general.odin 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661
  1. package linalg
  2. import "core:math"
  3. import "base:builtin"
  4. import "base:intrinsics"
  5. // Generic
  6. TAU :: 6.28318530717958647692528676655900576
  7. PI :: 3.14159265358979323846264338327950288
  8. E :: 2.71828182845904523536
  9. τ :: TAU
  10. π :: PI
  11. e :: E
  12. SQRT_TWO :: 1.41421356237309504880168872420969808
  13. SQRT_THREE :: 1.73205080756887729352744634150587236
  14. SQRT_FIVE :: 2.23606797749978969640917366873127623
  15. LN2 :: 0.693147180559945309417232121458176568
  16. LN10 :: 2.30258509299404568401799145468436421
  17. MAX_F64_PRECISION :: 16 // Maximum number of meaningful digits after the decimal point for 'f64'
  18. MAX_F32_PRECISION :: 8 // Maximum number of meaningful digits after the decimal point for 'f32'
  19. RAD_PER_DEG :: TAU/360.0
  20. DEG_PER_RAD :: 360.0/TAU
  21. @private IS_NUMERIC :: intrinsics.type_is_numeric
  22. @private IS_QUATERNION :: intrinsics.type_is_quaternion
  23. @private IS_ARRAY :: intrinsics.type_is_array
  24. @private IS_FLOAT :: intrinsics.type_is_float
  25. @private BASE_TYPE :: intrinsics.type_base_type
  26. @private ELEM_TYPE :: intrinsics.type_elem_type
  27. @(require_results)
  28. scalar_dot :: proc "contextless" (a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
  29. return a * b
  30. }
  31. @(require_results)
  32. vector_dot :: proc "contextless" (a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) #no_bounds_check {
  33. for i in 0..<N {
  34. c += a[i] * b[i]
  35. }
  36. return
  37. }
  38. @(require_results)
  39. quaternion64_dot :: proc "contextless" (a, b: $T/quaternion64) -> (c: f16) {
  40. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
  41. }
  42. @(require_results)
  43. quaternion128_dot :: proc "contextless" (a, b: $T/quaternion128) -> (c: f32) {
  44. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
  45. }
  46. @(require_results)
  47. quaternion256_dot :: proc "contextless" (a, b: $T/quaternion256) -> (c: f64) {
  48. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
  49. }
  50. dot :: proc{scalar_dot, vector_dot, quaternion64_dot, quaternion128_dot, quaternion256_dot}
  51. inner_product :: dot
  52. outer_product :: intrinsics.outer_product
  53. @(require_results)
  54. quaternion_inverse :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  55. return conj(q) * quaternion(w=1.0/dot(q, q), x=0, y=0, z=0)
  56. }
  57. @(require_results)
  58. scalar_cross :: proc "contextless" (a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
  59. return a * b
  60. }
  61. @(require_results)
  62. vector_cross2 :: proc "contextless" (a, b: $T/[2]$E) -> E where IS_NUMERIC(E) {
  63. return a[0]*b[1] - b[0]*a[1]
  64. }
  65. @(require_results)
  66. vector_cross3 :: proc "contextless" (a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) {
  67. c[0] = a[1]*b[2] - b[1]*a[2]
  68. c[1] = a[2]*b[0] - b[2]*a[0]
  69. c[2] = a[0]*b[1] - b[0]*a[1]
  70. return
  71. }
  72. @(require_results)
  73. quaternion_cross :: proc "contextless" (q1, q2: $Q) -> (q3: Q) where IS_QUATERNION(Q) {
  74. q3.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y
  75. q3.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z
  76. q3.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x
  77. q3.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z
  78. return
  79. }
  80. vector_cross :: proc{scalar_cross, vector_cross2, vector_cross3}
