package fmt import "core:runtime" import "core:os" import "core:mem" import "core:unicode/utf8" import "core:types" import "core:strconv" @(private) DEFAULT_BUFFER_SIZE :: 1<<12; String_Buffer :: distinct [dynamic]byte; Fmt_Info :: struct { minus: bool, plus: bool, space: bool, zero: bool, hash: bool, width_set: bool, prec_set: bool, width: int, prec: int, indent: int, reordered: bool, good_arg_index: bool, buf: ^String_Buffer, arg: any, // Temporary } string_buffer_from_slice :: proc(backing: []byte) -> String_Buffer { s := transmute(mem.Raw_Slice)backing; d := mem.Raw_Dynamic_Array{ data = s.data, len = 0, cap = s.len, allocator = mem.nil_allocator(), }; return transmute(String_Buffer)d; } to_string :: proc(buf: String_Buffer) -> string { return string(buf[:]); } write_string :: proc(buf: ^String_Buffer, s: string) { append_string(buf, s); } write_bytes :: proc(buf: ^String_Buffer, data: []byte) { append(buf, ..data); } write_byte :: proc(buf: ^String_Buffer, data: byte) { append(buf, data); } write_rune :: proc(buf: ^String_Buffer, r: rune) { if r < utf8.RUNE_SELF { write_byte(buf, byte(r)); return; } b, n := utf8.encode_rune(r); write_bytes(buf, b[:n]); } write_encoded_rune :: proc(buf: ^String_Buffer, r: rune) { write_byte(buf, '\''); switch r { case '\a': write_string(buf, "\\a"); case '\b': write_string(buf, "\\b"); case '\e': write_string(buf, "\\e"); case '\f': write_string(buf, "\\f"); case '\n': write_string(buf, "\\n"); case '\r': write_string(buf, "\\r"); case '\t': write_string(buf, "\\t"); case '\v': write_string(buf, "\\v"); case: if r < 32 { write_string(buf, "\\x"); b: [2]byte; s := strconv.append_bits(b[:], u64(r), 16, true, 64, strconv.digits, nil); switch len(s) { case 0: write_string(buf, "00"); case 1: write_rune(buf, '0'); case 2: write_string(buf, s); } } else { write_rune(buf, r); } } write_byte(buf, '\''); } write_u64 :: proc(buf: ^String_Buffer, i: u64, base: int) { b: [129]byte; s := strconv.append_bits(b[:], u64(i), base, false, 64, strconv.digits, nil); write_string(buf, s); } write_i64 :: proc(buf: ^String_Buffer, i: i64, base: int) { b: [129]byte; s := strconv.append_bits(b[:], u64(i), base, true, 64, strconv.digits, nil); write_string(buf, s); } fprint :: proc(fd: os.Handle, args: ..any) -> int { data: [DEFAULT_BUFFER_SIZE]byte; buf := string_buffer_from_slice(data[:]); res := sbprint(&buf, ..args); os.write_string(fd, res); return len(res); } fprintln :: proc(fd: os.Handle, args: ..any) -> int { data: [DEFAULT_BUFFER_SIZE]byte; buf := string_buffer_from_slice(data[:]); res := sbprintln(&buf, ..args); os.write_string(fd, res); return len(res); } fprintf :: proc(fd: os.Handle, fmt: string, args: ..any) -> int { data: [DEFAULT_BUFFER_SIZE]byte; buf := string_buffer_from_slice(data[:]); res := sbprintf(&buf, fmt, ..args); os.write_string(fd, res); return len(res); } // print* procedures return the number of bytes written print :: proc(args: ..any) -> int { return fprint(os.stdout, ..args); } print_err :: proc(args: ..any) -> int { return fprint(os.stderr, ..args); } println :: proc(args: ..any) -> int { return fprintln(os.stdout, ..args); } println_err :: proc(args: ..any) -> int { return fprintln(os.stderr, ..args); } printf :: proc(fmt: string, args: ..any) -> int { return fprintf(os.stdout, fmt, ..args); } printf_err :: proc(fmt: string, args: ..any) -> int { return fprintf(os.stderr, fmt, ..args); } // aprint* procedures return a string that was allocated with the current context // They must be freed accordingly aprint :: proc(args: ..any) -> string { buf := String_Buffer(make([dynamic]byte)); sbprint(&buf, ..args); return to_string(buf); } aprintln :: proc(args: ..any) -> string { buf := String_Buffer(make([dynamic]byte)); sbprintln(&buf, ..args); return to_string(buf); } aprintf :: proc(fmt: string, args: ..any) -> string { buf := String_Buffer(make([dynamic]byte)); sbprintf(&buf, fmt, ..args); return to_string(buf); } // tprint* procedures return a string that was allocated with the current context's temporary