package runtime import "core:os" bswap_16 :: proc "none" (x: u16) -> u16 { return x>>8 | x<<8; } bswap_32 :: proc "none" (x: u32) -> u32 { return x>>24 | (x>>8)&0xff00 | (x<<8)&0xff0000 | x<<24; } bswap_64 :: proc "none" (x: u64) -> u64 { return u64(bswap_32(u32(x))) | u64(bswap_32(u32(x>>32))); } bswap_128 :: proc "none" (x: u128) -> u128 { return u128(bswap_64(u64(x))) | u128(bswap_64(u64(x>>64))); } bswap_f32 :: proc "none" (f: f32) -> f32 { x := transmute(u32)f; z := x>>24 | (x>>8)&0xff00 | (x<<8)&0xff0000 | x<<24; return transmute(f32)z; } bswap_f64 :: proc "none" (f: f64) -> f64 { x := transmute(u64)f; z := u64(bswap_32(u32(x))) | u64(bswap_32(u32(x>>32))); return transmute(f64)z; } ptr_offset :: inline proc "contextless" (ptr: $P/^$T, n: int) -> P { new := int(uintptr(ptr)) + size_of(T)*n; return P(uintptr(new)); } is_power_of_two_int :: inline proc(x: int) -> bool { if x <= 0 do return false; return (x & (x-1)) == 0; } align_forward_int :: inline proc(ptr, align: int) -> int { assert(is_power_of_two_int(align)); p := ptr; modulo := p & (align-1); if modulo != 0 do p += align - modulo; return p; } is_power_of_two_uintptr :: inline proc(x: uintptr) -> bool { if x <= 0 do return false; return (x & (x-1)) == 0; } align_forward_uintptr :: inline proc(ptr, align: uintptr) -> uintptr { assert(is_power_of_two_uintptr(align)); p := ptr; modulo := p & (align-1); if modulo != 0 do p += align - modulo; return p; } mem_zero :: proc "contextless" (data: rawptr, len: int) -> rawptr { if data == nil do return nil; if len < 0 do return data; memset(data, 0, len); return data; } mem_copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr { if src == nil do return dst; // NOTE(bill): This _must_ be implemented like C's memmove foreign _ { when ODIN_USE_LLVM_API { when size_of(rawptr) == 8 { @(link_name="llvm.memmove.p0i8.p0i8.i64") llvm_memmove :: proc(dst, src: rawptr, len: int, is_volatile: bool = false) ---; } else { @(link_name="llvm.memmove.p0i8.p0i8.i32") llvm_memmove :: proc(dst, src: rawptr, len: int, is_volatile: bool = false) ---; } } else { when size_of(rawptr) == 8 { @(link_name="llvm.memmove.p0i8.p0i8.i64") llvm_memmove :: proc(dst, src: rawptr, len: int, align: i32 = 1, is_volatile: bool = false) ---; } else { @(link_name="llvm.memmove.p0i8.p0i8.i32") llvm_memmove :: proc(dst, src: rawptr, len: int, align: i32 = 1, is_volatile: bool = false) ---; } } } llvm_memmove(dst, src, len); return dst; } mem_copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr { if src == nil do return dst; // NOTE(bill): This _must_ be implemented like C's memcpy foreign _ { when ODIN_USE_LLVM_API { when size_of(rawptr) == 8 { @(link_name="llvm.memcpy.p0i8.p0i8.i64") llvm_memcpy :: proc(dst, src: rawptr, len: int, is_volatile: bool = false) ---; } else { @(link_name="llvm.memcpy.p0i8.p0i8.i32") llvm_memcpy :: proc(dst, src: rawptr, len: int, is_volatile: bool = false) ---; } } else { when size_of(rawptr) == 8 { @(link_name="llvm.memcpy.p0i8.p0i8.i64") llvm_memcpy :: proc(dst, src: rawptr, len: int, align: i32 = 1, is_volatile: bool = false) ---; } else { @(link_name="llvm.memcpy.p0i8.p0i8.i32") llvm_memcpy :: proc(dst, src: rawptr, len: int, align: i32 = 1, is_volatile: bool = false) ---; } } } llvm_memcpy(dst, src, len); return dst; } DEFAULT_ALIGNMENT :: 2*align_of(rawptr); mem_alloc :: inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> rawptr { if size == 0 do return nil; if allocator.procedure == nil do return nil; return allocator.procedure(allocator.data, .Alloc, size, alignment, nil, 0, 0, loc); } mem_free :: inline proc(ptr: rawptr, allocator := context.allocator, loc := #caller_location) { if ptr == nil do return; if allocator.procedure == nil do return; allocator.procedure(allocator.data, .Free, 0, 0, ptr, 0, 0, loc); } mem_free_all :: inline proc(allocator := context.allocator, loc := #caller_location) { if allocator.procedure != nil { allocator.procedure(allocator.data, .Free_All, 0, 0, nil, 0, 0, loc); } } mem_resize :: inline proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> rawptr { switch { case allocator.procedure == nil: return nil; case new_size == 0: allocator.procedure(allocator.data, .Free, 0, 0, ptr, 0, 0, loc); return nil; case ptr == nil: return allocator.procedure(allocator.data, .Alloc, new_size, alignment, nil, 0, 0, loc); } return allocator.procedure(allocator.data, .Resize, new_size, alignment, ptr, old_size, 0, loc); } print_u64 :: proc(fd: os.Handle, x: u64) { digits := "0123456789"; a: [129]byte; i := len(a); b := u64(10); u := x; for u >= b { i -= 1; a[i] = digits[u % b]; u /= b; } i -= 1; a[i] = digits[u % b]; os.write(fd, a[i:]); } print_i64 :: proc(fd: os.Handle, x: i64) { digits := "0123456789"; b :: i64(10); u := x; neg := u < 0; u = abs(u); a: [129]byte; i := len(a); for u >= b { i -= 1; a[i] = digits[u % b]; u /= b; } i -= 1; a[i] = digits[u % b]; if neg { i -= 1; a[i] = '-'; } os.write(fd, a[i:]); } print_caller_location :: proc(fd: os.Handle, using loc: Source_Code_Location) { os.write_string(fd, file_path); os.write_byte(fd, '('); print_u64(fd, u64(line)); os.write_byte(fd, ':'); print_u64(fd, u64(column)); os.write_byte(fd, ')'); } print_typeid :: proc(fd: os.Handle, id: typeid) { if id == nil { os.write_string(fd, "nil"); } else { ti := type_info_of(id); print_type(fd, ti); } } print_type :: proc(fd: os.Handle, ti: ^Type_Info) { if ti == nil { os.write_string(fd, "nil"); return; } switch info in ti.variant { case Type_Info_Named: os.write_string(fd, info.name); case Type_Info_Integer: switch ti.id { case int: os.write_string(fd, "int"); case uint: os.write_string(fd, "uint"); case uintptr: os.write_string(fd, "uintptr"); case: os.write_byte(fd, 'i' if info.signed else 'u'); print_u64(fd, u64(8*ti.size)); } case Type_Info_Rune: os.write_string(fd, "rune"); case Type_Info_Float: os.write_byte(fd, 'f'); print_u64(fd, u64(8*ti.size)); case Type_Info_Complex: os.write_string(fd, "complex"); print_u64(fd, u64(8*ti.size)); case Type_Info_Quaternion: os.write_string(fd, "quaternion"); print_u64(fd, u64(8*ti.size)); case Type_Info_String: os.write_string(fd, "string"); case Type_Info_Boolean: switch ti.id { case bool: os.write_string(fd, "bool"); case: os.write_byte(fd, 'b'); print_u64(fd, u64(8*ti.size)); } case Type_Info_Any: os.write_string(fd, "any"); case Type_Info_Type_Id: os.write_string(fd, "typeid"); case Type_Info_Pointer: if info.elem == nil { os.write_string(fd, "rawptr"); } else { os.write_string(fd, "^"); print_type(fd, info.elem); } case Type_Info_Procedure: os.write_string(fd, "proc"); if info.params == nil { os.write_string(fd, "()"); } else { t := info.params.variant.(Type_Info_Tuple); os.write_byte(fd, '('); for t, i in t.types { if i > 0 do os.write_string(fd, ", "); print_type(fd, t); } os.write_string(fd, ")"); } if info.results != nil { os.write_string(fd, " -> "); print_type(fd, info.results); } case Type_Info_Tuple: count := len(info.names); if count != 1 do os.write_byte(fd, '('); for name, i in info.names { if i > 0 do os.write_string(fd, ", "); t := info.types[i]; if len(name) > 0 { os.write_string(fd, name); os.write_string(fd, ": "); } print_type(fd, t); } if count != 1 do os.write_string(fd, ")"); case Type_Info_Array: os.write_byte(fd, '['); print_u64(fd, u64(info.count)); os.write_byte(fd, ']'); print_type(fd, info.elem); case