  81. cross :: proc{scalar_cross, vector_cross2, vector_cross3, quaternion_cross}
  82. @(require_results)
  83. vector_normalize :: proc "contextless" (v: $T/[$N]$E) -> T where IS_FLOAT(E) {
  84. return v / length(v)
  85. }
  86. @(require_results)
  87. quaternion_normalize :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  88. return q/abs(q)
  89. }
  90. normalize :: proc{vector_normalize, quaternion_normalize}
  91. @(require_results)
  92. vector_normalize0 :: proc "contextless" (v: $T/[$N]$E) -> T where IS_FLOAT(E) {
  93. m := length(v)
  94. return 0 if m == 0 else v/m
  95. }
  96. @(require_results)
  97. quaternion_normalize0 :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  98. m := abs(q)
  99. return 0 if m == 0 else q/m
  100. }
  101. normalize0 :: proc{vector_normalize0, quaternion_normalize0}
  102. @(require_results)
  103. vector_length :: proc "contextless" (v: $T/[$N]$E) -> E where IS_FLOAT(E) {
  104. return math.sqrt(dot(v, v))
  105. }
  106. @(require_results)
  107. vector_length2 :: proc "contextless" (v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
  108. return dot(v, v)
  109. }
  110. @(require_results)
  111. quaternion_length :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  112. return abs(q)
  113. }
  114. @(require_results)
  115. quaternion_length2 :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  116. return dot(q, q)
  117. }
  118. @(require_results)
  119. scalar_triple_product :: proc "contextless" (a, b, c: $T/[$N]$E) -> E where IS_NUMERIC(E) {
  120. // a . (b x c)
  121. // b . (c x a)
  122. // c . (a x b)
  123. return dot(a, cross(b, c))
  124. }
  125. @(require_results)
  126. vector_triple_product :: proc "contextless" (a, b, c: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  127. // a x (b x c)
  128. // (a . c)b - (a . b)c
  129. return cross(a, cross(b, c))
  130. }
  131. length :: proc{vector_length, quaternion_length}
  132. length2 :: proc{vector_length2, quaternion_length2}
  133. @(require_results)
  134. projection :: proc "contextless" (x, normal: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  135. return dot(x, normal) / dot(normal, normal) * normal
  136. }
  137. @(require_results)
  138. identity_array_based_matrix :: proc "contextless" ($T: typeid/[$N][N]$E) -> (m: T) #no_bounds_check {
  139. for i in 0..<N {
  140. m[i][i] = E(1)
  141. }
  142. return m
  143. }
  144. @(require_results)
  145. identity_matrix :: proc "contextless" ($T: typeid/matrix[$N, N]$E) -> T #no_bounds_check {
  146. return 1
  147. }
  148. identity :: proc{
  149. identity_array_based_matrix,
  150. identity_matrix,
  151. }
  152. transpose :: intrinsics.transpose
  153. @(require_results)
  154. matrix_mul :: proc "contextless" (a, b: $M/matrix[$N, N]$E) -> (c: M)
  155. where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
  156. return a * b
  157. }
  158. @(require_results)
  159. matrix_comp_mul :: proc "contextless" (a, b: $M/matrix[$I, $J]$E) -> (c: M)
  160. where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
  161. return hadamard_product(a, b)
  162. }
  163. @(require_results)
  164. matrix_mul_differ :: proc "contextless" (a: $A/matrix[$I, $J]$E, b: $B/matrix[J, $K]E) -> (c: matrix[I, K]E)
  165. where !IS_ARRAY(E), IS_NUMERIC(E), I != K #no_bounds_check {
  166. return a * b
  167. }
  168. @(require_results)
  169. matrix_mul_vector :: proc "contextless" (a: $A/matrix[$I, $J]$E, b: $B/[J]E) -> (c: B)
  170. where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