allocator tprint :: proc(args: ..any) -> string { buf := String_Buffer(make([dynamic]byte, context.temp_allocator)); sbprint(&buf, ..args); return to_string(buf); } tprintln :: proc(args: ..any) -> string { buf := String_Buffer(make([dynamic]byte, context.temp_allocator)); sbprintln(&buf, ..args); return to_string(buf); } tprintf :: proc(fmt: string, args: ..any) -> string { buf := String_Buffer(make([dynamic]byte, context.temp_allocator)); sbprintf(&buf, fmt, ..args); return to_string(buf); } // bprint* procedures return a string using a buffer from an array bprint :: proc(buf: []byte, args: ..any) -> string { sb := string_buffer_from_slice(buf[0:len(buf)]); return sbprint(&sb, ..args); } bprintln :: proc(buf: []byte, args: ..any) -> string { sb := string_buffer_from_slice(buf[0:len(buf)]); return sbprintln(&sb, ..args); } bprintf :: proc(buf: []byte, fmt: string, args: ..any) -> string { sb := string_buffer_from_slice(buf[0:len(buf)]); return sbprintf(&sb, fmt, ..args); } assertf :: proc "contextless" (condition: bool, fmt: string, args: ..any, loc := #caller_location) -> bool { if !condition { p := context.assertion_failure_proc; if p == nil { p = runtime.default_assertion_failure_proc; } message := tprintf(fmt, ..args); p("Runtime assertion", message, loc); } return condition; } panicf :: proc "contextless" (fmt: string, args: ..any, loc := #caller_location) { p := context.assertion_failure_proc; if p == nil { p = runtime.default_assertion_failure_proc; } message := tprintf(fmt, ..args); p("Panic", message, loc); } fprint_type :: proc(fd: os.Handle, info: ^runtime.Type_Info) { data: [DEFAULT_BUFFER_SIZE]byte; buf := string_buffer_from_slice(data[:]); write_type(&buf, info); os.write(fd, buf[:]); } write_typeid :: proc(buf: ^String_Buffer, id: typeid) { write_type(buf, type_info_of(id)); } write_type :: proc(buf: ^String_Buffer, ti: ^runtime.Type_Info) { if ti == nil { write_string(buf, "nil"); return; } switch info in ti.variant { case runtime.Type_Info_Named: write_string(buf, info.name); case runtime.Type_Info_Integer: switch ti.id { case int: write_string(buf, "int"); case uint: write_string(buf, "uint"); case uintptr: write_string(buf, "uintptr"); case: write_byte(buf, info.signed ? 'i' : 'u'); write_i64(buf, i64(8*ti.size), 10); } case runtime.Type_Info_Rune: write_string(buf, "rune"); case runtime.Type_Info_Float: write_byte(buf, 'f'); write_i64(buf, i64(8*ti.size), 10); case runtime.Type_Info_Complex: write_string(buf, "complex"); write_i64(buf, i64(8*ti.size), 10); case runtime.Type_Info_String: if info.is_cstring { write_string(buf, "cstring"); } else { write_string(buf, "string"); } case runtime.Type_Info_Boolean: switch ti.id { case bool: write_string(buf, "bool"); case: write_byte(buf, 'b'); write_i64(buf, i64(8*ti.size), 10); } case runtime.Type_Info_Any: write_string(buf, "any"); case runtime.Type_Info_Type_Id: write_string(buf, "typeid"); case runtime.Type_Info_Pointer: if info.elem == nil { write_string(buf, "rawptr"); } else { write_string(buf, "^"); write_type(buf, info.elem); } case runtime.Type_Info_Procedure: write_string(buf, "proc"); if info.params == nil { write_string(buf, "()"); } else { t := info.params.variant.(runtime.Type_Info_Tuple); write_string(buf, "("); for t, i in t.types { if i > 0 do write_string(buf, ", "); write_type(buf, t); } write_string(buf, ")"); } if info.results != nil { write_string(buf, " -> "); write_type(buf, info.results); } case runtime.Type_Info_Tuple: count := len(info.names); if count != 1 do write_string(buf, "("); for name, i in info.names { if i > 0 do write_string(buf, ", "); t := info.types[i]; if len(name) > 0 { write_string(buf, name); write_string(buf, ": "); } write_type(buf, t); } if count != 1 do write_string(buf, ")"); case runtime.Type_Info_Array: write_string(buf, "["); write_i64(buf, i64(info.count), 10); write_string(buf, "]"); write_type(buf, info.elem); case runtime.Type_Info_Dynamic_Array: write_string(buf, "[dynamic]"); write_type(buf, info.elem); case