package linalg import "core:math" import "intrinsics" // Specific Float :: f32; FLOAT_EPSILON :: size_of(Float) == 4 ? 1e-7 : 1e-15; Vector2 :: distinct [2]Float; Vector3 :: distinct [3]Float; Vector4 :: distinct [4]Float; Matrix1x1 :: distinct [1][1]Float; Matrix1x2 :: distinct [1][2]Float; Matrix1x3 :: distinct [1][3]Float; Matrix1x4 :: distinct [1][4]Float; Matrix2x1 :: distinct [2][1]Float; Matrix2x2 :: distinct [2][2]Float; Matrix2x3 :: distinct [2][3]Float; Matrix2x4 :: distinct [2][4]Float; Matrix3x1 :: distinct [3][1]Float; Matrix3x2 :: distinct [3][2]Float; Matrix3x3 :: distinct [3][3]Float; Matrix3x4 :: distinct [3][4]Float; Matrix4x1 :: distinct [4][1]Float; Matrix4x2 :: distinct [4][2]Float; Matrix4x3 :: distinct [4][3]Float; Matrix4x4 :: distinct [4][4]Float; Matrix1 :: Matrix1x1; Matrix2 :: Matrix2x2; Matrix3 :: Matrix3x3; Matrix4 :: Matrix4x4; Quaternion :: distinct (size_of(Float) == size_of(f32) ? quaternion128 : quaternion256); MATRIX1_IDENTITY :: Matrix1{{1}}; MATRIX2_IDENTITY :: Matrix2{{1, 0}, {0, 1}}; MATRIX3_IDENTITY :: Matrix3{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; MATRIX4_IDENTITY :: Matrix4{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}; QUATERNION_IDENTITY :: Quaternion(1); VECTOR3_X_AXIS :: Vector3{1, 0, 0}; VECTOR3_Y_AXIS :: Vector3{0, 1, 0}; VECTOR3_Z_AXIS :: Vector3{0, 0, 1}; radians :: proc(degrees: Float) -> Float { return math.TAU * degrees / 360.0; } degrees :: proc(radians: Float) -> Float { return 360.0 * radians / math.TAU; } vector2_orthogonal :: proc(v: Vector2) -> Vector2 { return {-v.y, v.x}; } vector3_orthogonal :: proc(v: Vector3) -> Vector3 { x := abs(v.x); y := abs(v.y); z := abs(v.z); other: Vector3 = x < y ? (x < z ? {1, 0, 0} : {0, 0, 1}) : (y < z ? {0, 1, 0} : {0, 0, 1}); return normalize(cross(v, other)); } vector4_srgb_to_linear :: proc(col: Vector4) -> Vector4 { r := math.pow(col.x, 2.2); g := math.pow(col.y, 2.2); b := math.pow(col.z, 2.2); a := col.w; return {r, g, b, a}; } vector4_linear_to_srgb :: proc(col: Vector4) -> Vector4 { a :: 2.51; b :: 0.03; c :: 2.43; d :: 0.59; e :: 0.14; x := col.x; y := col.y; z := col.z; x = (x * (a * x + b)) / (x * (c * x + d) + e); y = (y * (a * y + b)) / (y * (c * y + d) + e); z = (z * (a * z + b)) / (z * (c * z + d) + e); x = math.pow(clamp(x, 0, 1), 1.0 / 2.2); y = math.pow(clamp(y, 0, 1), 1.0 / 2.2); z = math.pow(clamp(z, 0, 1), 1.0 / 2.2); return {x, y, z, col.w}; } vector4_hsl_to_rgb :: proc(h, s, l: Float, a: Float = 1) -> Vector4 { hue_to_rgb :: proc(p, q, t0: Float) -> Float { t := math.mod(t0, 1.0); switch { case t < 1.0/6.0: return p + (q - p) * 6.0 * t; case t < 1.0/2.0: return q; case t < 2.0/3.0: return p + (q - p) * 6.0 * (2.0/3.0 - t); } return p; } r, g, b: Float; if s == 0 { r = l; g = l; b = l; } else { q := l < 0.5 ? l * (1+s) : l+s - l*s; p := 2*l - q; r = hue_to_rgb(p, q, h + 1.0/3.0); g = hue_to_rgb(p, q, h); b = hue_to_rgb(p, q, h - 1.0/3.0); } return {r, g, b, a}; } vector4_rgb_to_hsl :: proc(col: Vector4) -> Vector4 { r := col.x; g := col.y; b := col.z; a := col.w; v_min := min(r, g, b); v_max := max(r, g, b); h, s, l: Float; h = 0.0; s = 0.0; l = (v_min + v_max) * 0.5; if v_max != v_min { d: = v_max - v_min; s = l > 0.5 ? d / (2.0 - v_max - v_min) : d / (v_max + v_min); switch { case v_max == r: h = (g - b) / d + (g < b ? 6.0 : 0.0); case v_max == g: h = (b - r) / d + 2.0; case v_max == b: h = (r - g) / d + 4.0; } h *= 1.0/6.0; } return {h, s, l, a}; } quaternion_angle_axis :: proc(angle_radians: Float, axis: Vector3) -> Quaternion { t := angle_radians*0.5; w := math.cos(t); v := normalize(axis) * math.sin(t); return quaternion(w, v.x, v.y, v.z); } quaternion_from_euler_angles :: proc(roll, pitch, yaw: Float) -> Quaternion { x, y, z := roll, pitch, yaw; a, b, c := x, y, z; ca, sa := math.cos(a*0.5), math.sin(a*0.5); cb, sb := math.cos(b*0.5), math.sin(b*0.5); cc, sc := math.cos(c*0.5), math.sin(c*0.5); q: Quaternion; q.x = sa*cb*cc - ca*sb*sc; q.y = ca*sb*cc + sa*cb*sc; q.z = ca*cb*sc - sa*sb*cc; q.w = ca*cb*cc + sa*sb*sc; return q; } euler_angles_from_quaternion :: proc(q: Quaternion) -> (roll, pitch, yaw: Float) { // roll, x-axis rotation sinr_cosp: Float = 2 * (q.w * q.x + q.y * q.z); cosr_cosp: Float = 1 - 2 * (q.x * q.x + q.y * q.y); roll = math.atan2(sinr_cosp, cosr_cosp); // pitch, y-axis rotation sinp: Float = 2 * (q.w * q.y - q.z * q.x); if abs(sinp) >= 1 { pitch = math.copy_sign(math.TAU * 0.25, sinp); } else { pitch = math.asin(sinp); } // yaw, z-axis rotation siny_cosp: Float = 2 * (q.w * q.z + q.x * q.y); cosy_cosp: Float = 1 - 2 * (q.y * q.y + q.z * q.z); yaw = math.atan2(siny_cosp, cosy_cosp); return; } quaternion_from_forward_and_up :: proc(forward, up: Vector3) -> Quaternion { f := normalize(forward); s := normalize(cross(f, up)); u := cross(s, f); m := Matrix3{ {+s.x, +u.x, -f.x}, {+s.y, +u.y, -f.y}, {+s.z, +u.z, -f.z}, }; tr := trace(m); q: Quaternion; switch { case tr > 0: S := 2 * math.sqrt(1 + tr); q.w = 0.25 * S; q.x = (m[2][1] - m[1][2]) / S; q.y = (m[0][2] - m[2][0]) / S; q.z = (m[1][0] - m[0][1]) / S; case (m[0][0] > m[1][1]) && (m[0][0] > m[2][2]): S := 2 * math.sqrt(1 + m[0][0] - m[1][1] - m[2][2]); q.w = (m[2][1] - m[1][2]) / S; q.x = 0.25 * S; q.y = (m[0][1] + m[1][0]) / S; q.z = (m[0][2] + m[2][0]) / S; case m[1][1] > m[2][2]: S := 2 * math.sqrt(1 + m[1][1] - m[0][0] - m[2][2]); q.w = (m[0][2] - m[2][0]) / S; q.x = (m[0][1] + m[1][0]) / S; q.y = 0.25 * S; q.z = (m[1][2] + m[2][1]) / S; case: S := 2 * math.sqrt(1 + m[2][2] - m[0][0] - m[1][1]); q.w = (m[1][0] - m[0][1]) / S; q.x = (m[0][2] - m[2][0]) / S; q.y = (m[1][2] + m[2][1]) / S; q.z = 0.25 * S; } return normalize(q); } quaternion_look_at :: proc(eye, centre: Vector3, up: Vector3) -> Quaternion { return quaternion_from_forward_and_up(centre-eye, up); } quaternion_nlerp :: proc(a, b: Quaternion, t: Float) -> Quaternion { c := a + (b-a)*quaternion(t, 0, 0, 0); return normalize(c); } quaternion_slerp :: proc(x, y: Quaternion, t: Float) -> Quaternion { a, b := x, y; cos_angle := dot(a, b); if cos_angle < 0 { b = -b; cos_angle = -cos_angle; } if cos_angle > 1 - FLOAT_EPSILON { return a + (b-a)*quaternion(t, 0, 0, 0); } angle := math.acos(cos_angle); sin_angle := math.sin(angle); factor_a, factor_b: Quaternion; factor_a = quaternion(math.sin((1-t) * angle) / sin_angle, 0, 0, 0); factor_b = quaternion(math.sin(t * angle) / sin_angle, 0, 0, 0); return factor_a * a + factor_b * b; } quaternion_from_matrix4 :: proc(m: Matrix4) -> Quaternion { four_x_squared_minus_1, four_y_squared_minus_1, four_z_squared_minus_1, four_w_squared_minus_1, four_biggest_squared_minus_1: Float; /* xyzw */ /* 0123 */ biggest_index := 3; biggest_value, mult: Float; four_x_squared_minus_1 = m[0][0] - m[1][1] - m[2][2]; four_y_squared_minus_1 = m[1][1] - m[0][0] - m[2][2]; four_z_squared_minus_1 = m[2][2] - m[0][0] - m[1][1]; four_w_squared_minus_1 = m[0][0] + m[1][1] + m[2][2]; four_biggest_squared_minus_1 = four_w_squared_minus_1; if four_x_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_x_squared_minus_1; biggest_index = 0; } if four_y_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_y_squared_minus_1; biggest_index = 1; } if four_z_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_z_squared_minus_1; biggest_index = 2; } biggest_value = math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5; mult = 0.25 / biggest_value; switch biggest_index { case 0: return quaternion( biggest_value, (m[0][1] + m[1][0]) * mult, (m[2][0] + m[0][2]) * mult, (m[1][2] - m[2][1]) * mult, ); case 1: return quaternion( (m[0][1] + m[1][0]) * mult, biggest_value, (m[1][2] + m[2][1]) * mult, (m[2][0] - m[0][2]) * mult, ); case 2: return quaternion( (m[2][0] + m[0][2]) * mult, (m[1][2] + m[2][1]) * mult, biggest_value, (m[0][1] - m[1][0]) * mult, ); case 3: return quaternion( (m[1][2] - m[2][1]) * mult, (m[2][0] - m[0][2]) * mult, (m[0][1] - m[1][0]) * mult, biggest_value, ); } return 0; } quaternion_from_matrix3 :: proc(m: Matrix3) -> Quaternion { four_x_squared_minus_1, four_y_squared_minus_1, four_z_squared_minus_1, four_w_squared_minus_1, four_biggest_squared_minus_1: Float; /* xyzw */ /* 0123 */ biggest_index := 3; biggest_value, mult: Float; four_x_squared_minus_1 = m[0][0] - m[1][1] - m[2][2]; four_y_squared_minus_1 = m[1][1] - m[0][0] - m[2][2]; four_z_squared_minus_1 = m[2][2] - m[0][0] - m[1][1]; four_w_squared_minus_1 = m[0][0] + m[1][1] + m[2][2]; four_biggest_squared_minus_1 = four_w_squared_minus_1; if four_x_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_x_squared_minus_1; biggest_index = 0; } if