TAU :: 6.28318530717958647692528676655900576; PI :: 3.14159265358979323846264338327950288; ONE_OVER_TAU :: 0.636619772367581343075535053490057448; ONE_OVER_PI :: 0.159154943091895335768883763372514362; E :: 2.71828182845904523536; SQRT_TWO :: 1.41421356237309504880168872420969808; SQRT_THREE :: 1.73205080756887729352744634150587236; SQRT_FIVE :: 2.23606797749978969640917366873127623; LOG_TWO :: 0.693147180559945309417232121458176568; LOG_TEN :: 2.30258509299404568401799145468436421; EPSILON :: 1.19209290e-7; τ :: TAU; π :: PI; Vec2 :: [vector 2]f32; Vec3 :: [vector 3]f32; Vec4 :: [vector 4]f32; // Column major Mat2 :: [2][2]f32; Mat3 :: [3][3]f32; Mat4 :: [4][4]f32; Complex :: complex64; foreign __llvm_core { sqrt :: proc(x: f32) -> f32 #link_name "llvm.sqrt.f32" ---; sqrt :: proc(x: f64) -> f64 #link_name "llvm.sqrt.f64" ---; sin :: proc(θ: f32) -> f32 #link_name "llvm.sin.f32" ---; sin :: proc(θ: f64) -> f64 #link_name "llvm.sin.f64" ---; cos :: proc(θ: f32) -> f32 #link_name "llvm.cos.f32" ---; cos :: proc(θ: f64) -> f64 #link_name "llvm.cos.f64" ---; pow :: proc(x, power: f32) -> f32 #link_name "llvm.pow.f32" ---; pow :: proc(x, power: f64) -> f64 #link_name "llvm.pow.f64" ---; fmuladd :: proc(a, b, c: f32) -> f32 #link_name "llvm.fmuladd.f32" ---; fmuladd :: proc(a, b, c: f64) -> f64 #link_name "llvm.fmuladd.f64" ---; } tan :: proc(θ: f32) -> f32 #inline do return sin(θ)/cos(θ); tan :: proc(θ: f64) -> f64 #inline do return sin(θ)/cos(θ); lerp :: proc(a, b, t: f32) -> (x: f32) do return a*(1-t) + b*t; lerp :: proc(a, b, t: f64) -> (x: f64) do return a*(1-t) + b*t; unlerp :: proc(a, b, x: f32) -> (t: f32) do return (x-a)/(b-a); unlerp :: proc(a, b, x: f64) -> (t: f64) do return (x-a)/(b-a); sign :: proc(x: f32) -> f32 { if x >= 0 do return +1; return -1; } sign :: proc(x: f64) -> f64 { if x >= 0 do return +1; return -1; } copy_sign :: proc(x, y: f32) -> f32 { ix := transmute(u32)x; iy := transmute(u32)y; ix &= 0x7fff_ffff; ix |= iy & 0x8000_0000; return transmute(f32)ix; } copy_sign :: proc(x, y: f64) -> f64 { ix := transmute(u64)x; iy := transmute(u64)y; ix &= 0x7fff_ffff_ffff_ff; ix |= iy & 0x8000_0000_0000_0000; return transmute(f64)ix; } round :: proc(x: f32) -> f32 { if x >= 0 do return floor(x + 0.5); return ceil(x - 0.5); } round :: proc(x: f64) -> f64 { if x >= 0 do return floor(x + 0.5); return ceil(x - 0.5); } floor :: proc(x: f32) -> f32 { if x >= 0 do return f32(i64(x)); return f32(i64(x-0.5)); } // TODO: Get accurate versions floor :: proc(x: f64) -> f64 { if x >= 0 do return f64(i64(x)); return f64(i64(x-0.5)); } // TODO: Get accurate versions ceil :: proc(x: f32) -> f32 { if x < 0 do return f32(i64(x)); return f32(i64(x+1)); }// TODO: Get accurate versions ceil :: proc(x: f64) -> f64 { if x < 0 do return f64(i64(x)); return f64(i64(x+1)); }// TODO: Get accurate versions remainder :: proc(x, y: f32) -> f32 do return x - round(x/y) * y; remainder :: proc(x, y: f64) -> f64 do return x - round(x/y) * y; mod :: proc(x, y: f32) -> f32 { result: f32; y = abs(y); result = remainder(abs(x), y); if sign(result) < 0 { result += y; } return copy_sign(result, x); } mod :: proc(x, y: f64) -> f64 { result: f64; y = abs(y); result = remainder(abs(x), y); if sign(result) < 0 { result += y; } return copy_sign(result, x); } to_radians :: proc(degrees: f32) -> f32 do return degrees * TAU / 360; to_degrees :: proc(radians: f32) -> f32 do return radians * 360 / TAU; dot :: proc(a, b: $T/[vector 2]$E) -> E { c := a*b; return c.x + c.y; } dot :: proc(a, b: $T/[vector 3]$E) -> E { c := a*b; return c.x + c.y + c.z; } dot :: proc(a, b: $T/[vector 4]$E) -> E { c := a*b; return c.x + c.y + c.z + c.w; } cross :: proc(x, y: $T/[vector 3]$E) -> T { a := swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1); b := swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0); return T(a - b); } mag :: proc(v: $T/[vector 2]$E) -> E do return sqrt(dot(v, v)); mag :: proc(v: $T/[vector 3]$E) -> E do return sqrt(dot(v, v)); mag :: proc(v: $T/[vector 4]$E) -> E do return sqrt(dot(v, v)); norm :: proc(v: $T/[vector 2]$E) -> T do return v / mag(v); norm :: proc(v: $T/[vector 3]$E) -> T do return v / mag(v); norm :: proc(v: $T/[vector 4]$E) -> T do return v / mag(v); norm0 :: proc(v: $T/[vector 2]$E) -> T { m := mag(v); if m == 0 do return 0; return v/m; } norm0 :: proc(v: $T/[vector 3]$E) -> T { m := mag(v); if m == 0 do return 0; return v/m; } norm0 :: proc(v: $T/[vector 4]$E) -> T { m := mag(v); if m == 0 do return 0; return v/m; } mat4_identity :: proc() -> Mat4 { return Mat4{ {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, }; } mat4_transpose :: proc(m: Mat4) -> Mat4 { for j in 0..4 { for i in 0..4 { m[i][j], m[j][i] = m[j][i], m[i][j]; } } return m; } mul :: proc(a, b: Mat4) -> Mat4 { c: Mat4; for j in 0..4 { for i in 0..4 { c[j][i] = a[0][i]*b[j][0] + a[1][i]*b[j][1] + a[2][i]*b[j][2] + a[3][i]*b[j][3]; } } return c; } mul :: proc(m: Mat4, v: Vec4) -> Vec4 { return Vec4{ m[0][0]*v.x + m[1][0]*v.y + m[2][0]*v.z + m[3][0]*v.w, m[0][1]*v.x + m[1][1]*v.y + m[2][1]*v.z + m[3][1]*v.w, m[0][2]*v.x + m[1][2]*v.y + m[2][2]*v.z + m[3][2]*v.w, m[0][3]*v.x + m[1][3]*v.y + m[2][3]*v.z + m[3][3]*v.w, }; } inverse :: proc(m: Mat4) -> Mat4 { o: Mat4; sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3]; sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3]; sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2]; sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3]; sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2]; sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1]; sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3]; sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3]; sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2]; sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3]; sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2]; sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3]; sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1]; sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3]; sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3]; sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2]; sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3]; sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2]; sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1]; o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02); o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04); o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05); o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05); o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02); o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04); o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