Type_Info_Enumerated_Array: os.write_byte(fd, '['); print_type(fd, info.index); os.write_byte(fd, ']'); print_type(fd, info.elem); case Type_Info_Dynamic_Array: os.write_string(fd, "[dynamic]"); print_type(fd, info.elem); case Type_Info_Slice: os.write_string(fd, "[]"); print_type(fd, info.elem); case Type_Info_Map: os.write_string(fd, "map["); print_type(fd, info.key); os.write_byte(fd, ']'); print_type(fd, info.value); case Type_Info_Struct: switch info.soa_kind { case .None: // Ignore case .Fixed: os.write_string(fd, "#soa["); print_u64(fd, u64(info.soa_len)); os.write_byte(fd, ']'); print_type(fd, info.soa_base_type); return; case .Slice: os.write_string(fd, "#soa[]"); print_type(fd, info.soa_base_type); return; case .Dynamic: os.write_string(fd, "#soa[dynamic]"); print_type(fd, info.soa_base_type); return; } os.write_string(fd, "struct "); if info.is_packed do os.write_string(fd, "#packed "); if info.is_raw_union do os.write_string(fd, "#raw_union "); if info.custom_align { os.write_string(fd, "#align "); print_u64(fd, u64(ti.align)); os.write_byte(fd, ' '); } os.write_byte(fd, '{'); for name, i in info.names { if i > 0 do os.write_string(fd, ", "); os.write_string(fd, name); os.write_string(fd, ": "); print_type(fd, info.types[i]); } os.write_byte(fd, '}'); case Type_Info_Union: os.write_string(fd, "union "); if info.custom_align { os.write_string(fd, "#align "); print_u64(fd, u64(ti.align)); } if info.no_nil { os.write_string(fd, "#no_nil "); } os.write_byte(fd, '{'); for variant, i in info.variants { if i > 0 do os.write_string(fd, ", "); print_type(fd, variant); } os.write_string(fd, "}"); case Type_Info_Enum: os.write_string(fd, "enum "); print_type(fd, info.base); os.write_string(fd, " {"); for name, i in info.names { if i > 0 do os.write_string(fd, ", "); os.write_string(fd, name); } os.write_string(fd, "}"); case Type_Info_Bit_Field: os.write_string(fd, "bit_field "); if ti.align != 1 { os.write_string(fd, "#align "); print_u64(fd, u64(ti.align)); os.write_byte(fd, ' '); } os.write_string(fd, " {"); for name, i in info.names { if i > 0 do os.write_string(fd, ", "); os.write_string(fd, name); os.write_string(fd, ": "); print_u64(fd, u64(info.bits[i])); } os.write_string(fd, "}"); case Type_Info_Bit_Set: os.write_string(fd, "bit_set["); #partial switch elem in type_info_base(info.elem).variant { case Type_Info_Enum: print_type(fd, info.elem); case Type_Info_Rune: os.write_encoded_rune(fd, rune(info.lower)); os.write_string(fd, ".."); os.write_encoded_rune(fd, rune(info.upper)); case: print_i64(fd, info.lower); os.write_string(fd, ".."); print_i64(fd, info.upper); } if info.underlying != nil { os.write_string(fd, "; "); print_type(fd, info.underlying); } os.write_byte(fd, ']'); case Type_Info_Opaque: os.write_string(fd, "opaque "); print_type(fd, info.elem); case Type_Info_Simd_Vector: if info.is_x86_mmx { os.write_string(fd, "intrinsics.x86_mmx"); } else { os.write_string(fd, "#simd["); print_u64(fd, u64(info.count)); os.write_byte(fd, ']'); print_type(fd, info.elem); } case Type_Info_Relative_Pointer: os.write_string(fd, "#relative("); print_type(fd, info.base_integer); os.write_string(fd, ") "); print_type(fd, info.pointer); case Type_Info_Relative_Slice: os.write_string(fd, "#relative("); print_type(fd, info.base_integer); os.write_string(fd, ") "); print_type(fd, info.slice); } } memory_compare :: proc "contextless" (a, b: rawptr, n: int) -> int #no_bounds_check { x := uintptr(a); y := uintptr(b); n := uintptr(n); SU :: size_of(uintptr); fast := uintptr(n/SU + 1); offset := (fast-1)*SU; curr_block := uintptr(0); if n < SU { fast = 0; } for /**/; curr_block < fast; curr_block += 1 { va := (^uintptr)(x + curr_block * size_of(uintptr))^; vb := (^uintptr)(y + curr_block * size_of(uintptr))^; if va ~ vb != 0 { for pos := curr_block*SU; pos < n; pos += 1 { a := (^byte)(x+pos)^; b := (^byte)(y+pos)^; if a ~ b != 0 { return -1 if (int(a) - int(b)) < 0 else +1; } } } } for /**/; offset < n; offset += 1 { a := (^byte)(x+offset)^; b := (^byte)(y+offset)^; if a ~ b != 0 { return -1 if (int(a) - int(b)) < 0 else +1; } } return 0; } memory_compare_zero :: proc "contextless" (a: rawptr, n: int) -> int #no_bounds_check { x := uintptr(a); n := uintptr(n); SU :: size_of(uintptr); fast := uintptr(n/SU + 1); offset := (fast-1)*SU; curr_block := uintptr(0); if n < SU { fast = 0; } for /**/; curr_block < fast; curr_block += 1 { va := (^uintptr)(x + curr_block * size_of(uintptr))^; if va ~ 0 != 0 { for pos := curr_block*SU; pos < n; pos += 1 { a := (^byte)(x+pos)^; if a ~ 0 != 0 { return -1 if int(a) < 0 else +1; } } } } for /**/; offset < n; offset += 1 { a := (^byte)(x+offset)^; if a ~ 0 != 0 { return -1 if int(a) < 0 else +1; } } return 0; } string_eq :: proc "contextless" (a, b: string) -> bool { x := transmute(Raw_String)a; y := transmute(Raw_String)b; switch { case x.len != y.len: return false; case x.len == 0: return true; case x.data == y.data: return true; } return string_cmp(a, b) == 0; } string_cmp :: proc "contextless" (a, b: string) -> int { x := transmute(Raw_String)a; y := transmute(Raw_String)b; return memory_compare(x.data, y.data, min(x.len, y.len)); } string_ne :: inline proc "contextless" (a, b: string) -> bool { return !string_eq(a, b); } string_lt :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) < 0; } string_gt :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) > 0; } string_le :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) <= 0; } string_ge :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) >= 0; } cstring_len :: proc "contextless" (s: cstring) -> int { p0 := uintptr((^byte)(s)); p := p0; for p != 0 && (^byte)(p)^ != 0 { p += 1; } return int(p - p0); } cstring_to_string :: proc "contextless" (s: cstring) -> string { if s == nil do return ""; ptr := (^byte)(s); n := cstring_len(s); return transmute(string)Raw_String{ptr, n}; } complex64_eq :: inline proc "contextless" (a, b: complex64) -> bool { return real(a) == real(b) && imag(a) == imag(b); } complex64_ne :: inline proc "contextless" (a, b: complex64) -> bool { return real(a) != real(b) || imag(a) != imag(b); } complex128_eq :: inline proc "contextless" (a, b: complex128) -> bool { return real(a) == real(b) && imag(a) == imag(b); } complex128_ne :: inline proc "contextless" (a, b: complex128) -> bool { return real(a) != real(b) || imag(a) != imag(b); } quaternion128_eq :: inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b); } quaternion128_ne :: inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b); } quaternion256_eq :: inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b); } quaternion256_ne :: inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b); } bounds_trap :: proc "contextless" () -> ! { when ODIN_OS == "windows" { windows_trap_array_bounds(); } else { trap(); } } type_assertion_trap :: proc "contextless" () -> ! { when ODIN_OS == "windows" { windows_trap_type_assertion(); } else { trap(); } } bounds_check_error :: proc "contextless" (file: string, line, column: int, index, count: int) { if 0 <= index && index < count do return; handle_error :: proc "contextless" (file: string, line, column: int, index, count: int) { context = default_context(); fd := os.stderr; print_caller_location(fd, Source_Code_Location{file, line, column, "", 0}); os.write_string(fd, " Index "); print_i64(fd, i64(index)); os.write_string(fd, " is out of bounds range 0:"); print_i64(fd, i64(count)); os.write_byte(fd, '\n'); bounds_trap(); } handle_error(file, line, column, index, count); } slice_handle_error :: proc "contextless" (file: string, line, column: int, lo, hi: int, len: int) { context = default_context(); fd := os.stderr; print_caller_location(fd, Source_Code_Location{file, line, column, "", 0}); os.write_string(fd, " Invalid slice indices: "); print_i64(fd, i64(lo)); os.write_string(fd, ":"); print_i64(fd, i64(hi)); os.write_string(fd, ":"); print_i64(fd, i64(len)); os.write_byte(fd, '\n'); bounds_trap(); } slice_expr_error_hi :: proc "contextless" (file: string, line, column: int, hi: int, len: int) { if 0 <= hi && hi <= len do return; slice_handle_error(file, line, column, 0, hi, len); } slice_expr_error_lo_hi :: proc "contextless" (file: string, line, column: int, lo, hi: int, len: int) { if 0 <= lo && lo <= len && lo <= hi && hi <= len do return; slice_handle_error(file, line, column, lo, hi, len); } dynamic_array_expr_error :: proc "contextless" (file: string, line, column: int, low, high, max: int) { if 0 <= low && low <= high && high <= max do return; handle_error :: proc "contextless" (file: string, line, column: int, low, high, max: int) { context = default_context(); fd := os.stderr; print_caller_location(fd, Source_Code_Location{file, line, column, "", 0}); os.write_string(fd, " Invalid dynamic array values: "); print_i64(fd, i64(low)); os.write_string(fd, ":"); print_i64(fd, i64(high)); os.write_string(fd, ":"); print_i64(fd, i64(max)); os.write_byte(fd, '\n'); bounds_trap(); } handle_error(file, line, column, low, high, max); } type_assertion_check :: proc "contextless" (ok: bool, file: string, line, column: int, from, to: typeid) { if ok do return; handle_error :: proc "contextless" (file: string, line, column: int, from, to: typeid) { context = default_context(); fd := os.stderr; print_caller_location(fd, Source_Code_Location{file, line, column, "", 0}); os.write_string(fd, " Invalid type assertion from "); print_typeid(fd, from); os.write_string(fd, " to "); print_typeid(fd, to); os.write_byte(fd, '\n'); type_assertion_trap(); } handle_error(file, line, column, from, to); } string_decode_rune :: inline proc "contextless" (s: string) -> (rune, int) { // NOTE(bill): Duplicated here to remove dependency on package unicode/utf8 @static accept_sizes := [256]u8{ 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x00-0x0f 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x10-0x1f 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x20-0x2f 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x30-0x3f 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x40-0x4f 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x50-0x5f 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x60-0x6f 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x70-0x7f 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x80-0x8f 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x90-0x9f 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xa0-0xaf 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xb0-0xbf 0xf1, 0xf1, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xc0-0xcf 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xd0-0xdf 0x13, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x23, 0x03, 0x03, // 0xe0-0xef 0x34, 0x04, 0x04, 0x04, 0x44, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xf0-0xff }; Accept_Range :: struct {lo, hi: u8}; @static accept_ranges := [5]Accept_Range{ {0x80, 0xbf}, {0xa0, 0xbf}, {0x80, 0x9f}, {0x90, 0xbf}, {0x80, 0x8f}, }; MASKX :: 