package os import "core:mem" import "core:strconv" import "core:unicode/utf8" write_string :: proc(fd: Handle, str: string) -> (int, Errno) { return write(fd, transmute([]byte)str); } write_byte :: proc(fd: Handle, b: byte) -> (int, Errno) { return write(fd, []byte{b}); } write_rune :: proc(fd: Handle, r: rune) -> (int, Errno) { if r < utf8.RUNE_SELF { return write_byte(fd, byte(r)); } b, n := utf8.encode_rune(r); return write(fd, b[:n]); } write_encoded_rune :: proc(fd: Handle, r: rune) { write_byte(fd, '\''); switch r { case '\a': write_string(fd, "\\a"); case '\b': write_string(fd, "\\b"); case '\e': write_string(fd, "\\e"); case '\f': write_string(fd, "\\f"); case '\n': write_string(fd, "\\n"); case '\r': write_string(fd, "\\r"); case '\t': write_string(fd, "\\t"); case '\v': write_string(fd, "\\v"); case: if r < 32 { write_string(fd, "\\x"); b: [2]byte; s := strconv.append_bits(b[:], u64(r), 16, true, 64, strconv.digits, nil); switch len(s) { case 0: write_string(fd, "00"); case 1: write_rune(fd, '0'); case 2: write_string(fd, s); } } else { write_rune(fd, r); } } write_byte(fd, '\''); } file_size_from_path :: proc(path: string) -> i64 { fd, err := open(path, O_RDONLY, 0); if err != 0 { return -1; } defer close(fd); length: i64; if length, err = file_size(fd); err != 0 { return -1; } return length; } read_entire_file :: proc(name: string) -> (data: []byte, success: bool) { fd, err := open(name, O_RDONLY, 0); if err != 0 { return nil, false; } defer close(fd); length: i64; if length, err = file_size(fd); err != 0 { return nil, false; } if length <= 0 { return nil, true; } data = make([]byte, int(length)); if data == nil { return nil, false; } bytes_read, read_err := read(fd, data); if read_err != 0 { delete(data); return nil, false; } return data[0:bytes_read], true; } write_entire_file :: proc(name: string, data: []byte, truncate := true) -> (success: bool) { flags: int = O_WRONLY|O_CREATE; if truncate { flags |= O_TRUNC; } mode: int = 0; when OS == "linux" { // NOTE(justasd): 644 (owner read, write; group read; others read) mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH; } fd, err := open(name, flags, mode); if err != 0 { return false; } defer close(fd); _, write_err := write(fd, data); return write_err == 0; } write_ptr :: proc(fd: Handle, data: rawptr, len: int) -> (int, Errno) { s := transmute([]byte)mem.Raw_Slice{data, len}; return write(fd, s); } read_ptr :: proc(fd: Handle, data: rawptr, len: int) -> (int, Errno) { s := transmute([]byte)mem.Raw_Slice{data, len}; return read(fd, s); } heap_allocator_proc :: proc(allocator_data: rawptr, mode: mem.Allocator_Mode, size, alignment: int, old_memory: rawptr, old_size: int, flags: u64 = 0, loc := #caller_location) -> rawptr { /* // // NOTE(tetra, 2019-11-10): The heap doesn't respect alignment. // HACK: Overallocate, align forwards, and then use the two bytes immediately before // the address we return, to store the padding we inserted. // This allows us to pass the original pointer we got back from the heap to `free` later. // align_and_store_padding :: proc(ptr: rawptr, alignment: int) -> rawptr { ptr := mem.ptr_offset(cast(^u8) ptr, 2); new_ptr := cast(^u8) mem.align_forward(ptr, uintptr(alignment)); offset := mem.ptr_sub(new_ptr, cast(^u8) ptr) + 2; assert(offset < int(max(u16))); (^[2]u8)(mem.ptr_offset(new_ptr, -2))^ = transmute([2]u8) u16(offset); return new_ptr; } recover_original_pointer :: proc(ptr: rawptr) -> rawptr { ptr := cast(^u8) ptr; offset := transmute(u16) (^[2]u8)(mem.ptr_offset(ptr, -2))^; ptr = mem.ptr_offset(ptr, -int(offset)); return ptr; } aligned_heap_alloc :: proc(size: int, alignment: int) -> rawptr { // NOTE(tetra): Alignment 1 will mean we only have one extra byte. // This is not enough for a u16 - so we ensure there is at least two bytes extra. // This also means that the pointer is always aligned to at least 2. extra := alignment; if extra <= 1 do extra = 2; orig := cast(^u8) heap_alloc(size + extra); if orig == nil do return nil; ptr := align_and_store_padding(orig, alignment); assert(recover_original_pointer(ptr) == orig); return ptr; } switch mode { case .Alloc: return aligned_heap_alloc(size, alignment); case .Free: if old_memory != nil { ptr := recover_original_pointer(old_memory); heap_free(ptr); } return nil; case .Free_All: // NOTE(bill): Does nothing case .Resize: if old_memory == nil { return aligned_heap_alloc(size, alignment); } ptr := recover_original_pointer(old_memory); ptr = heap_resize(ptr, size); assert(ptr != nil); return align_and_store_padding(ptr, alignment); } return nil; */ switch mode { case .Alloc: return heap_alloc(size); case .Free: if old_memory != nil { heap_free(old_memory); } return nil; case .Free_All: // NOTE(bill): Does nothing case .Resize: return heap_resize(old_memory, size); } return nil; } heap_allocator :: proc() -> mem.Allocator { return mem.Allocator{ procedure = heap_allocator_proc, data = nil, }; }