package base32 // @note(zh): Encoding utility for Base32 // A secondary param can be used to supply a custom alphabet to // @link(encode) and a matching decoding table to @link(decode). // If none is supplied it just uses the standard Base32 alphabet. // Incase your specific version does not use padding, you may // truncate it from the encoded output. ENC_TABLE := [32]byte { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '2', '3', '4', '5', '6', '7' }; PADDING :: '='; DEC_TABLE := [?]u8 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; encode :: proc(data: []byte, ENC_TBL := ENC_TABLE, allocator := context.allocator) -> string { out_length := (len(data) + 4) / 5 * 8; out := make([]byte, out_length); _encode(out, data); return string(out); } @private _encode :: inline proc "contextless"(out, data: []byte, ENC_TBL := ENC_TABLE, allocator := context.allocator) { out := out; data := data; for len(data) > 0 { carry: byte; switch len(data) { case: out[7] = ENC_TABLE[data[4] & 0x1f]; carry = data[4] >> 5; fallthrough; case 4: out[6] = ENC_TABLE[carry | (data[3] << 3) & 0x1f]; out[5] = ENC_TABLE[(data[3] >> 2) & 0x1f]; carry = data[3] >> 7; fallthrough; case 3: out[4] = ENC_TABLE[carry | (data[2] << 1) & 0x1f]; carry = (data[2] >> 4) & 0x1f; fallthrough; case 2: out[3] = ENC_TABLE[carry | (data[1] << 4) & 0x1f]; out[2] = ENC_TABLE[(data[1] >> 1) & 0x1f]; carry = (data[1] >> 6) & 0x1f; fallthrough; case 1: out[1] = ENC_TABLE[carry | (data[0] << 2) & 0x1f]; out[0] = ENC_TABLE[data[0] >> 3]; } if len(data) < 5 { out[7] = byte(PADDING); if len(data) < 4 { out[6] = byte(PADDING); out[5] = byte(PADDING); if len(data) < 3 { out[4] = byte(PADDING); if len(data) < 2 { out[3] = byte(PADDING); out[2] = byte(PADDING); } } } break; } data = data[5:]; out = out[8:]; } } decode :: proc(data: string, DEC_TBL := DEC_TABLE, allocator := context.allocator) -> []byte #no_bounds_check{ if len(data) == 0 do return []byte{}; outi := 0; olen := len(data); data := data; out := make([]byte, len(data) / 8 * 5, allocator); end := false; for len(data) > 0 && !end { dbuf : [8]byte; dlen := 8; for j := 0; j < 8; { if len(data) == 0 { dlen, end = j, true; break; } input := data[0]; data = data[1:]; if input == byte(PADDING) && j >= 2 && len(data) < 8 { assert(!(len(data) + j < 8 - 1), "Corrupted input"); for k := 0; k < 8-1-j; k +=1 do assert(len(data) < k || data[k] == byte(PADDING), "Corrupted input"); dlen, end = j, true; assert(dlen != 1 && dlen != 3 && dlen != 6, "Corrupted input"); break; } dbuf[j] = DEC_TABLE[input]; assert(dbuf[j] != 0xff, "Corrupted input"); j += 1; } switch dlen { case 8: out[outi + 4] = dbuf[6] << 5 | dbuf[7]; fallthrough; case 7: out[outi + 3] = dbuf[4] << 7 | dbuf[5] << 2 | dbuf[6] >> 3; fallthrough; case 5: out[outi + 2] = dbuf[3] << 4 | dbuf[4] >> 1; fallthrough; case 4: out[outi + 1] = dbuf[1] << 6 | dbuf[2] << 1 | dbuf[3] >> 4; fallthrough; case 2: out[outi + 0] = dbuf[0] << 3 | dbuf[1] >> 2; } outi += 5; } return out; }