  171. return a * b
  172. }
  173. @(require_results)
  174. quaternion_mul_quaternion :: proc "contextless" (q1, q2: $Q) -> Q where IS_QUATERNION(Q) {
  175. return q1 * q2
  176. }
  177. @(require_results)
  178. quaternion64_mul_vector3 :: proc "contextless" (q: $Q/quaternion64, v: $V/[3]$F/f16) -> V {
  179. Raw_Quaternion :: struct {xyz: [3]f16, r: f16}
  180. q := transmute(Raw_Quaternion)q
  181. v := v
  182. t := cross(2*q.xyz, v)
  183. return V(v + q.r*t + cross(q.xyz, t))
  184. }
  185. @(require_results)
  186. quaternion128_mul_vector3 :: proc "contextless" (q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
  187. Raw_Quaternion :: struct {xyz: [3]f32, r: f32}
  188. q := transmute(Raw_Quaternion)q
  189. v := v
  190. t := cross(2*q.xyz, v)
  191. return V(v + q.r*t + cross(q.xyz, t))
  192. }
  193. @(require_results)
  194. quaternion256_mul_vector3 :: proc "contextless" (q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
  195. Raw_Quaternion :: struct {xyz: [3]f64, r: f64}
  196. q := transmute(Raw_Quaternion)q
  197. v := v
  198. t := cross(2*q.xyz, v)
  199. return V(v + q.r*t + cross(q.xyz, t))
  200. }
  201. quaternion_mul_vector3 :: proc{quaternion64_mul_vector3, quaternion128_mul_vector3, quaternion256_mul_vector3}
  202. mul :: proc{
  203. matrix_mul,
  204. matrix_mul_differ,
  205. matrix_mul_vector,
  206. quaternion64_mul_vector3,
  207. quaternion128_mul_vector3,
  208. quaternion256_mul_vector3,
  209. quaternion_mul_quaternion,
  210. }
  211. @(require_results)
  212. vector_to_ptr :: proc "contextless" (v: ^$V/[$N]$E) -> ^E where IS_NUMERIC(E), N > 0 #no_bounds_check {
  213. return &v[0]
  214. }
  215. @(require_results)
  216. matrix_to_ptr :: proc "contextless" (m: ^$A/matrix[$I, $J]$E) -> ^E where IS_NUMERIC(E), I > 0, J > 0 #no_bounds_check {
  217. return &m[0, 0]
  218. }
  219. to_ptr :: proc{vector_to_ptr, matrix_to_ptr}
  220. vector_angle_between :: proc "contextless" (a, b: $V/[$N]$E) -> E {
  221. a0 := normalize0(a)
  222. b0 := normalize0(b)
  223. return math.acos(dot(a0, b0))
  224. }
  225. quaternion64_angle_between :: proc "contextless" (a, b: $Q/quaternion64) -> f16 {
  226. c := normalize0(conj(a) * b)
  227. return math.acos(c.w)
  228. }
  229. quaternion128_angle_between :: proc "contextless" (a, b: $Q/quaternion128) -> f32 {
  230. c := normalize0(conj(a) * b)
  231. return math.acos(c.w)
  232. }
  233. quaternion256_angle_between :: proc "contextless" (a, b: $Q/quaternion256) -> f64 {
  234. c := normalize0(conj(a) * b)
  235. return math.acos(c.w)
  236. }
  237. angle_between :: proc{
  238. vector_angle_between,
  239. quaternion64_angle_between,
  240. quaternion128_angle_between,
  241. quaternion256_angle_between,
  242. }
  243. // Splines
  244. @(require_results)
  245. vector_slerp :: proc "contextless" (x, y: $T/[$N]$E, a: E) -> T #no_bounds_check {
  246. cos_alpha := dot(x, y)
  247. alpha := math.acos(cos_alpha)
  248. sin_alpha := math.sin(alpha)
  249. t1 := math.sin((1 - a) * alpha) / sin_alpha
  250. t2 := math.sin(a * alpha) / sin_alpha
  251. return x * t1 + y * t2
  252. }
  253. @(require_results)
  254. catmull_rom :: proc "contextless" (v1, v2, v3, v4: $T/[$N]$E, s: E) -> T #no_bounds_check {
  255. s2 := s*s
  256. s3 := s2*s
  257. f1 := -s3 + 2 * s2 - s
  258. f2 := 3 * s3 - 5 * s2 + 2
  259. f3 := -3 * s3 + 4 * s2 + s
  260. f4 := s3 - s2
  261. return (f1 * v1 + f2 * v2 + f3 * v3 + f4 * v4) * 0.5
  262. }
  263. @(require_results)
