}; split_decimal :: modf; mod_f16 :: proc(x, y: f16) -> (n: f16) { z := abs(y); n = remainder(abs(x), z); if sign(n) < 0 { n += z; } return copy_sign(n, x); } mod_f32 :: proc(x, y: f32) -> (n: f32) { z := abs(y); n = remainder(abs(x), z); if sign(n) < 0 { n += z; } return copy_sign(n, x); } mod_f64 :: proc(x, y: f64) -> (n: f64) { z := abs(y); n = remainder(abs(x), z); if sign(n) < 0 { n += z; } return copy_sign(n, x); } mod :: proc{mod_f16, mod_f32, mod_f64}; remainder_f16 :: proc(x, y: f16) -> f16 { return x - round(x/y) * y; } remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; } remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; } remainder :: proc{remainder_f16, remainder_f32, remainder_f64}; gcd :: proc(x, y: $T) -> T where intrinsics.type_is_ordered_numeric(T) { x, y := x, y; for y != 0 { x %= y; x, y = y, x; } return abs(x); } lcm :: proc(x, y: $T) -> T where intrinsics.type_is_ordered_numeric(T) { return x / gcd(x, y) * y; } frexp_f16 :: proc(x: f16) -> (significand: f16, exponent: int) { f, e := frexp_f64(f64(x)); return f16(f), e; } frexp_f32 :: proc(x: f32) -> (significand: f32, exponent: int) { f, e := frexp_f64(f64(x)); return f32(f), e; } frexp_f64 :: proc(x: f64) -> (significand: f64, exponent: int) { switch { case x == 0: return 0, 0; case x < 0: significand, exponent = frexp(-x); return -significand, exponent; } ex := trunc(log2(x)); exponent = int(ex); significand = x / pow(2.0, ex); if abs(significand) >= 1 { exponent += 1; significand /= 2; } if exponent == 1024 && significand == 0 { significand = 0.99999999999999988898; } return; } frexp :: proc{frexp_f16, frexp_f32, frexp_f64}; binomial :: proc(n, k: int) -> int { switch { case k <= 0: return 1; case 2*k > n: return binomial(n, n-k); } b := n; for i in 2.. int { when size_of(int) == size_of(i64) { @static table := [21]int{ 1, 1, 2, 6, 24, 120, 720, 5_040, 40_320, 362_880, 3_628_800, 39_916_800, 479_001_600, 6_227_020_800, 87_178_291_200, 1_307_674_368_000, 20_922_789_888_000, 355_687_428_096_000, 6_402_373_705_728_000, 121_645_100_408_832_000, 2_432_902_008_176_640_000, }; } else { @static table := [13]int{ 1, 1, 2, 6, 24, 120, 720, 5_040, 40_320, 362_880, 3_628_800, 39_916_800, 479_001_600, }; } assert(n >= 0, "parameter must not be negative"); assert(n < len(table), "parameter is too large to lookup in the table"); return table[n]; } classify_f16 :: proc(x: f16) -> Float_Class { switch { case x == 0: i := transmute(i16)x; if i < 0 { return .Neg_Zero; } return .Zero; case x*0.5 == x: if x < 0 { return .Neg_Inf; } return .Inf; case !(x == x): return .NaN; } u := transmute(u16)x; exp := int(u>>10) & (1<<5 - 1); if exp == 0 { return .Subnormal; } return .Normal; } classify_f32 :: proc(x: f32) -> Float_Class { switch { case x == 0: i := transmute(i32)x; if i < 0 { return .Neg_Zero; } return .Zero; case x*0.5 == x: if x < 0 { return .Neg_Inf; } return .Inf; case !(x == x): return .NaN; } u := transmute(u32)x; exp := int(u>>23) & (1<<8 - 1); if exp == 0 { return .Subnormal; } return .Normal; } classify_f64 :: proc(x: f64) -> Float_Class { switch { case x == 0: i := transmute(i64)x; if i < 0 { return .Neg_Zero; } return .Zero; case x*0.5 == x: if x < 0 { return .Neg_Inf; } return .Inf; case !