four_y_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_y_squared_minus_1; biggest_index = 1; } if four_z_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_z_squared_minus_1; biggest_index = 2; } biggest_value = math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5; mult = 0.25 / biggest_value; switch biggest_index { case 0: return quaternion( biggest_value, (m[0][1] + m[1][0]) * mult, (m[2][0] + m[0][2]) * mult, (m[1][2] - m[2][1]) * mult, ); case 1: return quaternion( (m[0][1] + m[1][0]) * mult, biggest_value, (m[1][2] + m[2][1]) * mult, (m[2][0] - m[0][2]) * mult, ); case 2: return quaternion( (m[2][0] + m[0][2]) * mult, (m[1][2] + m[2][1]) * mult, biggest_value, (m[0][1] - m[1][0]) * mult, ); case 3: return quaternion( (m[1][2] - m[2][1]) * mult, (m[2][0] - m[0][2]) * mult, (m[0][1] - m[1][0]) * mult, biggest_value, ); } return 0; } quaternion_between_two_vector3 :: proc(from, to: Vector3) -> Quaternion { x := normalize(from); y := normalize(to); cos_theta := dot(x, y); if abs(cos_theta + 1) < 2*FLOAT_EPSILON { v := vector3_orthogonal(x); return quaternion(0, v.x, v.y, v.z); } v := cross(x, y); w := cos_theta + 1; return Quaternion(normalize(quaternion(w, v.x, v.y, v.z))); } matrix2_inverse_transpose :: proc(m: Matrix2) -> Matrix2 { c: Matrix2; d := m[0][0]*m[1][1] - m[1][0]*m[0][1]; id := 1.0/d; c[0][0] = +m[1][1] * id; c[0][1] = -m[0][1] * id; c[1][0] = -m[1][0] * id; c[1][1] = +m[0][0] * id; return c; } matrix2_determinant :: proc(m: Matrix2) -> Float { return m[0][0]*m[1][1] - m[1][0]*m[0][1]; } matrix2_inverse :: proc(m: Matrix2) -> Matrix2 { c: Matrix2; d := m[0][0]*m[1][1] - m[1][0]*m[0][1]; id := 1.0/d; c[0][0] = +m[1][1] * id; c[1][0] = -m[0][1] * id; c[0][1] = -m[1][0] * id; c[1][1] = +m[0][0] * id; return c; } matrix2_adjoint :: proc(m: Matrix2) -> Matrix2 { c: Matrix2; c[0][0] = +m[1][1]; c[0][1] = -m[1][0]; c[1][0] = -m[0][1]; c[1][1] = +m[0][0]; return c; } matrix3_from_quaternion :: proc(q: Quaternion) -> Matrix3 { xx := q.x * q.x; xy := q.x * q.y; xz := q.x * q.z; xw := q.x * q.w; yy := q.y * q.y; yz := q.y * q.z; yw := q.y * q.w; zz := q.z * q.z; zw := q.z * q.w; m: Matrix3; m[0][0] = 1 - 2 * (yy + zz); m[1][0] = 2 * (xy - zw); m[2][0] = 2 * (xz + yw); m[0][1] = 2 * (xy + zw); m[1][1] = 1 - 2 * (xx + zz); m[2][1] = 2 * (yz - xw); m[0][2] = 2 * (xz - yw); m[1][2] = 2 * (yz + xw); m[2][2] = 1 - 2 * (xx + yy); return m; } matrix3_inverse :: proc(m: Matrix3) -> Matrix3 { return transpose(matrix3_inverse_transpose(m)); } matrix3_determinant :: proc(m: Matrix3) -> Float { a := +m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]); b := -m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2]); c := +m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]); return a + b + c; } matrix3_adjoint :: proc(m: Matrix3) -> Matrix3 { adjoint: Matrix3; adjoint[0][0] = +(m[1][1] * m[2][2] - m[1][2] * m[2][1]); adjoint[1][0] = -(m[0][1] * m[2][2] - m[0][2] * m[2][1]); adjoint[2][0] = +(m[0][1] * m[1][2] - m[0][2] * m[1][1]); adjoint[0][1] = -(m[1][0] * m[2][2] - m[1][2] * m[2][0]); adjoint[1][1] = +(m[0][0] * m[2][2] - m[0][2] * m[2][0]); adjoint[2][1] = -(m[0][0] * m[1][2] - m[0][2] * m[1][0]); adjoint[0][2] = +(m[1][0] * m[2][1] - m[1][1] * m[2][0]); adjoint[1][2] = -(m[0][0] * m[2][1] - m[0][1] * m[2][0]); adjoint[2][2] = +(m[0][0] * m[1][1] - m[0][1] * m[1][0]); return adjoint; } matrix3_inverse_transpose :: proc(m: Matrix3) -> Matrix3 { inverse_transpose: Matrix3; adjoint := matrix3_adjoint(m); determinant := matrix3_determinant(m); inv_determinant := 1.0 / determinant; for i in 0..<3 { for j in 0..<3 { inverse_transpose[i][j] = adjoint[i][j] * inv_determinant; } } return inverse_transpose; } matrix3_scale :: proc(s: Vector3) -> Matrix3 { m: Matrix3; m[0][0] = s[0]; m[1][1] = s[1]; m[2][2] = s[2]; return m; } matrix3_rotate :: proc(angle_radians: Float, v: Vector3) -> Matrix3 { c := math.cos(angle_radians); s := math.sin(angle_radians); a := normalize(v); t := a * (1-c); rot: Matrix3 = ---; rot[0][0] = c + t[0]*a[0]; rot[0][1] = 0 + t[0]*a[1] + s*a[2]; rot[0][2] = 0 + t[0]*a[2] - s*a[1]; rot[1][0] = 0 + t[1]*a[0] - s*a[2]; rot[1][1] = c + t[1]*a[1]; rot[1][2] = 0 + t[1]*a[2] + s*a[0]; rot[2][0] = 0 + t[2]*a[0] + s*a[1]; rot[2][1] = 0 + t[2]*a[1] - s*a[0]; rot[2][2] = c + t[2]*a[2]; return rot; } matrix3_look_at :: proc(eye, centre, up: Vector3) -> Matrix3 { f := normalize(centre - eye); s := normalize(cross(f, up)); u := cross(s, f); return Matrix3{ {+s.x, +u.x, -f.x}, {+s.y, +u.y, -f.y}, {+s.z, +u.z, -f.z}, }; } matrix4_from_quaternion :: proc(q: Quaternion) -> Matrix4 { m := identity(Matrix4); xx := q.x * q.x; xy := q.x * q.y; xz := q.x * q.z; xw := q.x * q.w; yy := q.y * q.y; yz := q.y * q.z; yw := q.y * q.w; zz := q.z * q.z; zw := q.z * q.w; m[0][0] = 1 - 2 * (yy + zz); m[1][0] = 2 * (xy - zw); m[2][0] = 2 * (xz + yw); m[0][1] = 2 * (xy + zw); m[1][1] = 1 - 2 * (xx + zz); m[2][1] = 2 * (yz - xw); m[0][2] = 2 * (xz - yw); m[1][2] = 2 * (yz + xw); m[2][2] = 1 - 2 * (xx + yy); return m; } matrix4_from_trs :: proc(t: Vector3, r: Quaternion, s: Vector3) -> Matrix4 { translation := matrix4_translate(t); rotation := matrix4_from_quaternion(r); scale := matrix4_scale(s); return mul(translation, mul(rotation, scale)); } matrix4_inverse :: proc(m: Matrix4) -> Matrix4 { return transpose(matrix4_inverse_transpose(m)); } matrix4_minor :: proc(m: Matrix4, c, r: int) -> Float { cut_down: Matrix3; for i in 0..<3 { col := i < c ? i : i+1; for j in 0..<3 { row := j < r ? j : j+1; cut_down[i][j] = m[col][row]; } } return matrix3_determinant(cut_down); } matrix4_cofactor :: proc(m: Matrix4, c, r: int) -> Float { sign, minor: Float; sign = (c + r) % 2 == 0 ? 