TAU :: 6.28318530717958647692528676655900576 PI :: 3.14159265358979323846264338327950288 ONE_OVER_TAU :: 0.636619772367581343075535053490057448 ONE_OVER_PI :: 0.159154943091895335768883763372514362 E :: 2.71828182845904523536 SQRT_TWO :: 1.41421356237309504880168872420969808 SQRT_THREE :: 1.73205080756887729352744634150587236 SQRT_FIVE :: 2.23606797749978969640917366873127623 LOG_TWO :: 0.693147180559945309417232121458176568 LOG_TEN :: 2.30258509299404568401799145468436421 EPSILON :: 1.19209290e-7 τ :: TAU π :: PI Vec2 :: type [vector 2]f32 Vec3 :: type [vector 3]f32 Vec4 :: type [vector 4]f32 Mat2 :: type [2]Vec2 Mat3 :: type [3]Vec3 Mat4 :: type [4]Vec4 sqrt32 :: proc(x: f32) -> f32 #foreign "llvm.sqrt.f32" sqrt64 :: proc(x: f64) -> f64 #foreign "llvm.sqrt.f64" sin32 :: proc(x: f32) -> f32 #foreign "llvm.sin.f32" sin64 :: proc(x: f64) -> f64 #foreign "llvm.sin.f64" cos32 :: proc(x: f32) -> f32 #foreign "llvm.cos.f32" cos64 :: proc(x: f64) -> f64 #foreign "llvm.cos.f64" tan32 :: proc(x: f32) -> f32 #inline { return sin32(x)/cos32(x); } tan64 :: proc(x: f64) -> f64 #inline { return sin64(x)/cos64(x); } lerp32 :: proc(a, b, t: f32) -> f32 { return a*(1-t) + b*t; } lerp64 :: proc(a, b, t: f64) -> f64 { return a*(1-t) + b*t; } sign32 :: proc(x: f32) -> f32 { if x >= 0 { return +1; } return -1; } sign64 :: proc(x: f64) -> f64 { if x >= 0 { return +1; } return -1; } copy_sign32 :: proc(x, y: f32) -> f32 { ix := x transmute u32 iy := y transmute u32 ix &= 0x7fffffff ix |= iy & 0x80000000 return ix transmute f32 } round32 :: proc(x: f32) -> f32 { if x >= 0 { return floor32(x + 0.5) } return ceil32(x - 0.5) } floor32 :: proc(x: f32) -> f32 { if x >= 0 { return x as int as f32 } return (x-0.5) as int as f32 } ceil32 :: proc(x: f32) -> f32 { if x < 0 { return x as int as f32 } return ((x as int)+1) as f32 } remainder32 :: proc(x, y: f32) -> f32 { return x - round32(x/y) * y } fmod32 :: proc(x, y: f32) -> f32 { y = abs(y) result := remainder32(abs(x), y) if sign32(result) < 0 { result += y } return copy_sign32(result, x) } to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360; } to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU; } dot2 :: proc(a, b: Vec2) -> f32 { c := a*b; return c.x + c.y; } dot3 :: proc(a, b: Vec3) -> f32 { c := a*b; return c.x + c.y + c.z; } dot4 :: proc(a, b: Vec4) -> f32 { c := a*b; return c.x + c.y + c.z + c.w; } cross3 :: proc(x, y: Vec3) -> Vec3 { a := swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1) b := swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0) return a - b } vec2_mag :: proc(v: Vec2) -> f32 { return sqrt32(dot2(v, v)); } vec3_mag :: proc(v: Vec3) -> f32 { return sqrt32(dot3(v, v)); } vec4_mag :: proc(v: Vec4) -> f32 { return sqrt32(dot4(v, v)); } vec2_norm :: proc(v: Vec2) -> Vec2 { return v / Vec2{vec2_mag(v)}; } vec3_norm :: proc(v: Vec3) -> Vec3 { return v / Vec3{vec3_mag(v)}; } vec4_norm :: proc(v: Vec4) -> Vec4 { return v / Vec4{vec4_mag(v)}; } vec2_norm0 :: proc(v: Vec2) -> Vec2 { m := vec2_mag(v) if m == 0 { return Vec2{0} } return v / Vec2{m} } vec3_norm0 :: proc(v: Vec3) -> Vec3 { m := vec3_mag(v) if m == 0 { return Vec3{0} } return v / Vec3{m} } vec4_norm0 :: proc(v: Vec4) -> Vec4 { m := vec4_mag(v) if m == 0 { return Vec4{0} } return v / Vec4{m} } mat4_identity :: proc() -> Mat4 { return Mat4{ {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, } } mat4_transpose :: proc(m: Mat4) -> Mat4 { for j := 0; j < 4; j++ { for i := 0; i < 4; i++ { m[i][j], m[j][i] = m[j][i], m[i][j] } } return m } mat4_mul :: proc(a, b: Mat4) -> Mat4 { c: Mat4 for j := 0; j < 4; j++ { for i := 0; i < 4; i++ { c[j][i] = a[0][i]*b[j][0] + a[1][i]*b[j][1] + a[2][i]*b[j][2] + a[3][i]*b[j][3] } } return c } mat4_mul_vec4 :: proc(m: Mat4, v: Vec4) -> Vec4 { return Vec4{ m[0][0]*v.x + m[1][0]*v.y + m[2][0]*v.z + m[3][0]*v.w, m[0][1]*v.x + m[1][1]*v.y + m[2][1]*v.z + m[3][1]*v.w, m[0][2]*v.x + m[1][2]*v.y + m[2][2]*v.z + m[3][2]*v.w, m[0][3]*v.x + m[1][3]*v.y + m[2][3]*v.z + m[3][3]*v.w, } } mat4_inverse :: proc(m: Mat4) -> Mat4 { o: Mat4 sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3] sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3] sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2] sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3] sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2] sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1] sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3] sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3] sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2] sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3] sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2] sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3] sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1] sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3] sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3] sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2] sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3] sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2] sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1] o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02) o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04) o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05) o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05) o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02) o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04) o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05) o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05) o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08) o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10) o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12) o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12) o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15) o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17) o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18) o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18) ood := 1.0 / (m[0][0] * o[0][0] + m[0][1] * o[0][1] + m[0][2] * o[0][2] + m[0][3] * o[0][3]) o[0][0] *= ood o[0][1] *= ood o[0][2] *= ood o[0][3] *= ood o[1][0] *= ood o[1][1] *= ood o[1][2] *= ood o[1][3] *= ood o[2][0] *= ood o[2][1] *= ood o[2][2] *= ood o[2][3] *= ood o[3][0] *= ood o[3][1] *= ood o[3][2] *= ood o[3][3] *= ood return o } mat4_translate :: proc(v: Vec3) -> Mat4 { m := mat4_identity() m[3][0] = v.x m[3][1] = v.y m[3][2] = v.z m[3][3] = 1 return m } mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 { c := cos32(angle_radians) s := sin32(angle_radians) a := vec3_norm(v) t := a * Vec3{1-c} rot := mat4_identity() rot[0][0] = c + t.x*a.x rot[0][1] = 0 + t.x*a.y + s*a.z rot[0][2] = 0 + t.x*a.z - s*a.y rot[0][3] = 0 rot[1][0] = 0 + t.y*a.x - s*a.z rot[1][1] = c + t.y*a.y rot[1][2] = 0 + t.y*a.z + s*a.x rot[1][3] = 0 rot[2][0] = 0 + t.z*a.x + s*a.y rot[2][1] = 0 + t.z*a.y - s*a.x rot[2][2] = c + t.z*a.z rot[2][3] = 0 return rot } mat4_scale :: proc(m: Mat4, v: Vec3) -> Mat4 { m[0][0] = v.x m[1][1] = v.y m[2][2] = v.z return m } mat4_scalef :: proc(m: Mat4, s: f32) -> Mat4 { m[0][0] = s m[1][1] = s m[2][2] = s return m } mat4_look_at :: proc(eye, centre, up: Vec3) -> Mat4 { f := vec3_norm(centre - eye) s := vec3_norm(cross3(f, up)) u := cross3(s, f) m: Mat4 m[0] = Vec4{+s.x, +s.y, +s.z, 0} m[1] = Vec4{+u.x, +u.y, +u.z, 0} m[2] = Vec4{-f.x, -f.y, -f.z, 0} m[3] = Vec4{dot3(s, eye), dot3(u, eye), dot3(f, eye), 1} return m } mat4_perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 { m: Mat4 tan_half_fovy := tan32(0.5 * fovy) m[0][0] = 1.0 / (aspect*tan_half_fovy) m[1][1] = 1.0 / (tan_half_fovy) m[2][2] = -(far + near) / (far - near) m[2][3] = -1.0 m[3][2] = -2.0*far*near / (far - near) return m } mat4_ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 { m := mat4_identity() m[0][0] = +2.0 / (right - left) m[1][1] = +2.0 / (top - bottom) m[2][2] = -2.0 / (far - near) m[3][0] = -(right + left) / (right - left) m[3][1] = -(top + bottom) / (top - bottom) m[3][2] = -(far + near) / (far - near) return m } F32_DIG :: 6 F32_EPSILON :: 1.192092896e-07 F32_GUARD :: 0 F32_MANT_DIG :: 24 F32_MAX :: 3.402823466e+38 F32_MAX_10_EXP :: 38 F32_MAX_EXP :: 128 F32_MIN :: 1.175494351e-38 F32_MIN_10_EXP :: -37 F32_MIN_EXP :: -125 F32_NORMALIZE :: 0 F32_RADIX :: 2 F32_ROUNDS :: 1 F64_DIG :: 15 // # of decimal digits of precision F64_EPSILON :: 2.2204460492503131e-016 // smallest such that 1.0+F64_EPSILON != 1.0 F64_MANT_DIG :: 53 // # of bits in mantissa F64_MAX :: 1.7976931348623158e+308 // max value F64_MAX_10_EXP :: 308 // max decimal exponent F64_MAX_EXP :: 1024 // max binary exponent F64_MIN :: 2.2250738585072014e-308 // min positive value F64_MIN_10_EXP :: -307 // min decimal exponent F64_MIN_EXP :: -1021 // min binary exponent F64_RADIX :: 2 // exponent radix F64_ROUNDS :: 1 // addition rounding: near