package fmt import "core:runtime" import "core:os" import "core:mem" import "core:math/bits" import "core:unicode/utf8" import "core:strconv" import "core:strings" import "core:reflect" @private DEFAULT_BUFFER_SIZE :: 1<<12; Info :: struct { minus: bool, plus: bool, space: bool, zero: bool, hash: bool, width_set: bool, prec_set: bool, width: int, prec: int, indent: int, reordered: bool, good_arg_index: bool, buf: ^strings.Builder, arg: any, // Temporary record_level: int, } fprint :: proc(fd: os.Handle, args: ..any) -> int { data: [DEFAULT_BUFFER_SIZE]byte; buf := strings.builder_from_slice(data[:]); res := sbprint(&buf, ..args); os.write_string(fd, res); return len(res); } fprintln :: proc(fd: os.Handle, args: ..any) -> int { data: [DEFAULT_BUFFER_SIZE]byte; buf := strings.builder_from_slice(data[:]); res := sbprintln(&buf, ..args); os.write_string(fd, res); return len(res); } fprintf :: proc(fd: os.Handle, fmt: string, args: ..any) -> int { data: [DEFAULT_BUFFER_SIZE]byte; buf := strings.builder_from_slice(data[:]); res := sbprintf(&buf, fmt, ..args); os.write_string(fd, res); return len(res); } // print* procedures return the number of bytes written print :: proc(args: ..any) -> int { return fprint(context.stdout, ..args); } println :: proc(args: ..any) -> int { return fprintln(context.stdout, ..args); } printf :: proc(fmt: string, args: ..any) -> int { return fprintf(context.stdout, fmt, ..args); } eprint :: proc(args: ..any) -> int { return fprint(context.stderr, ..args); } eprintln :: proc(args: ..any) -> int { return fprintln(context.stderr, ..args); } eprintf :: proc(fmt: string, args: ..any) -> int { return fprintf(context.stderr, fmt, ..args); } @(deprecated="prefer eprint") print_err :: proc(args: ..any) -> int { return eprint(..args); } @(deprecated="prefer eprintf") printf_err :: proc(fmt: string, args: ..any) -> int { return eprintf(fmt, ..args); } @(deprecated="prefer eprintln") println_err :: proc(args: ..any) -> int { return eprintln(..args); } // aprint* procedures return a string that was allocated with the current context // They must be freed accordingly aprint :: proc(args: ..any) -> string { str := strings.make_builder(); sbprint(&str, ..args); return strings.to_string(str); } aprintln :: proc(args: ..any) -> string { str := strings.make_builder(); sbprintln(&str, ..args); return strings.to_string(str); } aprintf :: proc(fmt: string, args: ..any) -> string { str := strings.make_builder(); sbprintf(&str, fmt, ..args); return strings.to_string(str); } // tprint* procedures return a string that was allocated with the current context's temporary allocator tprint :: proc(args: ..any) -> string { str := strings.make_builder(context.temp_allocator); sbprint(&str, ..args); return strings.to_string(str); } tprintln :: proc(args: ..any) -> string { str := strings.make_builder(context.temp_allocator); sbprintln(&str, ..args); return strings.to_string(str); } tprintf :: proc(fmt: string, args: ..any) -> string { str := strings.make_builder(context.temp_allocator); sbprintf(&str, fmt, ..args); return strings.to_string(str); } // bprint* procedures return a string using a buffer from an array bprint :: proc(buf: []byte, args: ..any) -> string { sb := strings.builder_from_slice(buf[0:len(buf)]); return sbprint(&sb, ..args); } bprintln :: proc(buf: []byte, args: ..any) -> string { sb := strings.builder_from_slice(buf[0:len(buf)]); return sbprintln(&sb, ..args); } bprintf :: proc(buf: []byte, fmt: string, args: ..any) -> string { sb := strings.builder_from_slice(buf[0:len(buf)]); return sbprintf(&sb, fmt, ..args); } assertf :: proc "contextless" (condition: bool, fmt: string, args: ..any, loc := #caller_location) -> bool { if !condition { p := context.assertion_failure_proc; if p == nil { p = runtime.default_assertion_failure_proc; } message := tprintf(fmt, ..args); p("Runtime assertion", message, loc); } return condition; } panicf :: proc "contextless" (fmt: string, args: ..any, loc := #caller_location) { p := context.assertion_failure_proc; if p == nil { p = runtime.default_assertion_failure_proc; } message := tprintf(fmt, ..args); p("Panic", message, loc); } fprint_type :: proc(fd: os.Handle, info: ^runtime.Type_Info) { data: [DEFAULT_BUFFER_SIZE]byte; buf := strings.builder_from_slice(data[:]); reflect.write_type(&buf, info); os.write_string(fd, strings.to_string(buf)); } sbprint :: proc(buf: ^strings.Builder, args: ..any) -> string { fi: Info; prev_string := false; fi.buf = buf; for arg, i in args { is_string := arg != nil && reflect.is_string(type_info_of(arg.id)); if i > 0 && !is_string && !prev_string { strings.write_byte(buf, ' '); } fmt_value(&fi, args[i], 'v'); prev_string = is_string; } return strings.to_string(buf^); } sbprintln :: proc(buf: ^strings.Builder, args: ..any) -> string { fi: Info; fi.buf = buf; for _, i in args { if i > 0 do strings.write_byte(buf, ' '); fmt_value(&fi, args[i], 'v'); } strings.write_byte(buf, '\n'); return strings.to_string(buf^); } sbprintf :: proc(b: ^strings.Builder, fmt: string, args: ..any) -> string { fi: Info; arg_index: int = 0; end := len(fmt); was_prev_index := false; loop: for i := 0; i < end; /**/ { fi = Info{buf = b, good_arg_index = true}; prev_i := i; for i < end && fmt[i] != '%' { i += 1; } if i > prev_i { strings.write_string(b, fmt[prev_i:i]); } if i >= end { break loop; } // Process a "verb" i += 1; prefix_loop: for ; i < end; i += 1 { switch fmt[i] { case '+': fi.plus = true; case '-': fi.minus = true; fi.zero = false; case ' ': fi.space = true; case '#': fi.hash = true; case '0': fi.zero = !fi.minus; case: break prefix_loop; } } arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args)); // Width if i < end && fmt[i] == '*' { i += 1; fi.width, arg_index, fi.width_set = int_from_arg(args, arg_index); if !fi.width_set { strings.write_string(b, "%!(BAD WIDTH)"); } if fi.width < 0 { fi.width = -fi.width; fi.minus = true; fi.zero = false; } was_prev_index = false; } else { fi.width, i, fi.width_set = _parse_int(fmt, i); if was_prev_index && fi.width_set { // %[6]2d fi.good_arg_index = false; } } // Precision if i < end && fmt[i] == '.' { i += 1; if was_prev_index { // %[6].2d fi.good_arg_index = false; } if i < end && fmt[i] == '*' { arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args)); i += 1; fi.prec, arg_index, fi.prec_set = int_from_arg(args, arg_index); if fi.prec < 0 { fi.prec = 0; fi.prec_set = false; } if !fi.prec_set { strings.write_string(fi.buf, "%!(BAD PRECISION)"); } was_prev_index = false; } else { fi.prec, i, fi.prec_set = _parse_int(fmt, i); if !fi.prec_set { // fi.prec_set = true; // fi.prec = 0; } } } if !was_prev_index { arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args)); } if i >= end { strings.write_string(b, "%!(NO VERB)"); break loop; } verb, w := utf8.decode_rune_in_string(fmt[i:]); i += w; switch { case verb == '%': strings.write_byte(b, '%'); case !fi.good_arg_index: strings.write_string(b, "%!(BAD ARGUMENT NUMBER)"); case arg_index >= len(args): strings.write_string(b, "%!(MISSING ARGUMENT)"); case: fmt_arg(&fi, args[arg_index], verb); arg_index += 1; } } if !fi.reordered && arg_index < len(args) { strings.write_string(b, "%!(EXTRA "); for arg, index in args[arg_index:] { if index > 0 do strings.write_string(b, ", "); if arg == nil do strings.write_string(b, ""); else do fmt_arg(&fi, args[index], 'v'); } strings.write_string(b, ")"); } return strings.to_string(b^); } _parse_int :: proc(s: string, offset: int) -> (result: int, new_offset: int, ok: bool) { is_digit :: inline proc(r: byte) -> bool { return '0' <= r && r <= '9' } new_offset = offset; for new_offset <= len(s) { c := s[new_offset]; if !is_digit(c) do break; new_offset += 1; result *= 10; result += int(c)-'0'; } ok = new_offset > offset; return; } _arg_number :: proc(fi: ^Info, arg_index: