package math TAU :: 6.28318530717958647692528676655900576; PI :: 3.14159265358979323846264338327950288; E :: 2.71828182845904523536; SQRT_TWO :: 1.41421356237309504880168872420969808; SQRT_THREE :: 1.73205080756887729352744634150587236; SQRT_FIVE :: 2.23606797749978969640917366873127623; LOG_TWO :: 0.693147180559945309417232121458176568; LOG_TEN :: 2.30258509299404568401799145468436421; EPSILON :: 1.19209290e-7; τ :: TAU; π :: PI; Vec2 :: distinct [2]f32; Vec3 :: distinct [3]f32; Vec4 :: distinct [4]f32; // Column major Mat2 :: distinct [2][2]f32; Mat3 :: distinct [3][3]f32; Mat4 :: distinct [4][4]f32; Quat :: struct {x, y, z, w: f32}; QUAT_IDENTITY := Quat{x = 0, y = 0, z = 0, w = 1}; @(default_calling_convention="c") foreign _ { @(link_name="llvm.sqrt.f32") sqrt_f32 :: proc(x: f32) -> f32 ---; @(link_name="llvm.sqrt.f64") sqrt_f64 :: proc(x: f64) -> f64 ---; @(link_name="llvm.sin.f32") sin_f32 :: proc(θ: f32) -> f32 ---; @(link_name="llvm.sin.f64") sin_f64 :: proc(θ: f64) -> f64 ---; @(link_name="llvm.cos.f32") cos_f32 :: proc(θ: f32) -> f32 ---; @(link_name="llvm.cos.f64") cos_f64 :: proc(θ: f64) -> f64 ---; @(link_name="llvm.pow.f32") pow_f32 :: proc(x, power: f32) -> f32 ---; @(link_name="llvm.pow.f64") pow_f64 :: proc(x, power: f64) -> f64 ---; @(link_name="llvm.fmuladd.f32") fmuladd_f32 :: proc(a, b, c: f32) -> f32 ---; @(link_name="llvm.fmuladd.f64") fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---; @(link_name="llvm.log.f32") log_f32 :: proc(x: f32) -> f32 ---; @(link_name="llvm.log.f64") log_f64 :: proc(x: f64) -> f64 ---; @(link_name="llvm.exp.f32") exp_f32 :: proc(x: f32) -> f32 ---; @(link_name="llvm.exp.f64") exp_f64 :: proc(x: f64) -> f64 ---; } log :: proc{log_f32, log_f64}; exp :: proc{exp_f32, exp_f64}; tan_f32 :: proc "c" (θ: f32) -> f32 { return sin(θ)/cos(θ); } tan_f64 :: proc "c" (θ: f64) -> f64 { return sin(θ)/cos(θ); } lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; } unlerp_f32 :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); } unlerp_f64 :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); } sign_f32 :: proc(x: f32) -> f32 { return x >= 0 ? +1 : -1; } sign_f64 :: proc(x: f64) -> f64 { return x >= 0 ? +1 : -1; } copy_sign_f32 :: proc(x, y: f32) -> f32 { ix := transmute(u32)x; iy := transmute(u32)y; ix &= 0x7fff_ffff; ix |= iy & 0x8000_0000; return transmute(f32)ix; } copy_sign_f64 :: proc(x, y: f64) -> f64 { ix := transmute(u64)x; iy := transmute(u64)y; ix &= 0x7fff_ffff_ffff_ffff; ix |= iy & 0x8000_0000_0000_0000; return transmute(f64)ix; } sqrt :: proc{sqrt_f32, sqrt_f64}; sin :: proc{sin_f32, sin_f64}; cos :: proc{cos_f32, cos_f64}; tan :: proc{tan_f32, tan_f64}; pow :: proc{pow_f32, pow_f64}; fmuladd :: proc{fmuladd_f32, fmuladd_f64}; sign :: proc{sign_f32, sign_f64}; copy_sign :: proc{copy_sign_f32, copy_sign_f64}; round_f32 :: proc(x: f32) -> f32 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); } round_f64 :: proc(x: f64) -> f64 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); } round :: proc{round_f32, round_f64}; floor_f32 :: proc(x: f32) -> f32 { if x == 0 || is_nan(x) || is_inf(x) { return x; } if x < 0 { d, fract := modf(-x); if fract != 0.0 { d = d + 1; } return -d; } d, _ := modf(x); return d; } floor_f64 :: proc(x: f64) -> f64 { if x == 0 || is_nan(x) || is_inf(x) { return x; } if x < 0 { d, fract := modf(-x); if fract != 0.0 { d = d + 1; } return -d; } d, _ := modf(x); return d; } floor :: proc{floor_f32, floor_f64}; ceil_f32 :: proc(x: f32) -> f32 { return -floor_f32(-x); } ceil_f64 :: proc(x: f64) -> f64 { return -floor_f64(-x); } ceil :: proc{ceil_f32, ceil_f64}; remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; } remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; } remainder :: proc{remainder_f32, remainder_f64}; mod_f32 :: proc(x, y: f32) -> f32 { result: f32; y = abs(y); result = remainder(abs(x), y); if sign(result) < 0 { result += y; } return copy_sign(result, x); } mod_f64 :: proc(x, y: f64) -> f64 { result: f64; y = abs(y); result = remainder(abs(x), y); if sign(result) < 0 { result += y; } return copy_sign(result, x); } mod :: proc{mod_f32, mod_f64}; // TODO(bill): These need to implemented with the actual instructions modf_f32 :: proc(x: f32) -> (int: f32, frac: f32) { shift :: 32 - 8 - 1; mask :: 0xff; bias :: 127; if x < 1 { switch { case x < 0: int, frac = modf(-x); return -int, -frac; case x == 0: return x, x; } return 0, x; } i := transmute(u32)x; e := uint(i>>shift)&mask - bias; if e < 32-9 { i &~= 1<<(32-9-e) - 1; } int = transmute(f32)i; frac = x - int; return; } modf_f64 :: proc(x: f64) -> (int: f64, frac: f64) { shift :: 64 - 11 - 1; mask :: 0x7ff; bias :: 1023; if x < 1 { switch { case x < 0: int, frac = modf(-x); return -int, -frac; case x == 0: return x, x; } return 0, x; } i := transmute(u64)x; e := uint(i>>shift)&mask - bias; if e < 64-12 { i &~= 1<<(64-12-e) - 1; } int = transmute(f64)i; frac = x - int; return; } modf :: proc{modf_f32, modf_f64}; is_nan_f32 :: inline proc(x: f32) -> bool { return x != x; } is_nan_f64 :: inline proc(x: f64) -> bool { return x != x; } is_nan :: proc{is_nan_f32, is_nan_f64}; is_finite_f32 :: inline proc(x: f32) -> bool { return !is_nan(x-x); } is_finite_f64 :: inline proc(x: f64) -> bool { return !is_nan(x-x); } is_finite :: proc{is_finite_f32, is_finite_f64}; is_inf_f32 :: proc(x: f32, sign := 0) -> bool { return sign >= 0 && x > F32_MAX || sign <= 0 && x < -F32_MAX; } is_inf_f64 :: proc(x: f64, sign := 0) -> bool { return sign >= 0 && x > F64_MAX || sign <= 0 && x < -F64_MAX; } // If sign > 0, is_inf reports whether f is positive infinity // If sign < 0, is_inf reports whether f is negative infinity // If sign == 0, is_inf reports whether f is either infinity is_inf :: proc{is_inf_f32, is_inf_f64}; to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360; } to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU; } mul :: proc{ mat3_mul, mat4_mul, mat4_mul_vec4, quat_mul, quat_mulf, }; div :: proc{quat_div, quat_divf}; inverse :: proc{mat4_inverse, quat_inverse}; dot :: proc{vec_dot, quat_dot}; cross :: proc{cross2, cross3}; vec_dot :: proc(a, b: $T/[$N]$E) -> E { res: E; for i in 0.. E { return a[0]*b[1] - a[1]*b[0]; } cross3 :: proc(a, b: $T/[3]$E) -> T { i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1); j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0); return T(i - j); } length :: proc(v: $T/[$N]$E) -> E { return sqrt(dot(v, v)); } norm :: proc(v: $T/[$N]$E) -> T { return v / length(v); } norm0 :: proc(v: $T/[$N]$E) -> T { m := length(v); return m == 0 ? 0 : v/m; } identity :: proc($T: typeid/[$N][N]$E) -> T { m: T; for i in 0.. M { for j in 0.. Mat3 { c: Mat3; for j in 0..<3 { for i in 0..<3 { c[j][i] = a[0][i]*b[j][0] + a[1][i]*b[j][1] + a[2][i]*b[j][2]; } } return c; } mat4_mul :: proc(a, b: Mat4) -> Mat4 { c: Mat4; for j in 0..<4 { for i in 0..