package container Set :: struct { hash: Array(int), entries: Array(Set_Entry), } Set_Entry :: struct { key: u64, next: int, } /* set_init :: proc{ set_init_none, set_init_cap, } set_delete set_in set_not_in set_add set_remove set_reserve set_clear */ set_init :: proc{set_init_none, set_init_cap}; set_init_none :: proc(m: ^Set, allocator := context.allocator) { m.hash.allocator = allocator; m.entries.allocator = allocator; } set_init_cap :: proc(m: ^Set, cap: int, allocator := context.allocator) { m.hash.allocator = allocator; m.entries.allocator = allocator; set_reserve(m, cap); } set_delete :: proc(m: Set) { array_delete(m.hash); array_delete(m.entries); } set_in :: proc(m: Set, key: u64) -> bool { return _set_find_or_fail(m, key) >= 0; } set_not_in :: proc(m: Set, key: u64) -> bool { return _set_find_or_fail(m, key) < 0; } set_add :: proc(m: ^Set, key: u64) { if array_len(m.hash) == 0 { _set_grow(m); } _ = _set_find_or_make(m, key); if _set_full(m^) { _set_grow(m); } } set_remove :: proc(m: ^Set, key: u64) { fr := _set_find_key(m^, key); if fr.entry_index >= 0 { _set_erase(m, fr); } } set_reserve :: proc(m: ^Set, new_size: int) { nm: Set; set_init(&nm, m.hash.allocator); array_resize(&nm.hash, new_size); array_reserve(&nm.entries, array_len(m.entries)); for i in 0.. bool { a_entries := array_slice(a.entries); b_entries := array_slice(b.entries); if len(a_entries) != len(b_entries) { return false; } for e in a_entries { if set_not_in(b, e.key) { return false; } } return true; } /// Internal _set_add_entry :: proc(m: ^Set, key: u64) -> int { e: Set_Entry; e.key = key; e.next = -1; idx := array_len(m.entries); array_push(&m.entries, e); return idx; } _set_erase :: proc(m: ^Set, fr: Map_Find_Result) { if fr.entry_prev < 0 { array_set(&m.hash, fr.hash_index, array_get(m.entries, fr.entry_index).next); } else { array_get_ptr(m.entries, fr.entry_prev).next = array_get(m.entries, fr.entry_index).next; } if fr.entry_index == array_len(m.entries)-1 { array_pop_back(&m.entries); return; } array_set(&m.entries, fr.entry_index, array_get(m.entries, array_len(m.entries)-1)); last := _set_find_key(m^, array_get(m.entries, fr.entry_index).key); if last.entry_prev < 0 { array_get_ptr(m.entries, last.entry_prev).next = fr.entry_index; } else { array_set(&m.hash, last.hash_index, fr.entry_index); } } _set_find_key :: proc(m: Set, key: u64) -> Map_Find_Result { fr: Map_Find_Result; fr.hash_index = -1; fr.entry_prev = -1; fr.entry_index = -1; if array_len(m.hash) == 0 { return fr; } fr.hash_index = int(key % u64(array_len(m.hash))); fr.entry_index = array_get(m.hash, fr.hash_index); for fr.entry_index >= 0 { it := array_get_ptr(m.entries, fr.entry_index); if it.key == key { return fr; } fr.entry_prev = fr.entry_index; fr.entry_index = it.next; } return fr; } _set_find_entry :: proc(m: ^Set, e: ^Set_Entry) -> Map_Find_Result { fr: Map_Find_Result; fr.hash_index = -1; fr.entry_prev = -1; fr.entry_index = -1; if array_len(m.hash) == 0 { return fr; } fr.hash_index = int(e.key % u64(array_len(m.hash))); fr.entry_index = array_get(m.hash, fr.hash_index); for fr.entry_index >= 0 { it := array_get_ptr(m.entries, fr.entry_index); if it == e { return fr; } fr.entry_prev = fr.entry_index; fr.entry_index = it.next; } return fr; } _set_find_or_fail :: proc(m: Set, key: u64) -> int { return _set_find_key(m, key).entry_index; } _set_find_or_make :: proc(m: ^Set, key: u64) -> int { fr := _set_find_key(m^, key); if fr.entry_index >= 0 { return fr.entry_index; } i := _set_add_entry(m, key); if fr.entry_prev < 0 { array_set(&m.hash, fr.hash_index, i); } else { array_get_ptr(m.entries, fr.entry_prev).next = i; } return i; } _set_make :: proc(m: ^Set, key: u64) -> int { fr := _set_find_key(m^, key); i := _set_add_entry(m, key); if fr.entry_prev < 0 { array_set(&m.hash, fr.hash_index, i); } else { array_get_ptr(m.entries, fr.entry_prev).next = i; } array_get_ptr(m.entries, i).next = fr.entry_index; return i; } _set_full :: proc(m: Set) -> bool { // TODO(bill): Determine good max load factor return array_len(m.entries) >= (array_len(m.hash) / 4)*3; } _set_grow :: proc(m: ^Set) { new_size := array_len(m.entries) * 4 + 7; // TODO(bill): Determine good grow rate set_reserve(m, new_size); }