int, format: string, offset, arg_count: int) -> (index, new_offset: int, ok: bool) { parse_arg_number :: proc(format: string) -> (int, int, bool) { if len(format) < 3 do return 0, 1, false; for i in 1.. (int, int, bool) { num := 0; new_arg_index := arg_index; ok := true; if arg_index < len(args) { arg := args[arg_index]; arg.id = runtime.typeid_base(arg.id); switch i in arg { case int: num = i; case i8: num = int(i); case i16: num = int(i); case i32: num = int(i); case i64: num = int(i); case u8: num = int(i); case u16: num = int(i); case u32: num = int(i); case u64: num = int(i); case: ok = false; } } if ok { new_arg_index += 1; } return num, new_arg_index, ok; } fmt_bad_verb :: proc(using fi: ^Info, verb: rune) { strings.write_string(buf, "%!"); strings.write_rune(buf, verb); strings.write_byte(buf, '('); if arg.id != nil { reflect.write_typeid(buf, arg.id); strings.write_byte(buf, '='); fmt_value(fi, arg, 'v'); } else { strings.write_string(buf, ""); } strings.write_byte(buf, ')'); } fmt_bool :: proc(using fi: ^Info, b: bool, verb: rune) { switch verb { case 't', 'v': strings.write_string(buf, b ? "true" : "false"); case: fmt_bad_verb(fi, verb); } } fmt_write_padding :: proc(fi: ^Info, width: int) { if width <= 0 do return; pad_byte: byte = '0'; if fi.space do pad_byte = ' '; for i := 0; i < width; i += 1 { strings.write_byte(fi.buf, pad_byte); } } _fmt_int :: proc(fi: ^Info, u: u64, base: int, is_signed: bool, bit_size: int, digits: string) { _, neg := strconv.is_integer_negative(u, is_signed, bit_size); BUF_SIZE :: 256; if fi.width_set || fi.prec_set { width := fi.width + fi.prec + 3; // 3 extra bytes for sign and prefix if width > BUF_SIZE { // TODO(bill):???? panic("_fmt_int: buffer overrun. Width and precision too big"); } } prec := 0; if fi.prec_set { prec = fi.prec; if prec == 0 && u == 0 { prev_zero := fi.zero; fi.zero = false; fmt_write_padding(fi, fi.width); fi.zero = prev_zero; return; } } else if fi.zero && fi.width_set { prec = fi.width; if neg || fi.plus || fi.space { // There needs to be space for the "sign" prec -= 1; } } switch base { case 2, 8, 10, 12, 16: break; case: panic("_fmt_int: unknown base, whoops"); } buf: [256]byte; start := 0; flags: strconv.Int_Flags; if fi.hash && !fi.zero do flags |= {.Prefix}; if fi.plus do flags |= {.Plus}; if fi.space do flags |= {.Space}; s := strconv.append_bits(buf[start:], u, base, is_signed, bit_size, digits, flags); if fi.hash && fi.zero { c: byte = 0; switch base { case 2: c = 'b'; case 8: c = 'o'; case 12: c = 'z'; case 16: c = 'x'; } if c != 0 { strings.write_byte(fi.buf, '0'); strings.write_byte(fi.buf, c); } } prev_zero := fi.zero; defer fi.zero = prev_zero; fi.zero = false; _pad(fi, s); } _fmt_int_128 :: proc(fi: ^Info, u: u128, base: int, is_signed: bool, bit_size: int, digits: string) { _, neg := strconv.is_integer_negative_128(u, is_signed, bit_size); BUF_SIZE :: 256; if fi.width_set || fi.prec_set { width := fi.width + fi.prec + 3; // 3 extra bytes for sign and prefix if width > BUF_SIZE { // TODO(bill):???? panic("_fmt_int: buffer overrun. Width and precision too big"); } } prec := 0; if fi.prec_set { prec = fi.prec; if prec == 0 && u == 0 { prev_zero := fi.zero; fi.zero = false; fmt_write_padding(fi, fi.width); fi.zero = prev_zero; return; } } else if fi.zero && fi.width_set { prec = fi.width; if neg || fi.plus || fi.space { // There needs to be space for the "sign" prec -= 1; } } switch base { case 2, 8, 10, 12, 16: break; case: panic("_fmt_int: unknown base, whoops"); } buf: [256]byte; start := 0; flags: strconv.Int_Flags; if fi.hash && !fi.zero do flags |= {.Prefix}; if fi.plus do flags |= {.Plus}; if fi.space do flags |= {.Space}; s := strconv.append_bits_128(buf[start:], u, base, is_signed, bit_size, digits, flags); if fi.hash && fi.zero { c: byte = 0; switch base { case 2: c = 'b'; case 8: c = 'o'; case 12: c = 'z'; case 16: c = 'x'; } if c != 0 { strings.write_byte(fi.buf, '0'); strings.write_byte(fi.buf, c); } } prev_zero := fi.zero; defer fi.zero = prev_zero; fi.zero = false; _pad(fi, s); } __DIGITS_LOWER := "0123456789abcdefx"; __DIGITS_UPPER := "0123456789ABCDEFX"; fmt_rune :: proc(fi: ^Info, r: rune, verb: rune) { switch verb { case 'c', 'r', 'v': strings.write_rune(fi.buf, r); case: fmt_int(fi, u64(r), false, 32, verb); } } fmt_int :: proc(fi: ^Info, u: u64, is_signed: bool, bit_size: int, verb: rune) { switch verb { case 'v': _fmt_int(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER); case 'b': _fmt_int(fi, u, 2, is_signed, bit_size, __DIGITS_LOWER); case 'o': _fmt_int(fi, u, 8, is_signed, bit_size, __DIGITS_LOWER); case 'd': _fmt_int(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER); case 'z': _fmt_int(fi, u, 12, is_signed, bit_size, __DIGITS_LOWER); case 'x': _fmt_int(fi, u, 16, is_signed, bit_size, __DIGITS_LOWER); case 'X': _fmt_int(fi, u, 16, is_signed, bit_size, __DIGITS_UPPER); case 'c', 'r': fmt_rune(fi, rune(u), verb); case 'U': r := rune(u); if r < 0 || r > utf8.MAX_RUNE { fmt_bad_verb(fi, verb); } else { strings.write_string(fi.buf, "U+"); _fmt_int(fi, u, 16, false, bit_size, __DIGITS_UPPER); } case: fmt_bad_verb(fi, verb); } } fmt_int_128 :: proc(fi: ^Info, u: u128, is_signed: bool, bit_size: int, verb: rune) { switch verb { case 'v': _fmt_int_128(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER); case 'b': _fmt_int_128(fi, u, 2, is_signed, bit_size, __DIGITS_LOWER); case 'o': _fmt_int_128(fi, u, 8, is_signed, bit_size, __DIGITS_LOWER); case 'd': _fmt_int_128(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER); case 'z': _fmt_int_128(fi, u, 12, is_signed, bit_size, __DIGITS_LOWER); case 'x': _fmt_int_128(fi, u, 16, is_signed, bit_size, __DIGITS_LOWER); case 'X': _fmt_int_128(fi, u, 16, is_signed, bit_size, __DIGITS_UPPER); case 'c', 'r': fmt_rune(fi, rune(u), verb); case 'U': r := rune(u); if r < 0 || r > utf8.MAX_RUNE { fmt_bad_verb(fi, verb); } else { strings.write_string(fi.buf, "U+"); _fmt_int_128(fi, u, 16, false, bit_size, __DIGITS_UPPER); } case: fmt_bad_verb(fi, verb); } } _pad :: proc(fi: ^Info, s: string) { if !fi.width_set { strings.write_string(fi.buf, s); return; } width := fi.width - utf8.rune_count_in_string(s); if fi.minus { // right pad strings.write_string(fi.buf, s); fmt_write_padding(fi, width); } else { // left pad fmt_write_padding(fi, width); strings.write_string(fi.buf, s); } } fmt_float :: proc(fi: ^Info, v: f64, bit_size: int, verb: rune) { switch verb { case 'f', 'F', 'v': prec: int = 3; if fi.prec_set do prec = fi.prec; buf: [386]byte; str := strconv.append_float(buf[1:], v, 'f', prec, bit_size); str = string(buf[:len(str)+1]); if str[1] == '+' || str[1] == '-' { str = str[1:]; } else { str[0] = '+'; } if fi.space && !fi.plus && str[0] == '+' { str[0] = ' '; } if len(str) > 1 && (str[1] == 'N' || str[1] == 'I') { strings.write_string(fi.buf, str); return; } if fi.plus || str[0] != '+' { if fi.zero && fi.width_set && fi.width > len(str) { strings.write_byte(fi.buf, str[0]); fmt_write_padding(fi, fi.width - len(str)); strings.write_string(fi.buf, str[1:]); } else { _pad(fi, str); } } else { _pad(fi, str[1:]); } case 'e', 'E': prec: int = 3; if fi.prec_set do prec = fi.prec; buf: [386]byte; str := strconv.append_float(buf[1:], v, 'e', prec, bit_size); str = string(buf[:len(str)+1]); if str[1] == '+' || str[1] == '-' { str = str[1:]; } else { str[0] = '+'; } if fi.space && !fi.plus && str[0] == '+' { str[0] = ' '; } if len(str) > 1 && (str[1] == 'N' || str[1] == 'I') { strings.write_string(fi.buf, str); return; } if fi.plus || str[0] != '+' { if fi.zero && fi.width_set && fi.width > len(str) { strings.write_byte(fi.buf, str[0]); fmt_write_padding(fi, fi.width - len(str)); strings.write_string(fi.buf, str[1:]); } else { _pad(fi, str); } } else { _pad(fi, str[1:]); } case 'h', 'H': prev_fi := fi^; defer fi^ = prev_fi; fi.hash = false; fi.width = bit_size; fi.zero = true; fi.plus = false; u: u64; switch bit_size { case 32: u = u64(transmute(u32)f32(v)); case 64: u = transmute(u64)v; case: panic("Unhandled float size"); } strings.write_string(fi.buf, "0h"); _fmt_int(fi, u, 16, false, bit_size, verb == 'h' ? __DIGITS_LOWER : __DIGITS_UPPER); case: fmt_bad_verb(fi, verb); } } fmt_string :: proc(fi: ^Info, s: string, verb: rune) { switch verb { case 's', 'v': strings.write_string(fi.buf, s); case 'q': // quoted string strings.write_quoted_string(fi.buf, s, '"'); case 'x', 'X': space := fi.space; fi.space = false; defer fi.space = space; for i in 0.. 0 && space do strings.write_byte(fi.buf, ' '); char_set := __DIGITS_UPPER; if verb == 'x' do char_set = __DIGITS_LOWER; _fmt_int(fi, u64(s[i]), 16, false, 8, char_set); } case: fmt_bad_verb(fi, verb); } } fmt_cstring :: proc(fi: ^Info, s: cstring, verb: rune) { fmt_string(fi, string(s), verb); } fmt_pointer :: proc(fi: ^Info, p: rawptr, verb: rune) { u := u64(uintptr(p)); switch verb { case 'p', 'v': if !fi.hash || verb == 'v' { strings.write_string(fi.buf, "0x"); } _fmt_int(fi, u, 16, false, 8*size_of(rawptr), __DIGITS_UPPER); case 'b': _fmt_int(fi, u, 2, false, 8*size_of(rawptr), __DIGITS_UPPER); case 'o': _fmt_int(fi, u, 8, false, 8*size_of(rawptr), __DIGITS_UPPER); case 'd': _fmt_int(fi, u, 10, false, 8*size_of(rawptr), __DIGITS_UPPER); case 'x': _fmt_int(fi, u, 16, false, 8*size_of(rawptr), __DIGITS_UPPER); case 'X': _fmt_int(fi, u, 16, false, 8*size_of(rawptr), __DIGITS_UPPER); case: fmt_bad_verb(fi, verb); } } enum_value_to_string :: proc(val: any) -> (string, bool) { v := val; v.id = runtime.typeid_base(v.id); type_info := type_info_of(v.id); switch e in type_info.variant { case: return "", false; case runtime.Type_Info_Enum: get_str :: proc(i: $T, e: runtime.Type_Info_Enum) -> (string, bool) { if reflect.is_string(e.base) { for val, idx in e.values { if v, ok := val.(T); ok && v == i { return e.names[idx], true; } } } else if len(e.values) == 0 { return "", true; } else { for val, idx in e.values { if v, ok := val.(T); ok && v == i { return e.names[idx], true; } } } return "", false; } a := any{v.data, runtime.type_info_base(e.base).id}; switch v in a { case rune: return get_str(v, e); case i8: return get_str(v, e); case i16: return get_str(v, e); case i32: return get_str(v, e); case i64: return get_str(v, e); case int: return get_str(v, e); case u8: return get_str(v, e); case u16: return get_str(v, e); case u32: return get_str(v, e); case u64: return get_str(v, e); case uint: return get_str(v, e); case uintptr: return get_str(v, e); } } return "", false; } string_to_enum_value :: proc($T: typeid, s: string) -> (T, bool) { ti := type_info_base(type_info_of(T)); if e, ok := ti.variant.(Type_Info_Enum); ok { for str, idx in e.names { if s == str { // NOTE(bill): Unsafe cast ptr := cast(^T)&e.values[idx]; return ptr^, true; } } } return T{}, false; } fmt_enum :: proc(fi: ^Info, v: any, verb: rune) { if v.id == nil || v.data == nil { strings.write_string(fi.buf, ""); return; } type_info := type_info_of(v.id); switch e in type_info.variant { case: fmt_bad_verb(fi, verb); case runtime.Type_Info_Enum: switch verb { case: fmt_bad_verb(fi, verb); case 'd', 'f': fmt_arg(fi, any{v.data, runtime.type_info_base(e.base).id}, verb); case 's', 'v': str, ok := enum_value_to_string(v); if !ok do str = "!