  264. hermite :: proc "contextless" (v1, t1, v2, t2: $T/[$N]$E, s: E) -> T #no_bounds_check {
  265. s2 := s*s
  266. s3 := s2*s
  267. f1 := 2 * s3 - 3 * s2 + 1
  268. f2 := -2 * s3 + 3 * s2
  269. f3 := s3 - 2 * s2 + s
  270. f4 := s3 - s2
  271. return f1 * v1 + f2 * v2 + f3 * t1 + f4 * t2
  272. }
  273. @(require_results)
  274. cubic :: proc "contextless" (v1, v2, v3, v4: $T/[$N]$E, s: E) -> T #no_bounds_check {
  275. return ((v1 * s + v2) * s + v3) * s + v4
  276. }
  277. @(require_results)
  278. array_cast :: proc "contextless" (v: $A/[$N]$T, $Elem_Type: typeid) -> (w: [N]Elem_Type) #no_bounds_check {
  279. for i in 0..<N {
  280. w[i] = Elem_Type(v[i])
  281. }
  282. return
  283. }
  284. @(require_results)
  285. matrix_cast :: proc "contextless" (v: $A/matrix[$M, $N]$T, $Elem_Type: typeid) -> (w: matrix[M, N]Elem_Type) #no_bounds_check {
  286. for j in 0..<N {
  287. for i in 0..<M {
  288. w[i, j] = Elem_Type(v[i, j])
  289. }
  290. }
  291. return
  292. }
  293. @(require_results) to_f32 :: #force_inline proc(v: $A/[$N]$T) -> [N]f32 { return array_cast(v, f32) }
  294. @(require_results) to_f64 :: #force_inline proc(v: $A/[$N]$T) -> [N]f64 { return array_cast(v, f64) }
  295. @(require_results) to_i8 :: #force_inline proc(v: $A/[$N]$T) -> [N]i8 { return array_cast(v, i8) }
  296. @(require_results) to_i16 :: #force_inline proc(v: $A/[$N]$T) -> [N]i16 { return array_cast(v, i16) }
  297. @(require_results) to_i32 :: #force_inline proc(v: $A/[$N]$T) -> [N]i32 { return array_cast(v, i32) }
  298. @(require_results) to_i64 :: #force_inline proc(v: $A/[$N]$T) -> [N]i64 { return array_cast(v, i64) }
  299. @(require_results) to_int :: #force_inline proc(v: $A/[$N]$T) -> [N]int { return array_cast(v, int) }
  300. @(require_results) to_u8 :: #force_inline proc(v: $A/[$N]$T) -> [N]u8 { return array_cast(v, u8) }
  301. @(require_results) to_u16 :: #force_inline proc(v: $A/[$N]$T) -> [N]u16 { return array_cast(v, u16) }
  302. @(require_results) to_u32 :: #force_inline proc(v: $A/[$N]$T) -> [N]u32 { return array_cast(v, u32) }
  303. @(require_results) to_u64 :: #force_inline proc(v: $A/[$N]$T) -> [N]u64 { return array_cast(v, u64) }
  304. @(require_results) to_uint :: #force_inline proc(v: $A/[$N]$T) -> [N]uint { return array_cast(v, uint) }
  305. @(require_results) to_complex32 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex32 { return array_cast(v, complex32) }
  306. @(require_results) to_complex64 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex64 { return array_cast(v, complex64) }
  307. @(require_results) to_complex128 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex128 { return array_cast(v, complex128) }
  308. @(require_results) to_quaternion64 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion64 { return array_cast(v, quaternion64) }
  309. @(require_results) to_quaternion128 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion128 { return array_cast(v, quaternion128) }
  310. @(require_results) to_quaternion256 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion256 { return array_cast(v, quaternion256) }
  311. hadamard_product :: intrinsics.hadamard_product
  312. matrix_flatten :: intrinsics.matrix_flatten
  313. determinant :: proc{
  314. matrix1x1_determinant,
  315. matrix2x2_determinant,
  316. matrix3x3_determinant,
  317. matrix4x4_determinant,
  318. }
  319. adjugate :: proc{
  320. matrix1x1_adjugate,
  321. matrix2x2_adjugate,
  322. matrix3x3_adjugate,
  323. matrix4x4_adjugate,