runtime.Type_Info_Slice: write_string(buf, "[]"); write_type(buf, info.elem); case runtime.Type_Info_Map: write_string(buf, "map["); write_type(buf, info.key); write_byte(buf, ']'); write_type(buf, info.value); case runtime.Type_Info_Struct: write_string(buf, "struct "); if info.is_packed do write_string(buf, "#packed "); if info.is_raw_union do write_string(buf, "#raw_union "); if info.custom_align { write_string(buf, "#align "); write_i64(buf, i64(ti.align), 10); write_byte(buf, ' '); } write_byte(buf, '{'); for name, i in info.names { if i > 0 do write_string(buf, ", "); write_string(buf, name); write_string(buf, ": "); write_type(buf, info.types[i]); } write_byte(buf, '}'); case runtime.Type_Info_Union: write_string(buf, "union "); if info.custom_align { write_string(buf, "#align "); write_i64(buf, i64(ti.align), 10); write_byte(buf, ' '); } write_byte(buf, '{'); for variant, i in info.variants { if i > 0 do write_string(buf, ", "); write_type(buf, variant); } write_string(buf, "}"); case runtime.Type_Info_Enum: write_string(buf, "enum "); write_type(buf, info.base); write_string(buf, " {"); for name, i in info.names { if i > 0 do write_string(buf, ", "); write_string(buf, name); } write_string(buf, "}"); case runtime.Type_Info_Bit_Field: write_string(buf, "bit_field "); if ti.align != 1 { write_string(buf, "#align "); write_i64(buf, i64(ti.align), 10); write_rune(buf, ' '); } write_string(buf, " {"); for name, i in info.names { if i > 0 do write_string(buf, ", "); write_string(buf, name); write_string(buf, ": "); write_i64(buf, i64(info.bits[i]), 10); } write_string(buf, "}"); case runtime.Type_Info_Bit_Set: write_string(buf, "bit_set["); switch { case types.is_enum(info.elem): write_type(buf, info.elem); case types.is_rune(info.elem): write_encoded_rune(buf, rune(info.lower)); write_string(buf, ".."); write_encoded_rune(buf, rune(info.upper)); case: write_i64(buf, info.lower, 10); write_string(buf, ".."); write_i64(buf, info.upper, 10); } if info.underlying != nil { write_string(buf, "; "); write_type(buf, info.underlying); } write_byte(buf, ']'); case runtime.Type_Info_Opaque: write_string(buf, "opaque "); write_type(buf, info.elem); } } _parse_int :: proc(s: string, offset: int) -> (result: int, new_offset: int, ok: bool) { is_digit :: inline proc(r: byte) -> bool { return '0' <= r && r <= '9' } new_offset = offset; for new_offset <= len(s) { c := s[new_offset]; if !is_digit(c) do break; new_offset += 1; result *= 10; result += int(c)-'0'; } ok = new_offset > offset; return; } _arg_number :: proc(fi: ^Fmt_Info, arg_index: int, format: string, offset, arg_count: int) -> (index, new_offset: int, ok: bool) { parse_arg_number :: proc(format: string) -> (int, int, bool) { if len(format) < 3 do return 0, 1, false; for i in 1..len(format)-1 { if format[i] == ']' { width, new_index, ok := _parse_int(format, 1); if !ok || new_index != i { return 0, i+1, false; } return width-1, i+1, true; } } return 0, 1, false; } if len(format) <= offset || format[offset] != '[' { return arg_index, offset, false; } fi.reordered = true; width: int; index, width, ok = parse_arg_number(format[offset:]); if ok && 0 <= index && index < arg_count { return index, offset+width, true; } fi.good_arg_index = false; return arg_index, offset+width, false; } int_from_arg :: proc(args: []any, arg_index: int) -> (int, int, bool) { num := 0; new_arg_index := arg_index; ok := true; if arg_index < len(args) { arg := args[arg_index]; arg.id = runtime.typeid_base(arg.id); switch i in arg { case int: num = i; case i8: num = int(i); case i16: num = int(i); case i32: num = int(i); case i64: num = int(i); case u8: num = int(i); case u16: num = int(i); case u32: num = int(i); case u64: num = int(i); case: ok = false; } } return num, new_arg_index, ok; } fmt_bad_verb :: proc(using fi: ^Fmt_Info, verb: rune) { write_string(buf, "%!"); write_rune(buf, verb); write_byte(buf, '('); if arg.id != nil { write_typeid(buf, arg.id); write_byte(buf, '='); fmt_value(fi, arg, 'v'); } else { write_string(buf, ""); } write_byte(buf, ')'); } fmt_bool :: proc(using fi: ^Fmt_Info, b: bool, verb: rune) { switch verb { case 't', 'v': write_string(buf, b ? "true" : "false"); case: fmt_bad_verb(fi, verb); } } fmt_write_padding :: proc(fi: ^Fmt_Info, width: int) { if width <= 0 do return; pad_byte: byte = '0'; if fi.space do pad_byte = ' '; for _ in 0..width-1 { write_byte(fi.buf, pad_byte); } } _fmt_int :: proc(fi: ^Fmt_Info, u: u64, base: int, is_signed: bool, bit_size: int, digits: string) { _, neg := strconv.is_integer_negative(u, is_signed, bit_size); BUF_SIZE :: 256; if fi.width_set || fi.prec_set { width := fi.width + fi.prec + 3; // 3 extra bytes for sign and prefix if width > BUF_SIZE { // TODO(bill):???? panic("_fmt_int: buffer overrun. Width and precision too big"); } } prec := 0; if fi.prec_set { prec = fi.prec; if prec == 0 && u == 0 { prev_zero := fi.zero; fi.zero = false; fmt_write_padding(fi, fi.width); fi.zero = prev_zero; return; } } else if fi.zero && fi.width_set { prec = fi.width; if neg || fi.plus || fi.space { // There needs to be space for the "sign" prec -= 1; } } switch base { case 2, 8, 10, 12, 16: break; case: panic("_fmt_int: unknown base, whoops"); } buf: [256]byte; start := 0; using strconv.Int_Flag; flags: strconv.Int_Flags; if fi.hash && !fi.zero do flags |= {Prefix}; if fi.plus do flags |= {Plus}; if fi.space do flags |= {Space}; s := strconv.append_bits(buf[start:], u, base, is_signed, bit_size, digits, flags); if fi.hash && fi.zero { c: byte = 0; switch base { case 2: c = 'b'; case 8: c = 'o'; case 12: c = 'z'; case 16: c = 'x'; } if c != 0 { write_byte(fi.buf, '0'); write_byte(fi.buf, c); } } prev_zero := fi.zero; defer fi.zero = prev_zero; fi.zero = false; _pad(fi, s); } __DIGITS_LOWER := "0123456789abcdefx"; __DIGITS_UPPER := "0123456789ABCDEFX"; fmt_rune :: proc(fi: ^Fmt_Info, r: rune, verb: rune) { switch verb { case 'c', 'r', 'v': write_rune(fi.buf, r); case: fmt_int(fi, u64(r), false, 32, verb); } } fmt_int :: proc(fi: ^Fmt_Info, u: u64, is_signed: bool, bit_size: int, verb: rune) { switch verb { case 'v': _fmt_int(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER); case 'b': _fmt_int(fi, u, 2, is_signed, bit_size, __DIGITS_LOWER); case 'o': _fmt_int(fi, u, 8, is_signed, bit_size, __DIGITS_LOWER); case 'd': _fmt_int(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER); case 'z': _fmt_int(fi, u, 12, is_signed, bit_size, __DIGITS_LOWER); case 'x': _fmt_int(fi, u, 16, is_signed, bit_size, __DIGITS_LOWER); case 'X': _fmt_int(fi, u, 16, is_signed, bit_size, __DIGITS_UPPER); case 'c', 'r': fmt_rune(fi, rune(u), verb); case 'U': r := rune(u); if r < 0 || r > utf8.MAX_RUNE { fmt_bad_verb(fi, verb); } else { write_string(fi.buf, "U+"); _fmt_int(fi, u, 16, false, bit_size, __DIGITS_UPPER); } case: fmt_bad_verb(fi, verb); } } _pad :: proc(fi: ^Fmt_Info, s: string) { if !fi.width_set { write_string(fi.buf, s); return; } width := fi.width - utf8.rune_count_from_string(s); if fi.minus { // right pad write_string(fi.buf, s); fmt_write_padding(fi, width); } else { // left pad fmt_write_padding(fi, width); write_string(fi.buf, s); } } fmt_float :: proc(fi: ^Fmt_Info, v: f64, bit_size: int, verb: rune) { switch verb { // case 'e', 'E', 'f', 'F', 'g', 'G', 'v': // case 'f', 'F', 'v': case 'f', 'F', 'v': prec: int = 3; if fi.prec_set do prec = fi.prec; buf: [386]byte; str := strconv.append_float(buf[1:], v, 'f', prec, bit_size); str = string(buf[:len(str)+1]); if str[1] == '+' || str[1] == '-' { str = str[1:]; } else { str[0] = '+'; } if fi.space && !fi.plus && str[0] == '+' { str[0] = ' '; } if len(str) > 1 && str[1] == 'N' && str[1] == 'I' { write_string(fi.buf, str); return; } if fi.plus || str[0] != '+' { if fi.zero && fi.width_set && fi.width > len(str) { write_byte(fi.buf, str[0]); fmt_write_padding(fi, fi.width - len(str)); write_string(fi.buf, str[1:]); } else { _pad(fi, str); } } else { _pad(fi, str[1:]); } case: fmt_bad_verb(fi, verb); } } fmt_string :: proc(fi: ^Fmt_Info, s: string, verb: rune) { switch verb { case 's', 