%(BAD ENUM VALUE)"; strings.write_string(fi.buf, str); } } } enum_value_to_u64 :: proc(ev: runtime.Type_Info_Enum_Value) -> u64 { switch i in ev { case rune: return u64(i); case i8: return u64(i); case i16: return u64(i); case i32: return u64(i); case i64: return u64(i); case int: return u64(i); case u8: return u64(i); case u16: return u64(i); case u32: return u64(i); case u64: return u64(i); case uint: return u64(i); case uintptr: return u64(i); } return 0; } fmt_bit_set :: proc(fi: ^Info, v: any, name: string = "") { is_bit_set_different_endian_to_platform :: proc(ti: ^runtime.Type_Info) -> bool { if ti == nil { return false; } t := runtime.type_info_base(ti); switch info in t.variant { case runtime.Type_Info_Integer: switch info.endianness { case .Platform: return false; case .Little: return ODIN_ENDIAN != "little"; case .Big: return ODIN_ENDIAN != "big"; } } return false; } byte_swap :: bits.byte_swap; type_info := type_info_of(v.id); switch info in type_info.variant { case runtime.Type_Info_Named: val := v; val.id = info.base.id; fmt_bit_set(fi, val, info.name); case runtime.Type_Info_Bit_Set: bits: u128; bit_size := u128(8*type_info.size); do_byte_swap := is_bit_set_different_endian_to_platform(info.underlying); switch bit_size { case 0: bits = 0; case 8: x := (^u8)(v.data)^; bits = u128(x); case 16: x := (^u16)(v.data)^; if do_byte_swap do x = byte_swap(x); bits = u128(x); case 32: x := (^u32)(v.data)^; if do_byte_swap do x = byte_swap(x); bits = u128(x); case 64: x := (^u64)(v.data)^; if do_byte_swap do x = byte_swap(x); bits = u128(x); case 128: x := (^u128)(v.data)^; if do_byte_swap do x = byte_swap(x); bits = u128(x); case: panic("unknown bit_size size"); } et := runtime.type_info_base(info.elem); if name != "" { strings.write_string(fi.buf, name); } else { reflect.write_type(fi.buf, type_info); } strings.write_byte(fi.buf, '{'); defer strings.write_byte(fi.buf, '}'); e, is_enum := et.variant.(runtime.Type_Info_Enum); commas := 0; loop: for i in 0 ..< bit_size { if bits & (1< 0 do strings.write_string(fi.buf, ", "); if is_enum do for ev, evi in e.values { v := enum_value_to_u64(ev); if v == u64(i) { strings.write_string(fi.buf, e.names[evi]); commas += 1; continue loop; } } strings.write_i64(fi.buf, i64(i), 10); commas += 1; } } } fmt_bit_field :: proc(fi: ^Info, v: any, bit_field_name: string = "") { type_info := type_info_of(v.id); switch info in type_info.variant { case runtime.Type_Info_Named: val := v; val.id = info.base.id; fmt_bit_field(fi, val, info.name); case runtime.Type_Info_Bit_Field: data: u64 = 0; switch type_info.size { case 1: data = cast(u64) (^u8)(v.data)^; case 2: data = cast(u64)(^u16)(v.data)^; case 4: data = cast(u64)(^u32)(v.data)^; case 8: data = cast(u64)(^u64)(v.data)^; } if bit_field_name != "" { strings.write_string(fi.buf, bit_field_name); strings.write_byte(fi.buf, '{'); } else { strings.write_string(fi.buf, "bit_field{"); } for name, i in info.names { if i > 0 { strings.write_string(fi.buf, ", "); } bits := u64(info.bits[i]); offset := u64(info.offsets[i]); strings.write_string(fi.buf, name); strings.write_string(fi.buf, " = "); n := 8*u64(size_of(u64)); sa := n - bits; u := data>>offset; u <<= sa; u >>= sa; strings.write_u64(fi.buf, u, 10); } strings.write_byte(fi.buf, '}'); } } fmt_opaque :: proc(fi: ^Info, v: any) { is_nil :: proc(data: rawptr, n: int) -> bool { if data == nil do return true; if n == 0 do return true; a := (^byte)(data); for i in 0.."); return; } type_info := type_info_of(v.id); switch info in type_info.variant { case runtime.Type_Info_Named: switch b in info.base.variant { case runtime.Type_Info_Struct: if verb != 'v' { fmt_bad_verb(fi, verb); return; } if b.is_raw_union { strings.write_string(fi.buf, info.name); strings.write_string(fi.buf, "{}"); return; }; strings.write_string(fi.buf, info.name); strings.write_byte(fi.buf, '{'); hash := fi.hash; defer fi.hash = hash; indent := fi.indent; defer fi.indent -= 1; fi.hash = false; fi.indent += 1; if hash do strings.write_byte(fi.buf, '\n'); field_count := -1; for name, i in b.names { // if len(name) > 0 && name[0] == '_' do continue; field_count += 1; if !hash && field_count > 0 do strings.write_string(fi.buf, ", "); if hash do for in 0.."); return; } if fi.record_level < 1 { fi.record_level += 1; defer fi.record_level -= 1; strings.write_byte(fi.buf, '&'); fmt_value(fi, a, verb); return; } case runtime.Type_Info_Struct, runtime.Type_Info_Union: if ptr == nil { strings.write_string(fi.buf, ""); return; } if fi.record_level < 1 { fi.record_level += 1; defer fi.record_level -= 1; strings.write_byte(fi.buf, '&'); fmt_value(fi, a, verb); return; } } } fmt_pointer(fi, ptr, verb); } case runtime.Type_Info_Array: strings.write_byte(fi.buf, '['); defer strings.write_byte(fi.buf, ']'); for i in 0.. 