0b0011_1111; MASK2 :: 0b0001_1111; MASK3 :: 0b0000_1111; MASK4 :: 0b0000_0111; LOCB :: 0b1000_0000; HICB :: 0b1011_1111; RUNE_ERROR :: '\ufffd'; n := len(s); if n < 1 { return RUNE_ERROR, 0; } s0 := s[0]; x := accept_sizes[s0]; if x >= 0xF0 { mask := rune(x) << 31 >> 31; // NOTE(bill): Create 0x0000 or 0xffff. return rune(s[0])&~mask | RUNE_ERROR&mask, 1; } sz := x & 7; accept := accept_ranges[x>>4]; if n < int(sz) { return RUNE_ERROR, 1; } b1 := s[1]; if b1 < accept.lo || accept.hi < b1 { return RUNE_ERROR, 1; } if sz == 2 { return rune(s0&MASK2)<<6 | rune(b1&MASKX), 2; } b2 := s[2]; if b2 < LOCB || HICB < b2 { return RUNE_ERROR, 1; } if sz == 3 { return rune(s0&MASK3)<<12 | rune(b1&MASKX)<<6 | rune(b2&MASKX), 3; } b3 := s[3]; if b3 < LOCB || HICB < b3 { return RUNE_ERROR, 1; } return rune(s0&MASK4)<<18 | rune(b1&MASKX)<<12 | rune(b2&MASKX)<<6 | rune(b3&MASKX), 4; } bounds_check_error_loc :: inline proc "contextless" (using loc := #caller_location, index, count: int) { bounds_check_error(file_path, int(line), int(column), index, count); } slice_expr_error_hi_loc :: inline proc "contextless" (using loc := #caller_location, hi: int, len: int) { slice_expr_error_hi(file_path, int(line), int(column), hi, len); } slice_expr_error_lo_hi_loc :: inline proc "contextless" (using loc := #caller_location, lo, hi: int, len: int) { slice_expr_error_lo_hi(file_path, int(line), int(column), lo, hi, len); } dynamic_array_expr_error_loc :: inline proc "contextless" (using loc := #caller_location, low, high, max: int) { dynamic_array_expr_error(file_path, int(line), int(column), low, high, max); } make_slice_error_loc :: inline proc "contextless" (loc := #caller_location, len: int) { if 0 <= len do return; handle_error :: proc "contextless" (loc: Source_Code_Location, len: int) { context = default_context(); fd := os.stderr; print_caller_location(fd, loc); os.write_string(fd, " Invalid slice length for make: "); print_i64(fd, i64(len)); os.write_byte(fd, '\n'); bounds_trap(); } handle_error(loc, len); } make_dynamic_array_error_loc :: inline proc "contextless" (using loc := #caller_location, len, cap: int) { if 0 <= len && len <= cap do return; handle_error :: proc "contextless" (loc: Source_Code_Location, len, cap: int) { context = default_context(); fd := os.stderr; print_caller_location(fd, loc); os.write_string(fd, " Invalid dynamic array parameters for make: "); print_i64(fd, i64(len)); os.write_byte(fd, ':'); print_i64(fd, i64(cap)); os.write_byte(fd, '\n'); bounds_trap(); } handle_error(loc, len, cap); } make_map_expr_error_loc :: inline proc "contextless" (loc := #caller_location, cap: int) { if 0 <= cap do return; handle_error :: proc "contextless" (loc: Source_Code_Location, cap: int) { context = default_context(); fd := os.stderr; print_caller_location(fd, loc); os.write_string(fd, " Invalid map capacity for make: "); print_i64(fd, i64(cap)); os.write_byte(fd, '\n'); bounds_trap(); } handle_error(loc, cap); } @(default_calling_convention = "c") foreign { @(link_name="llvm.sqrt.f32") _sqrt_f32 :: proc(x: f32) -> f32 --- @(link_name="llvm.sqrt.f64") _sqrt_f64 :: proc(x: f64) -> f64 --- } abs_f32 :: inline proc "contextless" (x: f32) -> f32 { foreign { @(link_name="llvm.fabs.f32") _abs :: proc "c" (x: f32) -> f32 --- } return _abs(x); } abs_f64 :: inline proc "contextless" (x: f64) -> f64 { foreign { @(link_name="llvm.fabs.f64") _abs :: proc "c" (x: f64) -> f64 --- } return _abs(x); } min_f32 :: proc(a, b: f32) -> f32 { foreign { @(link_name="llvm.minnum.f32") _min :: proc "c" (a, b: f32) -> f32 --- } return _min(a, b); } min_f64 :: proc(a, b: f64) -> f64 { foreign { @(link_name="llvm.minnum.f64") _min :: proc "c" (a, b: f64) -> f64 --- } return _min(a, b); } max_f32 :: proc(a, b: f32) -> f32 { foreign { @(link_name="llvm.maxnum.f32") _max :: proc "c" (a, b: f32) -> f32 --- } return _max(a, b); } max_f64 :: proc(a, b: f64) -> f64 { foreign { @(link_name="llvm.maxnum.f64") _max :: proc "c" (a, b: f64) -> f64 --- } return _max(a, b); } abs_complex64 :: inline proc "contextless" (x: complex64) -> f32 { r, i := real(x), imag(x); return _sqrt_f32(r*r + i*i); } abs_complex128 :: inline proc "contextless" (x: complex128) -> f64 { r, i := real(x), imag(x); return _sqrt_f64(r*r + i*i); } abs_quaternion128 :: inline proc "contextless" (x: quaternion128) -> f32 { r, i, j, k := real(x), imag(x), jmag(x), kmag(x); return _sqrt_f32(r*r + i*i + j*j + k*k); } abs_quaternion256 :: inline proc "contextless" (x: quaternion256) -> f64 { r, i, j, k := real(x), imag(x), jmag(x), kmag(x); return _sqrt_f64(r*r + i*i + j*j + k*k); } quo_complex64 :: proc "contextless" (n, m: complex64) -> complex64 { e, f: f32; if abs(real(m)) >= abs(imag(m)) { ratio := imag(m) / real(m); denom := real(m) + ratio*imag(m); e = (real(n) + imag(n)*ratio) / denom; f = (imag(n) - real(n)*ratio) / denom; } else { ratio := real(m) / imag(m); denom := imag(m) + ratio*real(m); e = (real(n)*ratio + imag(n)) / denom; f = (imag(n)*ratio - real(n)) / denom; } return complex(e, f); } quo_complex128 :: proc "contextless" (n, m: complex128) -> complex128 { e, f: f64; if abs(real(m)) >= abs(imag(m)) { ratio := imag(m) / real(m); denom := real(m) + ratio*imag(m); e = (real(n) + imag(n)*ratio) / denom; f = (imag(n) - real(n)*ratio) / denom; } else { ratio := real(m) / imag(m); denom := imag(m) + ratio*real(m); e = (real(n)*ratio + imag(n)) / denom; f = (imag(n)*ratio - real(n)) / denom; } return complex(e, f); } mul_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 { q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q); r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r); t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3; t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2; t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1; t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0; return quaternion(t0, t1, t2, t3); } mul_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 { q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q); r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r); t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3; t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2; t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1; t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0; return quaternion(t0, t1, t2, t3); } quo_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 { q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q); r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r); invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3); t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2; t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2; t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2; t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2; return quaternion(t0, t1, t2, t3); } quo_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 { q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q); r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r); invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3); t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2; t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2; t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2; t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2; return quaternion(t0, t1, t2, t3); }