  324. }
  325. inverse_transpose :: proc{
  326. matrix1x1_inverse_transpose,
  327. matrix2x2_inverse_transpose,
  328. matrix3x3_inverse_transpose,
  329. matrix4x4_inverse_transpose,
  330. }
  331. inverse :: proc{
  332. matrix1x1_inverse,
  333. matrix2x2_inverse,
  334. matrix3x3_inverse,
  335. matrix4x4_inverse,
  336. }
  337. @(require_results)
  338. hermitian_adjoint :: proc "contextless" (m: $M/matrix[$N, N]$T) -> M where intrinsics.type_is_complex(T), N >= 1 #no_bounds_check {
  339. return conj(transpose(m))
  340. }
  341. @(require_results)
  342. trace :: proc "contextless" (m: $M/matrix[$N, N]$T) -> (trace: T) #no_bounds_check {
  343. for i in 0..<N {
  344. trace += m[i, i]
  345. }
  346. return
  347. }
  348. @(require_results)
  349. matrix_minor :: proc "contextless" (m: $M/matrix[$N, N]$T, #any_int row, column: int) -> (minor: T) where N > 1 #no_bounds_check {
  350. K :: int(N-1)
  351. cut_down: matrix[K, K]T
  352. for col_idx in 0..<K {
  353. j := col_idx + int(col_idx >= column)
  354. for row_idx in 0..<K {
  355. i := row_idx + int(row_idx >= row)
  356. cut_down[row_idx, col_idx] = m[i, j]
  357. }
  358. }
  359. return determinant(cut_down)
  360. }
  361. @(require_results)
  362. matrix1x1_determinant :: proc "contextless" (m: $M/matrix[1, 1]$T) -> (det: T) #no_bounds_check {
  363. return m[0, 0]
  364. }
  365. @(require_results)
  366. matrix2x2_determinant :: proc "contextless" (m: $M/matrix[2, 2]$T) -> (det: T) #no_bounds_check {
  367. return m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]
  368. }
  369. @(require_results)
  370. matrix3x3_determinant :: proc "contextless" (m: $M/matrix[3, 3]$T) -> (det: T) #no_bounds_check {
  371. a := +m[0, 0] * (m[1, 1] * m[2, 2] - m[1, 2] * m[2, 1])
  372. b := -m[0, 1] * (m[1, 0] * m[2, 2] - m[1, 2] * m[2, 0])
  373. c := +m[0, 2] * (m[1, 0] * m[2, 1] - m[1, 1] * m[2, 0])
  374. return a + b + c
  375. }
  376. @(require_results)
  377. matrix4x4_determinant :: proc "contextless" (m: $M/matrix[4, 4]$T) -> (det: T) #no_bounds_check {
  378. a := adjugate(m)
  379. for i in 0..<4 {
  380. det += m[0, i] * a[0, i]
  381. }
  382. return
  383. }
  384. @(require_results)
  385. matrix1x1_adjugate :: proc "contextless" (x: $M/matrix[1, 1]$T) -> (y: M) #no_bounds_check {
  386. y = x
  387. return
  388. }
  389. @(require_results)
  390. matrix2x2_adjugate :: proc "contextless" (x: $M/matrix[2, 2]$T) -> (y: M) #no_bounds_check {
  391. y[0, 0] = +x[1, 1]
  392. y[0, 1] = -x[1, 0]
  393. y[1, 0] = -x[0, 1]
  394. y[1, 1] = +x[0, 0]
  395. return
  396. }
  397. @(require_results)
  398. matrix3x3_adjugate :: proc "contextless" (m: $M/matrix[3, 3]$T) -> (y: M) #no_bounds_check {
  399. y[0, 0] = +(m[1, 1] * m[2, 2] - m[2, 1] * m[1, 2])
  400. y[0, 1] = -(m[1, 0] * m[2, 2] - m[2, 0] * m[1, 2])
  401. y[0, 2] = +(m[1, 0] * m[2, 1] - m[2, 0] * m[1, 1])
  402. y[1, 0] = -(m[0, 1] * m[2, 2] - m[2, 1] * m[0, 2])
  403. y[1, 1] = +(m[0, 0] * m[2, 2] - m[2, 0] * m[0, 2])
  404. y[1, 2] = -(m[0, 0] * m[2, 1] - m[2, 0] * m[0, 1])
  405. y[2, 0] = +(m[0, 1] * m[1, 2] - m[1, 1] * m[0, 2])
  406. y[2, 1] = -(m[0, 0] * m[1, 2] - m[1, 0] * m[0, 2])
  407. y[2, 2] = +(m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1])
  408. return
  409. }
  410. @(require_results)
  411. matrix4x4_adjugate :: proc "contextless" (x: $M/matrix[4, 4]$T) -> (y: M) #no_bounds_check {
  412. for i in 0..<4 {
  413. for j in 0..<4 {
  414. sign: T = 1 if (i + j) % 2 == 0 else -1
