package os import "core:mem" import "core:strconv" import "core:unicode/utf8" OS :: ODIN_OS; ARCH :: ODIN_ARCH; ENDIAN :: ODIN_ENDIAN; write_string :: proc(fd: Handle, str: string) -> (int, Errno) { return write(fd, transmute([]byte)str); } write_byte :: proc(fd: Handle, b: byte) -> (int, Errno) { return write(fd, []byte{b}); } write_rune :: proc(fd: Handle, r: rune) -> (int, Errno) { if r < utf8.RUNE_SELF { return write_byte(fd, byte(r)); } b, n := utf8.encode_rune(r); return write(fd, b[:n]); } write_encoded_rune :: proc(fd: Handle, r: rune) { write_byte(fd, '\''); switch r { case '\a': write_string(fd, "\\a"); case '\b': write_string(fd, "\\b"); case '\e': write_string(fd, "\\e"); case '\f': write_string(fd, "\\f"); case '\n': write_string(fd, "\\n"); case '\r': write_string(fd, "\\r"); case '\t': write_string(fd, "\\t"); case '\v': write_string(fd, "\\v"); case: if r < 32 { write_string(fd, "\\x"); b: [2]byte; s := strconv.append_bits(b[:], u64(r), 16, true, 64, strconv.digits, nil); switch len(s) { case 0: write_string(fd, "00"); case 1: write_rune(fd, '0'); case 2: write_string(fd, s); } } else { write_rune(fd, r); } } write_byte(fd, '\''); } file_size_from_path :: proc(path: string) -> i64 { fd, err := open(path, O_RDONLY, 0); if err != 0 { return -1; } defer close(fd); length: i64; if length, err = file_size(fd); err != 0 { return -1; } return length; } read_entire_file :: proc(name: string) -> (data: []byte, success: bool) { fd, err := open(name, O_RDONLY, 0); if err != 0 { return nil, false; } defer close(fd); length: i64; if length, err = file_size(fd); err != 0 { return nil, false; } if length <= 0 { return nil, true; } data = make([]byte, int(length)); if data == nil { return nil, false; } bytes_read, read_err := read(fd, data); if read_err != ERROR_NONE { delete(data); return nil, false; } return data[:bytes_read], true; } write_entire_file :: proc(name: string, data: []byte, truncate := true) -> (success: bool) { flags: int = O_WRONLY|O_CREATE; if truncate { flags |= O_TRUNC; } mode: int = 0; when OS == "linux" || OS == "darwin" { // NOTE(justasd): 644 (owner read, write; group read; others read) mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH; } fd, err := open(name, flags, mode); if err != 0 { return false; } defer close(fd); _, write_err := write(fd, data); return write_err == 0; } write_ptr :: proc(fd: Handle, data: rawptr, len: int) -> (int, Errno) { s := transmute([]byte)mem.Raw_Slice{data, len}; return write(fd, s); } read_ptr :: proc(fd: Handle, data: rawptr, len: int) -> (int, Errno) { s := transmute([]byte)mem.Raw_Slice{data, len}; return read(fd, s); } heap_allocator_proc :: proc(allocator_data: rawptr, mode: mem.Allocator_Mode, size, alignment: int, old_memory: rawptr, old_size: int, flags: u64 = 0, loc := #caller_location) -> rawptr { // // NOTE(tetra, 2020-01-14): The heap doesn't respect alignment. // Instead, we overallocate by `alignment + size_of(rawptr) - 1`, and insert // padding. We also store the original pointer returned by heap_alloc right before // the pointer we return to the user. // aligned_alloc :: proc(size, alignment: int, old_ptr: rawptr = nil) -> rawptr { a := max(alignment, align_of(rawptr)); space := size + a - 1; allocated_mem: rawptr; if old_ptr != nil { original_old_ptr := mem.ptr_offset((^rawptr)(old_ptr), -1)^; allocated_mem = heap_resize(original_old_ptr, space+size_of(rawptr)); } else { allocated_mem = heap_alloc(space+size_of(rawptr)); } aligned_mem := rawptr(mem.ptr_offset((^u8)(allocated_mem), size_of(rawptr))); ptr := uintptr(aligned_mem); aligned_ptr := (ptr - 1 + uintptr(a)) & -uintptr(a); diff := int(aligned_ptr - ptr); if (size + diff) > space { return nil; } aligned_mem = rawptr(aligned_ptr); mem.ptr_offset((^rawptr)(aligned_mem), -1)^ = allocated_mem; return aligned_mem; } aligned_free :: proc(p: rawptr) { if p != nil { heap_free(mem.ptr_offset((^rawptr)(p), -1)^); } } aligned_resize :: proc(p: rawptr, old_size: int, new_size: int, new_alignment: int) -> rawptr { if p == nil do return nil; return aligned_alloc(new_size, new_alignment, p); } switch mode { case .Alloc: return aligned_alloc(size, alignment); case .Free: aligned_free(old_memory); case .Free_All: // NOTE(tetra): Do nothing. case .Resize: if old_memory == nil { return aligned_alloc(size, alignment); } return aligned_resize(old_memory, old_size, size, alignment); case .Query_Features: set := (^mem.Allocator_Mode_Set)(old_memory); if set != nil { set^ = {.Alloc, .Free, .Resize, .Query_Features}; } return set; case .Query_Info: return nil; } return nil; } heap_allocator :: proc() -> mem.Allocator { return mem.Allocator{ procedure = heap_allocator_proc, data = nil, }; }