package runtime import "core:mem" import "core:os" import "core:unicode/utf8" print_u64 :: proc(fd: os.Handle, u: u64) { digits := "0123456789"; a: [129]byte; i := len(a); b := u64(10); for u >= b { i -= 1; a[i] = digits[u % b]; u /= b; } i -= 1; a[i] = digits[u % b]; os.write(fd, a[i:]); } print_i64 :: proc(fd: os.Handle, u: i64) { digits := "0123456789"; neg := u < 0; u = abs(u); a: [129]byte; i := len(a); b := i64(10); for u >= b { i -= 1; a[i] = digits[u % b]; u /= b; } i -= 1; a[i] = digits[u % b]; if neg { i -= 1; a[i] = '-'; } os.write(fd, a[i:]); } print_caller_location :: proc(fd: os.Handle, using loc: Source_Code_Location) { os.write_string(fd, file_path); os.write_byte(fd, '('); print_u64(fd, u64(line)); os.write_byte(fd, ':'); print_u64(fd, u64(column)); os.write_byte(fd, ')'); } print_typeid :: proc(fd: os.Handle, id: typeid) { ti := type_info_of(id); print_type(fd, ti); } print_type :: proc(fd: os.Handle, ti: ^Type_Info) { if ti == nil { os.write_string(fd, "nil"); return; } switch info in ti.variant { case Type_Info_Named: os.write_string(fd, info.name); case Type_Info_Integer: switch ti.id { case int: os.write_string(fd, "int"); case uint: os.write_string(fd, "uint"); case uintptr: os.write_string(fd, "uintptr"); case: os.write_byte(fd, info.signed ? 'i' : 'u'); print_u64(fd, u64(8*ti.size)); } case Type_Info_Rune: os.write_string(fd, "rune"); case Type_Info_Float: os.write_byte(fd, 'f'); print_u64(fd, u64(8*ti.size)); case Type_Info_Complex: os.write_string(fd, "complex"); print_u64(fd, u64(8*ti.size)); case Type_Info_String: os.write_string(fd, "string"); case Type_Info_Boolean: switch ti.id { case bool: os.write_string(fd, "bool"); case: os.write_byte(fd, 'b'); print_u64(fd, u64(8*ti.size)); } case Type_Info_Any: os.write_string(fd, "any"); case Type_Info_Type_Id: os.write_string(fd, "typeid"); case Type_Info_Pointer: if info.elem == nil { os.write_string(fd, "rawptr"); } else { os.write_string(fd, "^"); print_type(fd, info.elem); } case Type_Info_Procedure: os.write_string(fd, "proc"); if info.params == nil { os.write_string(fd, "()"); } else { t := info.params.variant.(Type_Info_Tuple); os.write_string(fd, "("); for t, i in t.types { if i > 0 do os.write_string(fd, ", "); print_type(fd, t); } os.write_string(fd, ")"); } if info.results != nil { os.write_string(fd, " -> "); print_type(fd, info.results); } case Type_Info_Tuple: count := len(info.names); if count != 1 do os.write_string(fd, "("); for name, i in info.names { if i > 0 do os.write_string(fd, ", "); t := info.types[i]; if len(name) > 0 { os.write_string(fd, name); os.write_string(fd, ": "); } print_type(fd, t); } if count != 1 do os.write_string(fd, ")"); case Type_Info_Array: os.write_string(fd, "["); print_u64(fd, u64(info.count)); os.write_string(fd, "]"); print_type(fd, info.elem); case Type_Info_Dynamic_Array: os.write_string(fd, "[dynamic]"); print_type(fd, info.elem); case Type_Info_Slice: os.write_string(fd, "[]"); print_type(fd, info.elem); case Type_Info_Map: os.write_string(fd, "map["); print_type(fd, info.key); os.write_byte(fd, ']'); print_type(fd, info.value); case Type_Info_Struct: os.write_string(fd, "struct "); if info.is_packed do os.write_string(fd, "#packed "); if info.is_raw_union do os.write_string(fd, "#raw_union "); if info.custom_align { os.write_string(fd, "#align "); print_u64(fd, u64(ti.align)); os.write_byte(fd, ' '); } os.write_byte(fd, '{'); for name, i in info.names { if i > 0 do os.write_string(fd, ", "); os.write_string(fd, name); os.write_string(fd, ": "); print_type(fd, info.types[i]); } os.write_byte(fd, '}'); case Type_Info_Union: os.write_string(fd, "union {"); for variant, i in info.variants { if i > 0 do os.write_string(fd, ", "); print_type(fd, variant); } os.write_string(fd, "}"); case Type_Info_Enum: os.write_string(fd, "enum "); print_type(fd, info.base); os.write_string(fd, " {"); for name, i in info.names { if i > 0 do