<4 { c[j][i] = a[0][i]*b[j][0] + a[1][i]*b[j][1] + a[2][i]*b[j][2] + a[3][i]*b[j][3]; } } return c; } mat4_mul_vec4 :: proc(m: Mat4, v: Vec4) -> Vec4 { return Vec4{ m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3], m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3], m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3], m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3], }; } mat4_inverse :: proc(m: Mat4) -> Mat4 { o: Mat4; sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3]; sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3]; sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2]; sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3]; sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2]; sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1]; sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3]; sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3]; sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2]; sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3]; sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2]; sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3]; sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1]; sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3]; sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3]; sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2]; sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3]; sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2]; sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1]; o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02); o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04); o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05); o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05); o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02); o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04); o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05); o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05); o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08); o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10); o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12); o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12); o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15); o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17); o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18); o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18); ood := 1.0 / (m[0][0] * o[0][0] + m[0][1] * o[0][1] + m[0][2] * o[0][2] + m[0][3] * o[0][3]); o[0][0] *= ood; o[0][1] *= ood; o[0][2] *= ood; o[0][3] *= ood; o[1][0] *= ood; o[1][1] *= ood; o[1][2] *= ood; o[1][3] *= ood; o[2][0] *= ood; o[2][1] *= ood; o[2][2] *= ood; o[2][3] *= ood; o[3][0] *= ood; o[3][1] *= ood; o[3][2] *= ood; o[3][3] *= ood; return o; } mat4_translate :: proc(v: Vec3) -> Mat4 { m := identity(Mat4); m[3][0] = v[0]; m[3][1] = v[1]; m[3][2] = v[2]; m[3][3] = 1; return m; } mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 { c := cos(angle_radians); s := sin(angle_radians); a := norm(v); t := a * (1-c); rot := identity(Mat4); rot[0][0] = c + t[0]*a[0]; rot[0][1] = 0 + t[0]*a[1] + s*a[2]; rot[0][2] = 0 + t[0]*a[2] - s*a[1]; rot[0][3] = 0; rot[1][0] = 0 + t[1]*a[0] - s*a[2]; rot[1][1] = c + t[1]*a[1]; rot[1][2] = 0 + t[1]*a[2] + s*a[0]; rot[1][3] = 0; rot[2][0] = 0 + t[2]*a[0] + s*a[1]; rot[2][1] = 0 + t[2]*a[1] - s*a[0]; rot[2][2] = c + t[2]*a[2]; rot[2][3] = 0; return rot; } scale_vec3 :: proc(m: Mat4, v: Vec3) -> Mat4 { m[0][0] *= v[0]; m[1][1] *= v[1]; m[2][2] *= v[2]; return m; } scale_f32 :: proc(m: Mat4, s: f32) -> Mat4 { m[0][0] *= s; m[1][1] *= s; m[2][2] *= s; return m; } scale :: proc{scale_vec3, scale_f32}; look_at :: proc(eye, centre, up: Vec3) -> Mat4 { f := norm(centre - eye); s := norm(cross(f, up)); u := cross(s, f); return Mat4{ {+s.x, +u.x, -f.x, 0}, {+s.y, +u.y, -f.y, 0}, {+s.z, +u.z, -f.z, 0}, {-dot(s, eye), -dot(u, eye), dot(f, eye), 1}, }; } perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 { m: Mat4; tan_half_fovy := tan(0.5 * fovy); m[0][0] = 1.0 / (aspect*tan_half_fovy); m[1][1] = 1.0 / (tan_half_fovy); m[2][2] = -(far + near) / (far - near); m[2][3] = -1.0; m[3][2] = -2.0*far*near / (far - near); return m; } ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 { m := identity(Mat4); m[0][0] = +2.0 / (right - left); m[1][1] = +2.0 / (top - bottom); m[2][2] = -2.0 / (far - near); m[3][0] = -(right + left) / (right - left); m[3][1] = -(top + bottom) / (top - bottom); m[3][2] = -(far + near) / (far - near); return m; } // Quaternion operations conj :: proc(q: Quat) -> Quat { return Quat{-q.x, -q.y, -q.z, q.w}; } quat_mul :: proc(q0, q1: Quat) -> Quat { d: Quat; d.x = q0.w * q1.x + q0.x * q1.w + q0.y * q1.z - q0.z * q1.y; d.y = q0.w * q1.y - q0.x * q1.z + q0.y * q1.w + q0.z * q1.x; d.z = q0.w * q1.z + q0.x * q1.y - q0.y * q1.x + q0.z * q1.w; d.w = q0.w * q1.w - q0.x * q1.x - q0.y * q1.y - q0.z * q1.z; return d; } quat_mulf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x*f, q.y*f, q.z*f, q.w*f}; } quat_divf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x/f, q.y/f, q.z/f, q.w/f}; } quat_div :: proc(q0, q1: Quat) -> Quat { return mul(q0, quat_inverse(q1)); } quat_inverse :: proc(q: Quat) -> Quat { return div(conj(q), dot(q, q)); } quat_dot :: proc(q0, q1: Quat) -> f32 { return q0.x*q1.x + q0.y*q1.y + q0.z*q1.z + q0.w*q1.w; } quat_norm :: proc(q: Quat) -> Quat { m := sqrt(dot(q, q)); return div(q, m); } axis_angle :: proc(axis: Vec3, angle_radians: f32) -> Quat { v := norm(axis) * sin(0.5*angle_radians); w := cos(0.5*angle_radians); return Quat{v.x, v.y, v.z, w}; } euler_angles :: proc(pitch, yaw, roll: f32) -> Quat { p := axis_angle(Vec3{1, 0, 0}, pitch); y := axis_angle(Vec3{0, 1, 0}, yaw); r := axis_angle(Vec3{0, 0, 1}, roll); return mul(mul(y, p), r); } quat_to_mat4 :: proc(q: Quat) -> Mat4 { a := quat_norm(q); xx := a.x*a.x; yy := a.y*a.y; zz := a.z*a.z; xy := a.x*a.y; xz := a.x*a.z; yz := a.y*a.z; wx := a.w*a.x; wy := a.w*a.y; wz := a.w*a.z; m := identity(Mat4); m[0][0] = 1 - 2*(yy + zz); m[0][1] = 2*(xy + wz); m[0][2] = 2*(xz - wy); m[1][0] = 2*(xy - wz); m[1][1] = 1 - 2*(xx + zz); m[1][2] = 2*(yz + wx); m[2][0] = 2*(xz + wy); m[2][1] = 2*(yz - wx); m[2][2] = 1 - 2*(xx + yy); return m; } F32_DIG :: 6; F32_EPSILON :: 1.192092896e-07; F32_GUARD :: 0; F32_MANT_DIG :: 24; F32_MAX :: 3.402823466e+38; F32_MAX_10_EXP :: 38; F32_MAX_EXP :: 128; F32_MIN :: 1.175494351e-38; F32_MIN_10_EXP :: -37; F32_MIN_EXP :: -125; F32_NORMALIZE :: 0; F32_RADIX :: 2; F32_ROUNDS :: 1; F64_DIG :: 15; // # of decimal digits of precision F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0 F64_MANT_DIG :: 53; // # of bits in mantissa F64_MAX :: 1.7976931348623158e+308; // max value F64_MAX_10_EXP :: 308; // max decimal exponent F64_MAX_EXP :: 1024; // max binary exponent F64_MIN :: 2.2250738585072014e-308; // min positive value F64_MIN_10_EXP :: -307; // min decimal exponent F64_MIN_EXP :: -1021; // min binary exponent F64_RADIX :: 2; // exponent radix F64_ROUNDS :: 1; // addition rounding: near