05); o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05); o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08); o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10); o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12); o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12); o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15); o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17); o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18); o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18); ood := 1.0 / (m[0][0] * o[0][0] + m[0][1] * o[0][1] + m[0][2] * o[0][2] + m[0][3] * o[0][3]); o[0][0] *= ood; o[0][1] *= ood; o[0][2] *= ood; o[0][3] *= ood; o[1][0] *= ood; o[1][1] *= ood; o[1][2] *= ood; o[1][3] *= ood; o[2][0] *= ood; o[2][1] *= ood; o[2][2] *= ood; o[2][3] *= ood; o[3][0] *= ood; o[3][1] *= ood; o[3][2] *= ood; o[3][3] *= ood; return o; } mat4_translate :: proc(v: Vec3) -> Mat4 { m := mat4_identity(); m[3][0] = v.x; m[3][1] = v.y; m[3][2] = v.z; m[3][3] = 1; return m; } mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 { c := cos(angle_radians); s := sin(angle_radians); a := norm(v); t := a * (1-c); rot := mat4_identity(); rot[0][0] = c + t.x*a.x; rot[0][1] = 0 + t.x*a.y + s*a.z; rot[0][2] = 0 + t.x*a.z - s*a.y; rot[0][3] = 0; rot[1][0] = 0 + t.y*a.x - s*a.z; rot[1][1] = c + t.y*a.y; rot[1][2] = 0 + t.y*a.z + s*a.x; rot[1][3] = 0; rot[2][0] = 0 + t.z*a.x + s*a.y; rot[2][1] = 0 + t.z*a.y - s*a.x; rot[2][2] = c + t.z*a.z; rot[2][3] = 0; return rot; } scale :: proc(m: Mat4, v: Vec3) -> Mat4 { m[0][0] *= v.x; m[1][1] *= v.y; m[2][2] *= v.z; return m; } scale :: proc(m: Mat4, s: f32) -> Mat4 { m[0][0] *= s; m[1][1] *= s; m[2][2] *= s; return m; } look_at :: proc(eye, centre, up: Vec3) -> Mat4 { f := norm(centre - eye); s := norm(cross(f, up)); u := cross(s, f); return Mat4{ {+s.x, +u.x, -f.x, 0}, {+s.y, +u.y, -f.y, 0}, {+s.z, +u.z, -f.z, 0}, {-dot(s, eye), -dot(u, eye), dot(f, eye), 1}, }; } perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 { m: Mat4; tan_half_fovy := tan(0.5 * fovy); m[0][0] = 1.0 / (aspect*tan_half_fovy); m[1][1] = 1.0 / (tan_half_fovy); m[2][2] = -(far + near) / (far - near); m[2][3] = -1.0; m[3][2] = -2.0*far*near / (far - near); return m; } ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 { m := mat4_identity(); m[0][0] = +2.0 / (right - left); m[1][1] = +2.0 / (top - bottom); m[2][2] = -2.0 / (far - near); m[3][0] = -(right + left) / (right - left); m[3][1] = -(top + bottom) / (top - bottom); m[3][2] = -(far + near) / (far - near); return m; } F32_DIG :: 6; F32_EPSILON :: 1.192092896e-07; F32_GUARD :: 0; F32_MANT_DIG :: 24; F32_MAX :: 3.402823466e+38; F32_MAX_10_EXP :: 38; F32_MAX_EXP :: 128; F32_MIN :: 1.175494351e-38; F32_MIN_10_EXP :: -37; F32_MIN_EXP :: -125; F32_NORMALIZE :: 0; F32_RADIX :: 2; F32_ROUNDS :: 1; F64_DIG :: 15; // # of decimal digits of precision F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0 F64_MANT_DIG :: 53; // # of bits in mantissa F64_MAX :: 1.7976931348623158e+308; // max value F64_MAX_10_EXP :: 308; // max decimal exponent F64_MAX_EXP :: 1024; // max binary exponent F64_MIN :: 2.2250738585072014e-308; // min positive value F64_MIN_10_EXP :: -307; // min decimal exponent F64_MIN_EXP :: -1021; // min binary exponent F64_RADIX :: 2; // exponent radix F64_ROUNDS :: 1; // addition rounding: near