  415. y[i, j] = sign * matrix_minor(x, i, j)
  416. }
  417. }
  418. return
  419. }
  420. @(require_results)
  421. matrix1x1_inverse_transpose :: proc "contextless" (x: $M/matrix[1, 1]$T) -> (y: M) #no_bounds_check {
  422. y[0, 0] = 1/x[0, 0]
  423. return
  424. }
  425. @(require_results)
  426. matrix2x2_inverse_transpose :: proc "contextless" (x: $M/matrix[2, 2]$T) -> (y: M) #no_bounds_check {
  427. d := x[0, 0]*x[1, 1] - x[0, 1]*x[1, 0]
  428. when intrinsics.type_is_integer(T) {
  429. y[0, 0] = +x[1, 1] / d
  430. y[1, 0] = -x[0, 1] / d
  431. y[0, 1] = -x[1, 0] / d
  432. y[1, 1] = +x[0, 0] / d
  433. } else {
  434. id := 1 / d
  435. y[0, 0] = +x[1, 1] * id
  436. y[1, 0] = -x[0, 1] * id
  437. y[0, 1] = -x[1, 0] * id
  438. y[1, 1] = +x[0, 0] * id
  439. }
  440. return
  441. }
  442. @(require_results)
  443. matrix3x3_inverse_transpose :: proc "contextless" (x: $M/matrix[3, 3]$T) -> (y: M) #no_bounds_check {
  444. a := adjugate(x)
  445. d := determinant(x)
  446. when intrinsics.type_is_integer(T) {
  447. for i in 0..<3 {
  448. for j in 0..<3 {
  449. y[i, j] = a[i, j] / d
  450. }
  451. }
  452. } else {
  453. id := 1/d
  454. for i in 0..<3 {
  455. for j in 0..<3 {
  456. y[i, j] = a[i, j] * id
  457. }
  458. }
  459. }
  460. return
  461. }
  462. @(require_results)
  463. matrix4x4_inverse_transpose :: proc "contextless" (x: $M/matrix[4, 4]$T) -> (y: M) #no_bounds_check {
  464. a := adjugate(x)
  465. d: T
  466. for i in 0..<4 {
  467. d += x[0, i] * a[0, i]
  468. }
  469. when intrinsics.type_is_integer(T) {
  470. for i in 0..<4 {
  471. for j in 0..<4 {
  472. y[i, j] = a[i, j] / d
  473. }
  474. }
  475. } else {
  476. id := 1/d
  477. for i in 0..<4 {
  478. for j in 0..<4 {
  479. y[i, j] = a[i, j] * id
  480. }
  481. }
  482. }
  483. return
  484. }
  485. @(require_results)
  486. matrix1x1_inverse :: proc "contextless" (x: $M/matrix[1, 1]$T) -> (y: M) #no_bounds_check {
  487. y[0, 0] = 1/x[0, 0]
  488. return
  489. }
  490. @(require_results)
  491. matrix2x2_inverse :: proc "contextless" (x: $M/matrix[2, 2]$T) -> (y: M) #no_bounds_check {
  492. d := x[0, 0]*x[1, 1] - x[0, 1]*x[1, 0]
  493. when intrinsics.type_is_integer(T) {
  494. y[0, 0] = +x[1, 1] / d
  495. y[0, 1] = -x[0, 1] / d
  496. y[1, 0] = -x[1, 0] / d
  497. y[1, 1] = +x[0, 0] / d
  498. } else {
  499. id := 1 / d
  500. y[0, 0] = +x[1, 1] * id
  501. y[0, 1] = -x[0, 1] * id
  502. y[1, 0] = -x[1, 0] * id
  503. y[1, 1] = +x[0, 0] * id
  504. }
  505. return
  506. }
  507. @(require_results)
  508. matrix3x3_inverse :: proc "contextless" (x: $M/matrix[3, 3]$T) -> (y: M) #no_bounds_check {
  509. a := adjugate(x)
  510. d := determinant(x)
  511. when intrinsics.type_is_integer(T) {
  512. for i in 0..<3 {
  513. for j in 0..<3 {
  514. y[i, j] = a[j, i] / d
  515. }
  516. }
  517. } else {
  518. id := 1/d
  519. for i in 0..<3 {
  520. for j in 0..<3 {
  521. y[i, j] = a[j, i] * id
  522. }
  523. }
  524. }
  525. return
  526. }
  527. @(require_results)
  528. matrix4x4_inverse :: proc "contextless" (x: $M/matrix[4, 4]$T) -> (y: M) #no_bounds_check {
  529. a := adjugate(x)
  530. d: T
  531. for i in 0..<4 {
  532. d += x[0, i] * a[0, i]
  533. }
  534. when intrinsics.type_is_integer(T) {
  535. for i in 0..<4 {
  536. for j in 0..<4 {
  537. y[i, j] = a[j, i] / d
  538. }
  539. }
  540. } else {
  541. id := 1/d
  542. for i in 0..<4 {
  543. for j in 0..<4 {
  544. y[i, j] = a[j, i] * id
  545. }
  546. }
  547. }
  548. return
  549. }