'v': write_string(fi.buf, s); case 'x', 'X': space := fi.space; fi.space = false; defer fi.space = space; for i in 0..len(s)-1 { if i > 0 && space do write_byte(fi.buf, ' '); char_set := __DIGITS_UPPER; if verb == 'x' do char_set = __DIGITS_LOWER; _fmt_int(fi, u64(s[i]), 16, false, 8, char_set); } case: fmt_bad_verb(fi, verb); } } fmt_cstring :: proc(fi: ^Fmt_Info, s: cstring, verb: rune) { fmt_string(fi, string(s), verb); } fmt_pointer :: proc(fi: ^Fmt_Info, p: rawptr, verb: rune) { switch verb { case 'p', 'v': u := u64(uintptr(p)); if !fi.hash || verb == 'v' { write_string(fi.buf, "0x"); } _fmt_int(fi, u, 16, false, 8*size_of(rawptr), __DIGITS_UPPER); case: fmt_bad_verb(fi, verb); } } enum_value_to_string :: proc(v: any) -> (string, bool) { v.id = runtime.typeid_base(v.id); type_info := type_info_of(v.id); switch e in type_info.variant { case: return "", false; case runtime.Type_Info_Enum: get_str :: proc(i: $T, e: runtime.Type_Info_Enum) -> (string, bool) { if types.is_string(e.base) { for val, idx in e.values { if v, ok := val.(T); ok && v == i { return e.names[idx], true; } } } else if len(e.values) == 0 { return "", true; } else { for val, idx in e.values { if v, ok := val.(T); ok && v == i { return e.names[idx], true; } } } return "", false; } a := any{v.data, runtime.type_info_base(e.base).id}; switch v in a { case rune: return get_str(v, e); case i8: return get_str(v, e); case i16: return get_str(v, e); case i32: return get_str(v, e); case i64: return get_str(v, e); case int: return get_str(v, e); case u8: return get_str(v, e); case u16: return get_str(v, e); case u32: return get_str(v, e); case u64: return get_str(v, e); case uint: return get_str(v, e); case uintptr: return get_str(v, e); } } return "", false; } string_to_enum_value :: proc($T: typeid, s: string) -> (T, bool) { ti := type_info_base(type_info_of(T)); if e, ok := ti.variant.(Type_Info_Enum); ok { for str, idx in e.names { if s == str { // NOTE(bill): Unsafe cast ptr := cast(^T)&e.values[idx]; return ptr^, true; } } } return T{}, false; } fmt_enum :: proc(fi: ^Fmt_Info, v: any, verb: rune) { if v.id == nil || v.data == nil { write_string(fi.buf, ""); return; } type_info := type_info_of(v.id); switch e in type_info.variant { case: fmt_bad_verb(fi, verb); case runtime.Type_Info_Enum: switch verb { case: fmt_bad_verb(fi, verb); case 'd', 'f': fmt_arg(fi, any{v.data, runtime.type_info_base(e.base).id}, verb); case 's', 'v': str, ok := enum_value_to_string(v); if !ok do str = "!%(BAD ENUM VALUE)"; write_string(fi.buf, str); } } } enum_value_to_u64 :: proc(ev: runtime.Type_Info_Enum_Value) -> u64 { switch i in ev { case rune: return u64(i); case i8: return u64(i); case i16: return u64(i); case i32: return u64(i); case i64: return u64(i); case int: return u64(i); case u8: return u64(i); case u16: return u64(i); case u32: return u64(i); case u64: return u64(i); case uint: return u64(i); case uintptr: return u64(i); } return 0; } fmt_bit_set :: proc(fi: ^Fmt_Info, v: any, name: string = "") { type_info := type_info_of(v.id); switch info in type_info.variant { case runtime.Type_Info_Named: val := v; val.id = info.base.id; fmt_bit_set(fi, val, info.name); case runtime.Type_Info_Bit_Set: bits: u64; bit_size := u64(8*type_info.size); verb := 'b'; switch bit_size { case 0: bits = 0; case 8: bits = u64( (^u8)(v.data)^); case 16: bits = u64((^u16)(v.data)^); case 32: bits = u64((^u32)(v.data)^); case 64: bits = u64((^u64)(v.data)^); case: panic("unknown bit_size size"); } et := runtime.type_info_base(info.elem); if name != "" { write_string(fi.buf, name); } else { write_type(fi.buf, type_info); } write_byte(fi.buf, '{'); defer write_byte(fi.buf, '}'); e, is_enum := et.variant.