package math import "intrinsics" Float_Class :: enum { Normal, // an ordinary nonzero floating point value Subnormal, // a subnormal floating point value Zero, // zero Neg_Zero, // the negative zero NaN, // Not-A-Number (NaN) Inf, // positive infinity Neg_Inf // negative infinity }; TAU :: 6.28318530717958647692528676655900576; PI :: 3.14159265358979323846264338327950288; E :: 2.71828182845904523536; τ :: TAU; π :: PI; e :: E; SQRT_TWO :: 1.41421356237309504880168872420969808; SQRT_THREE :: 1.73205080756887729352744634150587236; SQRT_FIVE :: 2.23606797749978969640917366873127623; LN2 :: 0.693147180559945309417232121458176568; LN10 :: 2.30258509299404568401799145468436421; MAX_F64_PRECISION :: 16; // Maximum number of meaningful digits after the decimal point for 'f64' MAX_F32_PRECISION :: 8; // Maximum number of meaningful digits after the decimal point for 'f32' RAD_PER_DEG :: TAU/360.0; DEG_PER_RAD :: 360.0/TAU; @(default_calling_convention="none") foreign _ { @(link_name="llvm.sqrt.f32") sqrt_f32 :: proc(x: f32) -> f32 ---; @(link_name="llvm.sqrt.f64") sqrt_f64 :: proc(x: f64) -> f64 ---; @(link_name="llvm.sin.f32") sin_f32 :: proc(θ: f32) -> f32 ---; @(link_name="llvm.sin.f64") sin_f64 :: proc(θ: f64) -> f64 ---; @(link_name="llvm.cos.f32") cos_f32 :: proc(θ: f32) -> f32 ---; @(link_name="llvm.cos.f64") cos_f64 :: proc(θ: f64) -> f64 ---; @(link_name="llvm.pow.f32") pow_f32 :: proc(x, power: f32) -> f32 ---; @(link_name="llvm.pow.f64") pow_f64 :: proc(x, power: f64) -> f64 ---; @(link_name="llvm.fmuladd.f32") fmuladd_f32 :: proc(a, b, c: f32) -> f32 ---; @(link_name="llvm.fmuladd.f64") fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---; @(link_name="llvm.log.f32") ln_f32 :: proc(x: f32) -> f32 ---; @(link_name="llvm.log.f64") ln_f64 :: proc(x: f64) -> f64 ---; @(link_name="llvm.exp.f32") exp_f32 :: proc(x: f32) -> f32 ---; @(link_name="llvm.exp.f64") exp_f64 :: proc(x: f64) -> f64 ---; } sqrt :: proc{sqrt_f32, sqrt_f64}; sin :: proc{sin_f32, sin_f64}; cos :: proc{cos_f32, cos_f64}; pow :: proc{pow_f32, pow_f64}; fmuladd :: proc{fmuladd_f32, fmuladd_f64}; ln :: proc{ln_f32, ln_f64}; exp :: proc{exp_f32, exp_f64}; log_f32 :: proc(x, base: f32) -> f32 { return ln(x) / ln(base); } log_f64 :: proc(x, base: f64) -> f64 { return ln(x) / ln(base); } log :: proc{log_f32, log_f64}; log2_f32 :: proc(x: f32) -> f32 { return ln(x)/LN2; } log2_f64 :: proc(x: f64) -> f64 { return ln(x)/LN2; } log2 :: proc{log2_f32, log2_f64}; log10_f32 :: proc(x: f32) -> f32 { return ln(x)/LN10; } log10_f64 :: proc(x: f64) -> f64 { return ln(x)/LN10; } log10 :: proc{log10_f32, log10_f64}; tan_f32 :: proc "c" (θ: f32) -> f32 { return sin(θ)/cos(θ); } tan_f64 :: proc "c" (θ: f64) -> f64 { return sin(θ)/cos(θ); } tan :: proc{tan_f32, tan_f64}; lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; } unlerp_f32 :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); } unlerp_f64 :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); } unlerp :: proc{unlerp_f32, unlerp_f64}; sign_f32 :: proc(x: f32) -> f32 { return f32(int(0 < x) - int(x < 0)); } sign_f64 :: proc(x: f64) -> f64 { return f64(int(0 < x) - int(x < 0)); } sign :: proc{sign_f32, sign_f64}; copy_sign_f32 :: proc(x, y: f32) -> f32 { ix := transmute(u32)x; iy := transmute(u32)y; ix &= 0x7fff_ffff; ix |= iy & 0x8000_0000; return transmute(f32)ix; } copy_sign_f64 :: proc(x, y: f64) -> f64 { ix := transmute(u64)x; iy := transmute(u64)y; ix &= 0x7fff_ffff_ffff_ffff; ix |= iy & 0x8000_0000_0000_0000; return transmute(f64)ix; } copy_sign :: proc{copy_sign_f32, copy_sign_f64}; to_radians_f32 :: proc(degrees: f32) -> f32 { return degrees * RAD_PER_DEG; } to_radians_f64 :: proc(degrees: f64) -> f64 { return degrees * RAD_PER_DEG; } to_degrees_f32 :: proc(radians: f32) -> f32 { return radians * DEG_PER_RAD; } to_degrees_f64 :: proc(radians: f64) -> f64 { return radians * DEG_PER_RAD; } to_radians :: proc{to_radians_f32, to_radians_f64}; to_degrees :: proc{to_degrees_f32, to_degrees_f64}; trunc_f32 :: proc(x: f32) -> f32 { trunc_internal :: proc(f: f32) -> f32 { mask :: 0xff; shift :: 32 - 9; bias :: 0x7f; if f < 1 { switch { case f < 0: return -trunc_internal(-f); case f == 0: return f; case: return 0; } } x := transmute(u32)f; e := (x >> shift) & mask - bias; if e < shift { x &= ~(1 << (shift-e)) - 1; } return transmute(f32)x; } switch classify(x) { case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf: return x; } return trunc_internal(x); } trunc_f64 :: proc(x: f64) -> f64 { trunc_internal :: proc(f: f64) -> f64 { mask :: 0x7ff; shift :: 64 - 12; bias :: 0x3ff; if f < 1 { switch { case f < 0: return -trunc_internal(-f); case f == 0: return f; case: return 0; } } x := transmute(u64)f; e := (x >> shift) & mask - bias; if e < shift { x &= ~(1 << (shift-e)) - 1; } return transmute(f64)x; } switch classify(x) { case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf: return x; } return trunc_internal(x); } trunc :: proc{trunc_f32, trunc_f64}; round_f32 :: proc(x: f32) -> f32 { return x < 0 ? ceil(x - 0.5) : floor(x + 0.5); } round_f64 :: proc(x: f64) -> f64 { return x < 0 ? ceil(x - 0.5) : floor(x + 0.5); } round :: proc{round_f32, round_f64}; ceil_f32 :: proc(x: f32) -> f32 { return -floor(-x); } ceil_f64 :: proc(x: f64) -> f64 { return -floor(-x); } ceil :: proc{ceil_f32, ceil_f64}; floor_f32 :: proc(x: f32) -> f32 { if x == 0 || is_nan(x) || is_inf(x) { return x; } if x < 0 { d, fract := modf(-x); if fract != 0.0 { d = d + 1; } return -d; } d, _ := modf(x); return d; } floor_f64 :: proc(x: f64) -> f64 { if x == 0 || is_nan(x) || is_inf(x) { return x; } if x < 0 { d, fract := modf(-x); if fract != 0.0 { d = d + 1; } return -d; } d, _ := modf(x); return d; } floor :: proc{floor_f32, floor_f64}; floor_div :: proc(x, y: $T) -> T where intrinsics.type_is_integer(T) { a := x / y; r := x % y; if (r > 0 && y < 0) || (r < 0 && y > 0) { a -= 1; } return a; } floor_mod :: proc(x, y: $T) -> T where intrinsics.type_is_integer(T) { r := x % y; if (r > 0 && y < 0) || (r < 0 && y > 0) { r += y; } return r; } modf_f32 :: proc(x: f32) -> (int: f32, frac: f32) { shift :: 32 - 8 - 1; mask :: 0xff; bias :: 127; if x < 1 { switch { case x < 0: int, frac = modf(-x); return -int, -frac; case x == 0: return x, x; } return 0, x; } i := transmute(u32)x; e := uint(i>>shift)&mask - bias; if e < shift { i &~= 1<<(shift-e) - 1; } int = transmute(f32)i; frac = x - int; return; } modf_f64 :: proc(x: f64) -> (int: f64, frac: f64) { shift :: 64 - 11 - 1; mask :: 0x7ff; bias :: 1023; if x < 1 { switch { case x < 0: int, frac = modf(-x); return -int, -frac; case x == 0: return x, x; } return 0, x; } i := transmute(u64)x; e := uint(i>>shift)&mask - bias; if e < shift { i &~= 1<<(shift-e) - 1; } int = transmute(f64)i; frac = x - int; return; } modf :: proc{modf_f32, modf_f64}; split_decimal :: modf; mod_f32 :: proc(x, y: f32) -> (n: f32) { z := abs(y); n = remainder(abs(x), z); if sign(n) < 0 { n += z; } return copy_sign(n, x); } mod_f64 :: proc(x, y: f64) -> (n: f64) { z := abs(y); n = remainder(abs(x), z); if sign(n) < 0 { n += z; } return copy_sign(n, x); } mod :: proc{mod_f32, mod_f64}; remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; } remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; } remainder :: proc{remainder_f32, remainder_f64}; gcd :: proc(x, y: $T) -> T where intrinsics.type_is_ordered_numeric(T) { x, y := x, y; for y != 0 { x %= y; x, y = y, x; } return abs(x); } lcm :: proc(x, y: $T) -> T where intrinsics.type_is_ordered_numeric(T) { return x / gcd(x, y) * y; } frexp_f32 :: proc(x: f32) -> (significand: f32, exponent: int) { switch { case x == 0: return 0, 0; case x < 0: significand, exponent = frexp(-x); return -significand, exponent; } ex := trunc(log2(x)); exponent = int(ex); significand = x / pow(2.0, ex); if abs(significand) >= 1 { exponent += 1; significand /= 2; } if exponent == 1024 && significand == 0 { significand = 0.99999999999999988898; } return; } frexp_f64 :: proc(x: f64) -> (significand: f64, exponent: int) { switch { case x == 0: return 0, 0; case x < 0: significand, exponent = frexp(-x); return -significand, exponent; } ex := trunc(log2(x)); exponent = int(ex); significand = x / pow(2.0, ex); if abs(significand) >= 1 { exponent += 1; significand /= 2; } if exponent == 1024 && significand == 0 { significand = 0.99999999999999988898; } return; } frexp :: proc{frexp_f32, frexp_f64}; binomial :: proc(n, k: int) -> int { switch { case k <= 0: return 1; case 2*k > n: return binomial(n, n-k); } b := n; for i in 2.. int { when size_of(int) == size_of(i64) { @static table := [21]int{ 1, 1, 2, 6, 24, 120, 720, 5_040, 40_320, 362_880, 3_628_800, 39_916_800, 479_001_600, 6_227_020_800, 87_178_291_200, 1_307_674_368_000, 20_922_789_888_000, 355_687_428_096_000, 6_402_373_705_728_000, 121_645_100_408_832_000, 2_432_902_008_176_640_000, }; } else { @static table := [13]int{ 1, 1, 2, 6, 24, 120, 720, 5_040, 40_320, 362_880, 3_628_800, 39_916_800, 479_001_600, }; } assert(n >= 0, "parameter must not be negative"); assert(n < len(table), "parameter is too large to lookup in the table"); return 0; } classify_f32 :: proc(x: f32) -> Float_Class { switch { case x == 0: i := transmute(i32)x; if i < 0 { return .Neg_Zero; } return .Zero; case x*0.5 == x: if x < 0 { return .Neg_Inf; } return .Inf; case x != x: return .NaN; } u := transmute(u32)x; exp := int(u>>23) & (1<<8 - 1); if exp == 0 { return .Subnormal; } return .Normal; } classify_f64 :: proc(x: f64) -> Float_Class { switch { case x == 0: i := transmute(i64)x; if i < 0 { return .Neg_Zero; } return .Zero; case x*0.5 == x: if x < 0 { return .Neg_Inf; } return .Inf; case x != x: return .NaN; } u := transmute(u64)x; exp := int(u>>52) & (1<<11 - 1); if exp == 0 { return .Subnormal; } return .Normal; } classify :: proc{classify_f32, classify_f64}; is_nan_f32 :: proc(x: f32) -> bool { return classify(x) == .NaN; } is_nan_f64 :: proc(x: f64) -> bool { return classify(x) == .NaN; } is_nan :: proc{is_nan_f32, is_nan_f64}; is_inf_f32 :: proc(x: f32) -> bool { return classify(abs(x)) == .Inf; } is_inf_f64 :: proc(x: f64) -> bool { return classify(abs(x)) == .Inf; } is_inf :: proc{is_inf_f32, is_inf_f64}; is_power_of_two :: proc(x: int) -> bool { return x > 0 && (x & (x-1)) == 0; } next_power_of_two :: proc(x: int) -> int { k := x -1; when size_of(int) == 8 { k = k | (k >> 32); } k = k | (k >> 16); k = k | (k >> 8); k = k | (k >> 4); k = k | (k >> 2); k = k | (k >> 1); k += 1 + int(x <= 0); return k; } sum :: proc(x: $T/[]$E) -> (res: E) where intrinsics.BuiltinProc_type_is_numeric(E) { for i in x { res += i; } return; } prod :: proc(x: $T/[]$E) -> (res: E) where intrinsics.BuiltinProc_type_is_numeric(E) { for i in x { res *= i; } return; } cumsum_inplace :: proc(x: $T/[]$E) -> T where intrinsics.BuiltinProc_type_is_numeric(E) { for i in 1.. T where intrinsics.BuiltinProc_type_is_numeric(E) { N := min(len(dst), len(src)); if N > 0 { dst[0] = src[0]; for i in 1..