(x == x): return .NaN; } u := transmute(u64)x; exp := int(u>>52) & (1<<11 - 1); if exp == 0 { return .Subnormal; } return .Normal; } classify :: proc{classify_f16, classify_f32, classify_f64}; is_nan_f16 :: proc(x: f16) -> bool { return classify(x) == .NaN; } is_nan_f32 :: proc(x: f32) -> bool { return classify(x) == .NaN; } is_nan_f64 :: proc(x: f64) -> bool { return classify(x) == .NaN; } is_nan :: proc{is_nan_f16, is_nan_f32, is_nan_f64}; // is_inf reports whether f is an infinity, according to sign. // If sign > 0, is_inf reports whether f is positive infinity. // If sign < 0, is_inf reports whether f is negative infinity. // If sign == 0, is_inf reports whether f is either infinity. is_inf_f16 :: proc(x: f16, sign: int = 0) -> bool { class := classify(abs(x)); switch { case sign > 0: return class == .Inf; case sign < 0: return class == .Neg_Inf; } return class == .Inf || class == .Neg_Inf; } is_inf_f32 :: proc(x: f32, sign: int = 0) -> bool { class := classify(abs(x)); switch { case sign > 0: return class == .Inf; case sign < 0: return class == .Neg_Inf; } return class == .Inf || class == .Neg_Inf; } is_inf_f64 :: proc(x: f64, sign: int = 0) -> bool { class := classify(abs(x)); switch { case sign > 0: return class == .Inf; case sign < 0: return class == .Neg_Inf; } return class == .Inf || class == .Neg_Inf; } is_inf :: proc{is_inf_f16, is_inf_f32, is_inf_f64}; inf_f16 :: proc(sign: int) -> f16 { return f16(inf_f16(sign)); } inf_f32 :: proc(sign: int) -> f32 { return f32(inf_f64(sign)); } inf_f64 :: proc(sign: int) -> f64 { v: u64; if sign >= 0 { v = 0x7ff00000_00000000; } else { v = 0xfff00000_00000000; } return transmute(f64)v; } nan_f16 :: proc() -> f16 { return f16(nan_f64()); } nan_f32 :: proc() -> f32 { return f32(nan_f64()); } nan_f64 :: proc() -> f64 { v: u64 = 0x7ff80000_00000001; return transmute(f64)v; } is_power_of_two :: proc(x: int) -> bool { return x > 0 && (x & (x-1)) == 0; } next_power_of_two :: proc(x: int) -> int { k := x -1; when size_of(int) == 8 { k = k | (k >> 32); } k = k | (k >> 16); k = k | (k >> 8); k = k | (k >> 4); k = k | (k >> 2); k = k | (k >> 1); k += 1 + int(x <= 0); return k; } sum :: proc(x: $T/[]$E) -> (res: E) where intrinsics.type_is_numeric(E) { for i in x { res += i; } return; } prod :: proc(x: $T/[]$E) -> (res: E) where intrinsics.type_is_numeric(E) { for i in x { res *= i; } return; } cumsum_inplace :: proc(x: $T/[]$E) -> T where intrinsics.type_is_numeric(E) { for i in 1.. T where intrinsics.type_is_numeric(E) { N := min(len(dst), len(src)); if N > 0 { dst[0] = src[0]; for i in 1.. f16 { // TODO(bill): Better atan2_f16 return f16(atan2_f64(f64(y), f64(x))); } atan2_f32 :: proc(y, x: f32) -> f32 { // TODO(bill): Better atan2_f32 return f32(atan2_f64(f64(y), f64(x))); } atan2_f64 :: proc(y, x: f64) -> f64 { // TODO(bill): Faster atan2_f64 if possible // The original C code: // Stephen L. Moshier // moshier@na-net.ornl.gov NAN :: 0h7fff_ffff_ffff_ffff; INF :: 0h7FF0_0000_0000_0000; PI :: 0h4009_21fb_5444_2d18; atan :: proc(x: f64) -> f64 { if x == 0 { return x; } if x > 0 { return s_atan(x); } return -s_atan(-x); } // s_atan reduces its argument (known to be positive) to the range [0, 0.66] and calls x_atan. s_atan :: proc(x: f64) -> f64 { MORE_BITS :: 6.123233995736765886130e-17; // pi/2 = PIO2 + MORE_BITS TAN3PI08 :: 2.41421356237309504880; // tan(3*pi/8) if x <= 0.66 { return x_atan(x); } if x > TAN3PI08 { return PI/2 - x_atan(1/x) + MORE_BITS; } return PI/4 + x_atan((x-1)/(x+1)) + 0.5*MORE_BITS; } // x_atan evaluates a series valid in the range [0, 0.66]. x_atan :: proc(x: f64) -> f64 { P0 :: -8.750608600031904122785e-01; P1 :: -1.615753718733365076637e+01; P2 :: -7.500855792314704667340e+01; P3 :: -1.228866684490136173410e+02; P4 :: -6.485021904942025371773e+01; Q0 :: +2.485846490142306297962e+01; Q1 :: +1.650270098316988542046e+02; Q2 :: +4.328810604912902668951e+02; Q3 :: +4.853903996359136964868e+02; Q4 :: +1.945506571482613964425e+02; z := x * x; z = z * ((((P0*z+P1)*z+P2)*z+P3)*z + P4) / (((((z+Q0)*z+Q1)*z+Q2)*z+Q3)*z + Q4); z = x*z + x; return z; } switch { case is_nan(y) || is_nan(x): return NAN; case y == 0: if x >= 0 && !sign_bit(x) { return copy_sign(0.0, y); } return copy_sign(PI, y); case x == 0: return copy_sign(PI*0.5, y); case is_inf(x, 0): if is_inf(x, 1) { if is_inf(y, 0) { return copy_sign(PI*0.25, y); } return copy_sign(0, y); } if is_inf(y, 0) { return copy_sign(PI*0.75, y); } return copy_sign(PI, y); case is_inf(y, 0): return copy_sign(PI*0.5, y); } q := atan(y / x); if x < 0 { if q <= 0 { return q + PI; } return q - PI; } return q; } atan2 :: proc{atan2_f16, atan2_f32, atan2_f64}; atan_f16 :: proc(x: f16) -> f16 { return atan2_f16(x, 1); } atan_f32 :: proc(x: f32) -> f32 { return atan2_f32(x, 1); } atan_f64 :: proc(x: f64) -> f64 { return atan2_f64(x, 1); } atan :: proc{atan_f16, atan_f32, atan_f64}; asin_f16 :: proc(x: f16) -> f16 { return atan2_f16(x, 1 + sqrt_f16(1 - x*x)); } asin_f32 :: proc(x: f32) -> f32 { return atan2_f32(x, 1 + sqrt_f32(1 - x*x)); } asin_f64 :: proc(x: f64) -> f64 { return atan2_f64(x, 1 + sqrt_f64(1 - x*x)); } asin :: proc{asin_f16, asin_f32, asin_f64}; acos_f16 :: proc(x: f16) -> f16 { return 2 * atan2_f16(sqrt_f16(1 - x), sqrt_f16(1 + x)); } acos_f32 :: proc(x: f32) -> f32 { return 2 * atan2_f32(sqrt_f32(1 - x), sqrt_f32(1 + x)); } acos_f64 :: proc(x: f64) -> f64 { return 2 * atan2_f64(sqrt_f64(1 - x), sqrt_f64(1 + x)); } acos :: proc{acos_f16, acos_f32, acos_f64}; sinh_f16 :: proc(x: f16) -> f16 { return (exp(x) - exp(-x))*0.5; } sinh_f32 :: proc(x: f32) -> f32 { return (exp(x) - exp(-x))*0.5; } sinh_f64 :: proc(x: f64) -> f64 { return (exp(x) - exp(-x))*0.5; } sinh :: proc{sinh_f16, sinh_f32, sinh_f64}; cosh_f16 :: proc(x: f16) -> f16 { return (exp(x) + exp(-x))*0.5; } cosh_f32 :: proc(x: f32) -> f32 { return (exp(x) + exp(-x))*0.5; } cosh_f64 :: proc(x: f64) -> f64 { return (exp(x) + exp(-x))*0.5; } cosh :: proc{cosh_f16, cosh_f32, cosh_f64}; tanh_f16 :: proc(x: f16) -> f16 { t := exp(2*x); return (t - 1) / (t + 1); } tanh_f32 :: proc(x: f32) -> f32 { t := exp(2*x); return (t - 1) / (t + 1); } tanh_f64 :: proc(x: f64) -> f64 { t := exp(2*x); return (t - 1) / (t + 1); } tanh :: proc{tanh_f16, tanh_f32, tanh_f64}; F16_DIG :: 3; F16_EPSILON :: 0.00097656; F16_GUARD :: 0; F16_MANT_DIG :: 11; F16_MAX :: 65504.0; F16_MAX_10_EXP :: 4; F16_MAX_EXP :: 15; F16_MIN :: 6.10351562e-5; F16_MIN_10_EXP :: -4; F16_MIN_EXP :: -14; F16_NORMALIZE :: 0; F16_RADIX :: 2; F16_ROUNDS :: 1; F32_DIG :: 6; F32_EPSILON :: 1.192092896e-07; F32_GUARD :: 0; F32_MANT_DIG :: 24; F32_MAX :: 3.402823466e+38; F32_MAX_10_EXP :: 38; F32_MAX_EXP :: 128; F32_MIN :: 1.175494351e-38; F32_MIN_10_EXP :: -37; F32_MIN_EXP :: -125; F32_NORMALIZE :: 0; F32_RADIX :: 2; F32_ROUNDS :: 1; F64_DIG :: 15; // # of decimal digits of precision F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0 F64_MANT_DIG :: 53; // # of bits in mantissa F64_MAX :: 1.7976931348623158e+308; // max value F64_MAX_10_EXP :: 308; // max decimal exponent F64_MAX_EXP :: 1024; // max binary exponent F64_MIN :: 2.2250738585072014e-308; // min positive value F64_MIN_10_EXP :: -307; // min decimal exponent F64_MIN_EXP :: -1021; // min binary exponent F64_RADIX :: 2; // exponent radix F64_ROUNDS :: 1; // addition rounding: near