(runtime.Type_Info_Enum); commas := 0; loop: for i in 0 .. bit_size-1 { if bits & (1< 0 do write_string(fi.buf, ", "); defer commas += 1; if is_enum do for ev, evi in e.values { v := enum_value_to_u64(ev); if v == i { write_string(fi.buf, e.names[evi]); continue loop; } } write_i64(fi.buf, i64(i), 10); } } } fmt_bit_field :: proc(fi: ^Fmt_Info, v: any, name: string = "") { type_info := type_info_of(v.id); switch info in type_info.variant { case runtime.Type_Info_Named: val := v; val.id = info.base.id; fmt_bit_field(fi, val, info.name); case runtime.Type_Info_Bit_Field: data: u64 = 0; switch type_info.size { case 1: data = cast(u64) (^u8)(v.data)^; case 2: data = cast(u64)(^u16)(v.data)^; case 4: data = cast(u64)(^u32)(v.data)^; case 8: data = cast(u64)(^u64)(v.data)^; } if name != "" { write_string(fi.buf, name); write_byte(fi.buf, '{'); } else { write_string(fi.buf, "bit_field{"); } for name, i in info.names { if i > 0 { write_string(fi.buf, ", "); } bits := u64(info.bits[i]); offset := u64(info.offsets[i]); write_string(fi.buf, name); write_string(fi.buf, " = "); n := 8*u64(size_of(u64)); sa := n - bits; u := data>>offset; u <<= sa; u >>= sa; write_u64(fi.buf, u, 10); } write_byte(fi.buf, '}'); case: write_string(fi.buf, "HERE"); } } fmt_opaque :: proc(fi: ^Fmt_Info, v: any) { is_nil :: proc(data: rawptr, n: int) -> bool { if data == nil do return true; if n == 0 do return true; a := (^byte)(data); for i in 0..n-1 do if mem.ptr_offset(a, i)^ != 0 { return false; } return true; } rt :: runtime; type_info := type_info_of(v.id); if is_nil(v.data, type_info.size) { write_string(fi.buf, "nil"); return; } if ot, ok := rt.type_info_base(type_info).variant.(rt.Type_Info_Opaque); ok { elem := rt.type_info_base(ot.elem); if elem == nil do return; write_type(fi.buf, type_info); write_byte(fi.buf, '{'); defer write_byte(fi.buf, '}'); switch in elem.variant { case rt.Type_Info_Integer, rt.Type_Info_Pointer, rt.Type_Info_Float: fmt_value(fi, any{v.data, elem.id}, 'v'); case: // Okay } } else { write_type(fi.buf, type_info); write_byte(fi.buf, '{'); defer write_byte(fi.buf, '}'); } } fmt_value :: proc(fi: ^Fmt_Info, v: any, verb: rune) { if v.data == nil || v.id == nil { write_string(fi.buf, ""); return; } type_info := type_info_of(v.id); switch info in type_info.variant { case runtime.Type_Info_Named: switch b in info.base.variant { case runtime.Type_Info_Struct: if verb != 'v' { fmt_bad_verb(fi, verb); return; } if b.is_raw_union { write_string(fi.buf, info.name); write_string(fi.buf, "{}"); return; }; write_string(fi.buf, info.name); write_byte(fi.buf, '{'); hash := fi.hash; defer fi.hash = hash; indent := fi.indent; defer fi.indent -= 1; fi.hash = false; fi.indent += 1; if hash do write_byte(fi.buf, '\n'); field_count := -1; for name, i in b.names { // if len(name) > 0 && name[0] == '_' do continue; field_count += 1; if !hash && field_count > 0 do write_string(fi.buf, ", "); if hash do for in 0..fi.indent-1 do write_byte(fi.buf, '\t'); write_string(fi.buf, name); write_string(fi.buf, " = "); if t := b.types[i]; types.is_any(t) { write_string(fi.buf, "any{}"); } else { data := rawptr(uintptr(v.data) + b.offsets[i]); fmt_arg(fi, any{data, t.id}, 'v'); } if hash do write_string(fi.buf, ",\n"); } if hash do for in 0..indent-1 do write_byte(fi.buf, '\t'); write_byte(fi.buf, '}'); case runtime.Type_Info_Bit_Set: fmt_bit_set(fi, v); case runtime.Type_Info_Bit_Field: fmt_bit_field(fi, v); case runtime.Type_Info_Opaque: fmt_opaque(fi, v); case: fmt_value(fi, any{v.data, info.base.id}, verb); } case runtime.Type_Info_Boolean: fmt_arg(fi, v, verb); case runtime.Type_Info_Integer: fmt_arg(fi, v, verb); case runtime.Type_Info_Rune: fmt_arg(fi, v, verb); case runtime.Type_Info_Float: fmt_arg(fi, v, verb); case runtime.Type_Info_Complex: fmt_arg(fi, v, verb); case runtime.Type_Info_String: fmt_arg(fi, v, verb); case runtime.Type_Info_Pointer: if v.id == typeid_of(^runtime.Type_Info) { write_type(fi.buf, (^^runtime.Type_Info)(v.data)^); } else { fmt_pointer(fi, (^rawptr)(v.data)^, verb); } case runtime.Type_Info_Array: write_byte(fi.buf, '['); defer write_byte(fi.buf, ']'); for i in 0..info.count-1 { if i > 0 do write_string(fi.buf, ", "); data := uintptr(v.data) + uintptr(i*info.elem_size); fmt_arg(fi, any{rawptr(data), info.elem.id}, verb); } case runtime.Type_Info_Dynamic_Array: write_byte(fi.buf, '['); defer write_byte(fi.buf, ']'); array := cast(^mem.Raw_Dynamic_Array)v.data; for i in 0..array.len-1 { if i > 0 do write_string(fi.buf, ", "); data := uintptr(array.data) + uintptr(i*info.elem_size); fmt_arg(fi, any{rawptr(data), info.elem.id}, verb); } case runtime.Type_Info_Slice: write_byte(fi.buf, '['); defer write_byte(fi.buf, ']'); slice := cast(^mem.Raw_Slice)v.data; for i in 0..slice.len-1 { if i > 0 do write_string(fi.buf, ", "); data := uintptr(slice.data) + uintptr(i*info.elem_size); fmt_arg(fi, any{rawptr(data), info.elem.id}, verb); } case runtime.Type_Info_Map: if verb != 'v' { fmt_bad_verb(fi, verb); return; } write_string(fi.buf, "map["); defer write_byte(fi.buf, ']'); m := (^mem.Raw_Map)(v.data); if m != nil { if info.generated_struct == nil { return; } entries := &m.entries; gs := runtime.type_info_base(info.generated_struct).variant.(runtime.Type_Info_Struct); ed := runtime.type_info_base(gs.types[1]).variant.(runtime.Type_Info_Dynamic_Array); entry_type := ed.elem.variant.(runtime.Type_Info_Struct); entry_size := ed.elem_size; for i in 0..entries.len-1 { if i > 0 do write_string(fi.buf, ", "); data := uintptr(entries.data) + uintptr(i*entry_size); header := cast(^runtime.Map_Entry_Header)data; if types.is_string(info.key) { write_string(fi.buf, header.key.str); } else { fi := Fmt_Info{buf = fi.buf}; fmt_arg(&fi, any{rawptr(&header.key.hash), info.key.id}, 'v'); } write_string(fi.buf, "="); value := data + entry_type.offsets[2]; fmt_arg(fi, any{rawptr(value), info.value.id}, 'v'); } } case runtime.Type_Info_Struct: if info.is_raw_union { write_string(fi.buf, "(raw_union)"); return; } write_byte(fi.buf, '{'); defer write_byte(fi.buf, '}'); fi.indent += 1; defer fi.indent -= 1; hash := fi.hash; defer fi.hash = hash; fi.hash = false; if hash do write_byte(fi.buf, '\n'); for _, i in info.names { if !hash && i > 0 do write_string(fi.buf, ", "); if hash { for in 0..fi.indent-1 { write_byte(fi.buf, '\t'); } } write_string(fi.buf, info.names[i]); write_string(fi.buf, " = "); if t := info.types[i]; types.is_any(t) { write_string(fi.buf, "any{}"); } else { data := uintptr(v.data) + info.offsets[i]; fmt_arg(fi, any{rawptr(data), t.id}, 'v'); } if hash do write_string(fi.buf, ",\n"); } case runtime.Type_Info_Union: tag_ptr := uintptr(v.data) + info.tag_offset; tag_any := any{rawptr(tag_ptr), info.tag_type.id}; tag: i64 = -1; switch i in tag_any { case u8: tag = i64(i); case i8: tag = i64(i); case u16: tag = i64(i); case i16: tag = i64(i); case u32: tag = i64(i); case i32: tag = i64(i); case u64: tag = i64(i); case i64: tag = i64(i); case: panic("Invalid union tag type"); } if v.data == nil || tag == 0 { write_string(fi.buf, "nil"); } else { id := info.variants[tag-1].id; fmt_arg(fi, any{v.data, id}, verb); } case runtime.Type_Info_Enum: fmt_enum(fi, v, verb); case runtime.Type_Info_Procedure: ptr := (^rawptr)(v.data)^; if ptr == nil { write_string(fi.buf, "nil"); } else { write_typeid(fi.buf, v.id); write_string(fi.buf, " @ "); fmt_pointer(fi, ptr, 'p'); } case runtime.Type_Info_Type_Id: id := (^typeid)(v.data)^; write_typeid(fi.buf, id); case runtime.Type_Info_Bit_Field: fmt_bit_field(fi, v); case runtime.Type_Info_Bit_Set: fmt_bit_set(fi, v); case runtime.Type_Info_Opaque: fmt_opaque(fi, v); } } fmt_complex :: proc(fi: ^Fmt_Info, c: complex128, bits: int, verb: rune) { switch verb { case 'f', 'F', 'v': r, i := real(c), imag(c); fmt_float(fi, r, bits/2, verb); if !fi.plus && i >= 0 { write_rune(fi.buf, '+'); } fmt_float(fi, i, bits/2, verb); write_rune(fi.buf, 'i'); case: fmt_bad_verb(fi, verb); return; } } fmt_arg :: proc(fi: ^Fmt_Info, arg: any, verb: rune) { if arg == nil { write_string(fi.buf, ""); return; } fi.arg = arg; if verb == 'T' { ti := type_info_of(arg.id); switch a in arg { case ^runtime.Type_Info: ti = a; } write_type(fi.buf, ti); return; } base_arg := arg; base_arg.id = runtime.typeid_base(base_arg.id); switch a in base_arg { case bool: fmt_bool(fi, bool(a), verb); case b8: fmt_bool(fi, bool(a), verb); case