os.write_string(fd, ", "); os.write_string(fd, name); } os.write_string(fd, "}"); case Type_Info_Bit_Field: os.write_string(fd, "bit_field "); if ti.align != 1 { os.write_string(fd, "#align "); print_u64(fd, u64(ti.align)); os.write_byte(fd, ' '); } os.write_string(fd, " {"); for name, i in info.names { if i > 0 do os.write_string(fd, ", "); os.write_string(fd, name); os.write_string(fd, ": "); print_u64(fd, u64(info.bits[i])); } os.write_string(fd, "}"); case Type_Info_Bit_Set: os.write_string(fd, "bit_set["); switch elem in type_info_base(info.elem).variant { case Type_Info_Enum: print_type(fd, info.elem); case Type_Info_Rune: os.write_encoded_rune(fd, rune(info.lower)); os.write_string(fd, ".."); os.write_encoded_rune(fd, rune(info.upper)); case: print_i64(fd, info.lower); os.write_string(fd, ".."); print_i64(fd, info.upper); } if info.underlying != nil { os.write_string(fd, "; "); print_type(fd, info.underlying); } os.write_byte(fd, ']'); } } string_eq :: proc "contextless" (a, b: string) -> bool { switch { case len(a) != len(b): return false; case len(a) == 0: return true; case &a[0] == &b[0]: return true; } return string_cmp(a, b) == 0; } string_cmp :: proc "contextless" (a, b: string) -> int { return mem.compare_byte_ptrs(&a[0], &b[0], min(len(a), len(b))); } string_ne :: inline proc "contextless" (a, b: string) -> bool { return !string_eq(a, b); } string_lt :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) < 0; } string_gt :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) > 0; } string_le :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) <= 0; } string_ge :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) >= 0; } cstring_len :: proc "contextless" (s: cstring) -> int { n := 0; for p := (^byte)(s); p != nil && p^ != 0; p = mem.ptr_offset(p, 1) { n += 1; } return n; } cstring_to_string :: proc "contextless" (s: cstring) -> string { if s == nil do return ""; ptr := (^byte)(s); n := cstring_len(s); return transmute(string)mem.Raw_String{ptr, n}; } complex64_eq :: inline proc "contextless" (a, b: complex64) -> bool { return real(a) == real(b) && imag(a) == imag(b); } complex64_ne :: inline proc "contextless" (a, b: complex64) -> bool { return real(a) != real(b) || imag(a) != imag(b); } complex128_eq :: inline proc "contextless" (a, b: complex128) -> bool { return real(a) == real(b) && imag(a) == imag(b); } complex128_ne :: inline proc "contextless" (a, b: complex128) -> bool { return real(a) != real(b) || imag(a) != imag(b); } bounds_check_error :: proc "contextless" (file: string, line, column: int, index, count: int) { if 0 <= index && index < count do return; fd := os.stderr; print_caller_location(fd, Source_Code_Location{file, line, column, ""}); os.write_string(fd, " Index "); print_i64(fd, i64(index)); os.write_string(fd, " is out of bounds range 0:"); print_i64(fd, i64(count)); os.write_byte(fd, '\n'); debug_trap(); } slice_expr_error :: proc "contextless" (file: string, line, column: int, lo, hi: int, len: int) { if 0 <= lo && lo <= hi && hi <= len do return; fd := os.stderr; print_caller_location(fd, Source_Code_Location{file, line, column, ""}); os.write_string(fd, " Invalid slice indices: "); print_i64(fd, i64(lo)); os.write_string(fd, ":"); print_i64(fd, i64(hi)); os.write_string(fd, ":"); print_i64(fd, i64(len)); os.write_byte(fd, '\n'); debug_trap(); } dynamic_array_expr_error :: proc "contextless" (file: string, line, column: int, low, high, max: int) { if 0 <= low && low <= high && high <= max do return; fd := os.stderr; print_caller_location(fd, Source_Code_Location{file, line, column, ""}); os.write_string(fd, " Invalid dynamic array values: "); print_i64(fd, i64(low)); os.write_string(fd, ":"); print_i64(fd, i64(high)); os.write_string(fd, ":"); print_i64(fd, i64(max)); os.write_byte(fd, '\n'); debug_trap(); } type_assertion_check :: proc "contextless" (ok: bool, file: string, line, column: int, from, to: typeid) { if ok do return; fd := os.stderr; print_caller_location(fd, Source_Code_Location{file, line, column, ""}); os.write_string(fd, " Invalid type assertion from "); print_typeid(fd, from); os.write_string(fd, " to "); print_typeid(fd, to); os.write_byte(fd, '\n'); debug_trap(); } string_decode_rune :: inline proc "contextless" (s: string) -> (rune, int) { return utf8.decode_rune_from_string(s); } bounds_check_error_loc :: inline proc "contextless" (using loc := #caller_location, index, count: int) { bounds_check_error(file_path, int(line), int(column), index, count); } slice_expr_error_loc :: inline proc "contextless" (using loc := #caller_location, lo, hi: int, len: int) { slice_expr_error(file_path, int(line), int(column), lo, hi, len); } dynamic_array_expr_error_loc :: inline proc "contextless" (using loc := #caller_location, low, high, max: int) { dynamic_array_expr_error(file_path, int(line), int(column), low, high, max); } make_slice_error_loc :: inline proc "contextless" (using loc := #caller_location, len: int) { if 0 <= len do return; fd := os.stderr; print_caller_location(fd, loc); os.write_string(fd, " Invalid slice length for make: "); print_i64(fd, i64(len)); os.write_byte(fd, '\n'); debug_trap(); } make_dynamic_array_error_loc :: inline proc "contextless" (using loc := #caller_location, len, cap: int) { if 0 <= len && len <= cap do return; fd := os.stderr; print_caller_location(fd, loc); os.write_string(fd, " Invalid dynamic array parameters for make: "); print_i64(fd, i64(len)); os.write_byte(fd, ':'); print_i64(fd, i64(cap)); os.write_byte(fd, '\n'); debug_trap(); } make_map_expr_error_loc :: inline proc "contextless" (using loc := #caller_location, cap: int) { if 0 <= cap do return; fd := os.stderr; print_caller_location(fd, loc); os.write_string(fd, " Invalid map capacity for make: "); print_i64(fd, i64(cap)); os.write_byte(fd, '\n'); debug_trap(); } @(default_calling_convention = "c") foreign { @(link_name="llvm.sqrt.f32") _sqrt_f32 :: proc(x: f32) -> f32 --- @(link_name="llvm.sqrt.f64") _sqrt_f64 :: proc(x: f64) -> f64 --- } abs_f32 :: inline proc "contextless" (x: f32) -> f32 { foreign { @(link_name="llvm.fabs.f32") _abs :: proc "c" (x: f32) -> f32 --- } return _abs(x); } abs_f64 :: inline proc "contextless" (x: f64) -> f64 { foreign { @(link_name="llvm.fabs.f64") _abs :: proc "c" (x: f64) -> f64 --- } return _abs(x); } min_f32 :: proc(a, b: f32) -> f32 { foreign { @(link_name="llvm.minnum.f32") _min :: proc "c" (a, b: f32) -> f32 --- } return _min(a, b); } min_f64 :: proc(a, b: f64) -> f64 { foreign { @(link_name="llvm.minnum.f64") _min :: proc "c" (a, b: f64) -> f64 --- } return _min(a, b); } max_f32 :: proc(a, b: f32) -> f32 { foreign { @(link_name="llvm.maxnum.f32") _max :: proc "c" (a, b: f32) -> f32 --- } return _max(a, b); } max_f64 :: proc(a, b: f64) -> f64 { foreign { @(link_name="llvm.maxnum.f64") _max :: proc "c" (a, b: f64) -> f64 --- } return _max(a, b); } abs_complex64 :: inline proc "contextless" (x: complex64) -> f32 { r, i := real(x), imag(x); return _sqrt_f32(r*r + i*i); } abs_complex128 :: inline proc "contextless" (x: complex128) -> f64 { r, i := real(x), imag(x); return _sqrt_f64(r*r + i*i); } quo_complex64 :: proc(n, m: complex64) -> complex64 { e, f: f32; if abs(real(m)) >= abs(imag(m)) { ratio := imag(m) / real(m); denom := real(m) + ratio*imag(m); e = (real(n) + imag(n)*ratio) / denom; f = (imag(n) - real(n)*ratio) / denom; } else { ratio := real(m) / imag(m); denom := imag(m) + ratio*real(m); e = (real(n)*ratio + imag(n)) / denom; f = (imag(n)*ratio - real(n)) / denom; } return complex(e, f); } quo_complex128 :: proc(n, m: complex128) -> complex128 { e, f: f64; if abs(real(m)) >= abs(imag(m)) { ratio := imag(m) / real(m); denom := real(m) + ratio*imag(m); e = (real(n) + imag(n)*ratio) / denom; f = (imag(n) - real(n)*ratio) / denom; } else { ratio := real(m) / imag(m); denom := imag(m) + ratio*real(m); e = (real(n)*ratio + imag(n)) / denom; f = (imag(n)*ratio - real(n)) / denom; } return complex(e, f); }