1 : -1; minor = matrix4_minor(m, c, r); return sign * minor; } matrix4_adjoint :: proc(m: Matrix4) -> Matrix4 { adjoint: Matrix4; for i in 0..<4 { for j in 0..<4 { adjoint[i][j] = matrix4_cofactor(m, i, j); } } return adjoint; } matrix4_determinant :: proc(m: Matrix4) -> Float { adjoint := matrix4_adjoint(m); determinant: Float = 0; for i in 0..<4 { determinant += m[i][0] * adjoint[i][0]; } return determinant; } matrix4_inverse_transpose :: proc(m: Matrix4) -> Matrix4 { adjoint := matrix4_adjoint(m); determinant: Float = 0; for i in 0..<4 { determinant += m[i][0] * adjoint[i][0]; } inv_determinant := 1.0 / determinant; inverse_transpose: Matrix4; for i in 0..<4 { for j in 0..<4 { inverse_transpose[i][j] = adjoint[i][j] * inv_determinant; } } return inverse_transpose; } matrix4_translate :: proc(v: Vector3) -> Matrix4 { m := identity(Matrix4); m[3][0] = v[0]; m[3][1] = v[1]; m[3][2] = v[2]; return m; } matrix4_rotate :: proc(angle_radians: Float, v: Vector3) -> Matrix4 { c := math.cos(angle_radians); s := math.sin(angle_radians); a := normalize(v); t := a * (1-c); rot := identity(Matrix4); rot[0][0] = c + t[0]*a[0]; rot[0][1] = 0 + t[0]*a[1] + s*a[2]; rot[0][2] = 0 + t[0]*a[2] - s*a[1]; rot[0][3] = 0; rot[1][0] = 0 + t[1]*a[0] - s*a[2]; rot[1][1] = c + t[1]*a[1]; rot[1][2] = 0 + t[1]*a[2] + s*a[0]; rot[1][3] = 0; rot[2][0] = 0 + t[2]*a[0] + s*a[1]; rot[2][1] = 0 + t[2]*a[1] - s*a[0]; rot[2][2] = c + t[2]*a[2]; rot[2][3] = 0; return rot; } matrix4_scale :: proc(v: Vector3) -> Matrix4 { m: Matrix4; m[0][0] = v[0]; m[1][1] = v[1]; m[2][2] = v[2]; m[3][3] = 1; return m; } matrix4_look_at :: proc(eye, centre, up: Vector3) -> Matrix4 { f := normalize(centre - eye); s := normalize(cross(f, up)); u := cross(s, f); return Matrix4{ {+s.x, +u.x, -f.x, 0}, {+s.y, +u.y, -f.y, 0}, {+s.z, +u.z, -f.z, 0}, {-dot(s, eye), -dot(u, eye), +dot(f, eye), 1}, }; } matrix4_perspective :: proc(fovy, aspect, near, far: Float, flip_z_axis := true) -> (m: Matrix4) { tan_half_fovy := math.tan(0.5 * fovy); m[0][0] = 1 / (aspect*tan_half_fovy); m[1][1] = 1 / (tan_half_fovy); m[2][2] = +(far + near) / (far - near); m[2][3] = +1; m[3][2] = -2*far*near / (far - near); if flip_z_axis { m[2] = -m[2]; } return; } matrix_ortho3d :: proc(left, right, bottom, top, near, far: Float, flip_z_axis := true) -> (m: Matrix4) { m[0][0] = +2 / (right - left); m[1][1] = +2 / (top - bottom); m[2][2] = +2 / (far - near); m[3][0] = -(right + left) / (right - left); m[3][1] = -(top + bottom) / (top - bottom); m[3][2] = -(far + near) / (far- near); m[3][3] = 1; if flip_z_axis { m[2] = -m[2]; } return; } matrix4_infinite_perspective :: proc(fovy, aspect, near: Float, flip_z_axis := true) -> (m: Matrix4) { tan_half_fovy := math.tan(0.5 * fovy); m[0][0] = 1 / (aspect*tan_half_fovy); m[1][1] = 1 / (tan_half_fovy); m[2][2] = +1; m[2][3] = +1; m[3][2] = -2*near; if flip_z_axis { m[2] = -m[2]; } return; }