b16: fmt_bool(fi, bool(a), verb); case b32: fmt_bool(fi, bool(a), verb); case b64: fmt_bool(fi, bool(a), verb); case any: fmt_arg(fi, a, verb); case rune: fmt_rune(fi, a, verb); case f32: fmt_float(fi, f64(a), 32, verb); case f64: fmt_float(fi, a, 64, verb); case complex64: fmt_complex(fi, complex128(a), 64, verb); case complex128: fmt_complex(fi, a, 128, verb); case i8: fmt_int(fi, u64(a), true, 8, verb); case u8: fmt_int(fi, u64(a), false, 8, verb); case i16: fmt_int(fi, u64(a), true, 16, verb); case u16: fmt_int(fi, u64(a), false, 16, verb); case i32: fmt_int(fi, u64(a), true, 32, verb); case u32: fmt_int(fi, u64(a), false, 32, verb); case i64: fmt_int(fi, u64(a), true, 64, verb); case u64: fmt_int(fi, u64(a), false, 64, verb); case int: fmt_int(fi, u64(a), true, 8*size_of(int), verb); case uint: fmt_int(fi, u64(a), false, 8*size_of(uint), verb); case uintptr: fmt_int(fi, u64(a), false, 8*size_of(uintptr), verb); case string: fmt_string(fi, a, verb); case cstring: fmt_cstring(fi, a, verb); case typeid: write_typeid(fi.buf, a); case: fmt_value(fi, arg, verb); } } sbprint :: proc(buf: ^String_Buffer, args: ..any) -> string { fi: Fmt_Info; prev_string := false; fi.buf = buf; for arg, i in args { is_string := arg != nil && types.is_string(type_info_of(arg.id)); if i > 0 && !is_string && !prev_string { write_byte(buf, ' '); } fmt_value(&fi, args[i], 'v'); prev_string = is_string; } return to_string(buf^); } sbprintln :: proc(buf: ^String_Buffer, args: ..any) -> string { fi: Fmt_Info; fi.buf = buf; for _, i in args { if i > 0 do write_byte(buf, ' '); fmt_value(&fi, args[i], 'v'); } write_byte(buf, '\n'); return to_string(buf^); } sbprintf :: proc(b: ^String_Buffer, fmt: string, args: ..any) -> string { fi: Fmt_Info; arg_index: int = 0; end := len(fmt); was_prev_index := false; loop: for i := 0; i < end; /**/ { fi = Fmt_Info{buf = b, good_arg_index = true}; prev_i := i; for i < end && fmt[i] != '%' { i += 1; } if i > prev_i { write_string(b, fmt[prev_i:i]); } if i >= end { break loop; } // Process a "verb" i += 1; prefix_loop: for ; i < end; i += 1 { switch fmt[i] { case '+': fi.plus = true; case '-': fi.minus = true; fi.zero = false; case ' ': fi.space = true; case '#': fi.hash = true; case '0': fi.zero = !fi.minus; case: break prefix_loop; } } arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args)); // Width if i < end && fmt[i] == '*' { i += 1; fi.width, arg_index, fi.width_set = int_from_arg(args, arg_index); if !fi.width_set { write_string(b, "%!(BAD WIDTH)"); } if fi.width < 0 { fi.width = -fi.width; fi.minus = true; fi.zero = false; } was_prev_index = false; } else { fi.width, i, fi.width_set = _parse_int(fmt, i); if was_prev_index && fi.width_set { // %[6]2d fi.good_arg_index = false; } } // Precision if i < end && fmt[i] == '.' { i += 1; if was_prev_index { // %[6].2d fi.good_arg_index = false; } if i < end && fmt[i] == '*' { arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args)); i += 1; fi.prec, arg_index, fi.prec_set = int_from_arg(args, arg_index); if fi.prec < 0 { fi.prec = 0; fi.prec_set = false; } if !fi.prec_set { write_string(fi.buf, "%!(BAD PRECISION)"); } was_prev_index = false; } else { fi.prec, i, fi.prec_set = _parse_int(fmt, i); if !fi.prec_set { // fi.prec_set = true; // fi.prec = 0; } } } if !was_prev_index { arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args)); } if i >= end { write_string(b, "%!(NO VERB)"); break loop; } verb, w := utf8.decode_rune_from_string(fmt[i:]); i += w; switch { case verb == '%': write_byte(b, '%'); case !fi.good_arg_index: write_string(b, "%!(BAD ARGUMENT NUMBER)"); case arg_index >= len(args): write_string(b, "%!(MISSING ARGUMENT)"); case: fmt_arg(&fi, args[arg_index], verb); arg_index += 1; } } if !fi.reordered && arg_index < len(args) { write_string(b, "%!(EXTRA "); for arg, index in args[arg_index:] { if index > 0 do write_string(b, ", "); if arg == nil do write_string(b, ""); else do fmt_arg(&fi, args[index], 'v'); } write_string(b, ")"); } return to_string(b^); }