0 do strings.write_string(fi.buf, ", "); data := uintptr(v.data) + uintptr(i*info.elem_size); fmt_arg(fi, any{rawptr(data), info.elem.id}, verb); } case runtime.Type_Info_Dynamic_Array: if verb == 'p' { slice := cast(^mem.Raw_Dynamic_Array)v.data; fmt_pointer(fi, slice.data, 'p'); } else { strings.write_byte(fi.buf, '['); defer strings.write_byte(fi.buf, ']'); array := cast(^mem.Raw_Dynamic_Array)v.data; for i in 0.. 0 do strings.write_string(fi.buf, ", "); data := uintptr(array.data) + uintptr(i*info.elem_size); fmt_arg(fi, any{rawptr(data), info.elem.id}, verb); } } case runtime.Type_Info_Simd_Vector: if info.is_x86_mmx { strings.write_string(fi.buf, "intrinsics.x86_mmx<>"); } strings.write_byte(fi.buf, '<'); defer strings.write_byte(fi.buf, '>'); for i in 0.. 0 do strings.write_string(fi.buf, ", "); data := uintptr(v.data) + uintptr(i*info.elem_size); fmt_arg(fi, any{rawptr(data), info.elem.id}, verb); } case runtime.Type_Info_Slice: if verb == 'p' { slice := cast(^mem.Raw_Slice)v.data; fmt_pointer(fi, slice.data, 'p'); } else { strings.write_byte(fi.buf, '['); defer strings.write_byte(fi.buf, ']'); slice := cast(^mem.Raw_Slice)v.data; for i in 0.. 0 do strings.write_string(fi.buf, ", "); data := uintptr(slice.data) + uintptr(i*info.elem_size); fmt_arg(fi, any{rawptr(data), info.elem.id}, verb); } } case runtime.Type_Info_Map: if verb != 'v' { fmt_bad_verb(fi, verb); return; } strings.write_string(fi.buf, "map["); defer strings.write_byte(fi.buf, ']'); m := (^mem.Raw_Map)(v.data); if m != nil { if info.generated_struct == nil { return; } entries := &m.entries; gs := runtime.type_info_base(info.generated_struct).variant.(runtime.Type_Info_Struct); ed := runtime.type_info_base(gs.types[1]).variant.(runtime.Type_Info_Dynamic_Array); entry_type := ed.elem.variant.(runtime.Type_Info_Struct); entry_size := ed.elem_size; for i in 0.. 0 do strings.write_string(fi.buf, ", "); data := uintptr(entries.data) + uintptr(i*entry_size); header := cast(^runtime.Map_Entry_Header)data; if reflect.is_string(info.key) { strings.write_string(fi.buf, header.key.str); } else { fi := Info{buf = fi.buf}; fmt_arg(&fi, any{rawptr(&header.key.hash), info.key.id}, 'v'); } strings.write_string(fi.buf, "="); value := data + entry_type.offsets[2]; fmt_arg(fi, any{rawptr(value), info.value.id}, 'v'); } } case runtime.Type_Info_Struct: if info.is_raw_union { strings.write_string(fi.buf, "(raw_union)"); return; } strings.write_byte(fi.buf, '{'); defer strings.write_byte(fi.buf, '}'); fi.indent += 1; defer fi.indent -= 1; hash := fi.hash; defer fi.hash = hash; fi.hash = false; if hash do strings.write_byte(fi.buf, '\n'); for _, i in info.names { if !hash && i > 0 do strings.write_string(fi.buf, ", "); if hash { for in 0..= 0); if v.data == nil { strings.write_string(fi.buf, "nil"); } else if info.no_nil { id := info.variants[tag].id; fmt_arg(fi, any{v.data, id}, verb); } else if tag == 0 { strings.write_string(fi.buf, "nil"); } else { id := info.variants[tag-1].id; fmt_arg(fi, any{v.data, id}, verb); } case runtime.Type_Info_Enum: fmt_enum(fi, v, verb); case runtime.Type_Info_Procedure: ptr := (^rawptr)(v.data)^; if ptr == nil { strings.write_string(fi.buf, "nil"); } else { reflect.write_typeid(fi.buf, v.id); strings.write_string(fi.buf, " @ "); fmt_pointer(fi, ptr, 'p'); } case runtime.Type_Info_Type_Id: id := (^typeid)(v.data)^; reflect.write_typeid(fi.buf, id); case runtime.Type_Info_Bit_Field: fmt_bit_field(fi, v); case runtime.Type_Info_Bit_Set: fmt_bit_set(fi, v); case runtime.Type_Info_Opaque: fmt_opaque(fi, v); } } fmt_complex :: proc(fi: ^Info, c: complex128, bits: int, verb: rune) { switch verb { case 'f', 'F', 'v', 'h', 'H': r, i := real(c), imag(c); fmt_float(fi, r, bits/2, verb); if !fi.plus && i >= 0 { strings.write_rune(fi.buf, '+'); } fmt_float(fi, i, bits/2, verb); strings.write_rune(fi.buf, 'i'); case: fmt_bad_verb(fi, verb); return; } } fmt_quaternion :: proc(fi: ^Info, q: quaternion256, bits: int, verb: rune) { switch verb { case 'f', 'F', 'v', 'h', 'H': r, i, j, k := real(q), imag(q), jmag(q), kmag(q); fmt_float(fi, r, bits/4, verb); if !fi.plus && i >= 0 do strings.write_rune(fi.buf, '+'); fmt_float(fi, i, bits/4, verb); strings.write_rune(fi.buf, 'i'); if !fi.plus && j >= 0 do strings.write_rune(fi.buf, '+'); fmt_float(fi, j, bits/4, verb); strings.write_rune(fi.buf, 'j'); if !fi.plus && k >= 0 do strings.write_rune(fi.buf, '+'); fmt_float(fi, k, bits/4, verb); strings.write_rune(fi.buf, 'k'); case: fmt_bad_verb(fi, verb); return; } } fmt_arg :: proc(fi: ^Info, arg: any, verb: rune) { if arg == nil { strings.write_string(fi.buf, ""); return; } fi.arg = arg; if verb == 'T' { ti := type_info_of(arg.id); switch a in arg { case ^runtime.Type_Info: ti = a; } reflect.write_type(fi.buf, ti); return; } custom_types: switch a in arg { case runtime.Source_Code_Location: if fi.hash && verb == 'v' { strings.write_string(fi.buf, a.file_path); strings.write_byte(fi.buf, '('); strings.write_i64(fi.buf, i64(a.line), 10); strings.write_byte(fi.buf, ':'); strings.write_i64(fi.buf, i64(a.column), 10); strings.write_byte(fi.buf, ')'); return; } } base_arg := arg; base_arg.id = runtime.typeid_base(base_arg.id); switch a in base_arg { case bool: fmt_bool(fi, bool(a), verb); case b8: fmt_bool(fi, bool(a), verb); case b16: fmt_bool(fi, bool(a), verb); case b32: fmt_bool(fi, bool(a), verb); case b64: fmt_bool(fi, bool(a), verb); case any: fmt_arg(fi, a, verb); case rune: fmt_rune(fi, a, verb); case f32: fmt_float(fi, f64(a), 32, verb); case f64: fmt_float(fi, a, 64, verb); case complex64: fmt_complex(fi, complex128(a), 64, verb); case complex128: fmt_complex(fi, a, 128, verb); case quaternion128: fmt_quaternion(fi, quaternion256(a), 128, verb); case quaternion256: fmt_quaternion(fi, a, 256, verb); case i8: fmt_int(fi, u64(a), true, 8, verb); case u8: fmt_int(fi, u64(a), false, 8, verb); case i16: fmt_int(fi, u64(a), true, 16, verb); case u16: fmt_int(fi, u64(a), false, 16, verb); case i32: fmt_int(fi, u64(a), true, 32, verb); case u32: fmt_int(fi, u64(a), false, 32, verb); case i64: fmt_int(fi, u64(a), true, 64, verb); case u64: fmt_int(fi, u64(a), false, 64, verb); case int: fmt_int(fi, u64(a), true, 8*size_of(int), verb); case uint: fmt_int(fi, u64(a), false, 8*size_of(uint), verb); case uintptr: fmt_int(fi, u64(a), false, 8*size_of(uintptr), verb); case string: fmt_string(fi, a, verb); case cstring: fmt_cstring(fi, a, verb); case typeid: reflect.write_typeid(fi.buf, a); case i16le: fmt_int(fi, u64(a), true, 16, verb); case u16le: fmt_int(fi, u64(a), false, 16, verb); case i32le: fmt_int(fi, u64(a), true, 32, verb); case u32le: fmt_int(fi, u64(a), false, 32, verb); case i64le: fmt_int(fi, u64(a), true, 64, verb); case u64le: fmt_int(fi, u64(a), false, 64, verb); case i16be: fmt_int(fi, u64(a), true, 16, verb); case u16be: fmt_int(fi, u64(a), false, 16, verb); case i32be: fmt_int(fi, u64(a), true, 32, verb); case u32be: fmt_int(fi, u64(a), false, 32, verb); case i64be: fmt_int(fi, u64(a), true, 64, verb); case u64be: fmt_int(fi, u64(a), false, 64, verb); case i128: fmt_int_128(fi, u128(a), true, 128, verb); case u128: fmt_int_128(fi, u128(a), false, 128, verb); case i128le: fmt_int_128(fi, u128(a), true, 128, verb); case u128le: fmt_int_128(fi, u128(a), false, 128, verb); case i128be: fmt_int_128(fi, u128(a), true, 128, verb); case u128be: fmt_int_128(fi, u128(a), false, 128, verb); case: fmt_value(fi, arg, verb); } }