123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391 |
- package net
- #+build linux
- /*
- Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
- For other protocols and their features, see subdirectories of this package.
- */
- /*
- Copyright 2022 Tetralux <[email protected]>
- Copyright 2022 Colin Davidson <[email protected]>
- Copyright 2022 Jeroen van Rijn <[email protected]>.
- Copyright 2024 Feoramund <[email protected]>.
- Made available under Odin's BSD-3 license.
- List of contributors:
- Tetralux: Initial implementation
- Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
- Jeroen van Rijn: Cross platform unification, code style, documentation
- flysand: Move dependency from core:os to core:sys/linux
- Feoramund: FreeBSD platform code
- */
- import "core:c"
- import "core:time"
- import "core:sys/linux"
- Socket_Option :: enum c.int {
- Reuse_Address = c.int(linux.Socket_Option.REUSEADDR),
- Keep_Alive = c.int(linux.Socket_Option.KEEPALIVE),
- Out_Of_Bounds_Data_Inline = c.int(linux.Socket_Option.OOBINLINE),
- TCP_Nodelay = c.int(linux.Socket_TCP_Option.NODELAY),
- Linger = c.int(linux.Socket_Option.LINGER),
- Receive_Buffer_Size = c.int(linux.Socket_Option.RCVBUF),
- Send_Buffer_Size = c.int(linux.Socket_Option.SNDBUF),
- Receive_Timeout = c.int(linux.Socket_Option.RCVTIMEO),
- Send_Timeout = c.int(linux.Socket_Option.SNDTIMEO),
- }
- // Wrappers and unwrappers for system-native types
- @(private="file")
- _unwrap_os_socket :: proc "contextless" (sock: Any_Socket)->linux.Fd {
- return linux.Fd(any_socket_to_socket(sock))
- }
- @(private="file")
- _wrap_os_socket :: proc "contextless" (sock: linux.Fd, protocol: Socket_Protocol)->Any_Socket {
- switch protocol {
- case .TCP: return TCP_Socket(Socket(sock))
- case .UDP: return UDP_Socket(Socket(sock))
- case:
- unreachable()
- }
- }
- @(private="file")
- _unwrap_os_family :: proc "contextless" (family: Address_Family)->linux.Address_Family {
- switch family {
- case .IP4: return .INET
- case .IP6: return .INET6
- case:
- unreachable()
- }
- }
- @(private="file")
- _unwrap_os_proto_socktype :: proc "contextless" (protocol: Socket_Protocol)->(linux.Protocol, linux.Socket_Type) {
- switch protocol {
- case .TCP: return .TCP, .STREAM
- case .UDP: return .UDP, .DGRAM
- case:
- unreachable()
- }
- }
- @(private="file")
- _unwrap_os_addr :: proc "contextless" (endpoint: Endpoint)->(linux.Sock_Addr_Any) {
- switch address in endpoint.address {
- case IP4_Address:
- return {
- ipv4 = {
- sin_family = .INET,
- sin_port = u16be(endpoint.port),
- sin_addr = ([4]u8)(endpoint.address.(IP4_Address)),
- },
- }
- case IP6_Address:
- return {
- ipv6 = {
- sin6_port = u16be(endpoint.port),
- sin6_addr = transmute([16]u8)endpoint.address.(IP6_Address),
- sin6_family = .INET6,
- },
- }
- case:
- unreachable()
- }
- }
- @(private="file")
- _wrap_os_addr :: proc "contextless" (addr: linux.Sock_Addr_Any)->(Endpoint) {
- #partial switch addr.family {
- case .INET:
- return {
- address = cast(IP4_Address) addr.sin_addr,
- port = cast(int) addr.sin_port,
- }
- case .INET6:
- return {
- port = cast(int) addr.sin6_port,
- address = transmute(IP6_Address) addr.sin6_addr,
- }
- case:
- unreachable()
- }
- }
- _create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (Any_Socket, Network_Error) {
- family := _unwrap_os_family(family)
- proto, socktype := _unwrap_os_proto_socktype(protocol)
- sock, errno := linux.socket(family, socktype, {.CLOEXEC}, proto)
- if errno != .NONE {
- return {}, Create_Socket_Error(errno)
- }
- return _wrap_os_socket(sock, protocol), nil
- }
- @(private)
- _dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := default_tcp_options) -> (TCP_Socket, Network_Error) {
- errno: linux.Errno
- if endpoint.port == 0 {
- return 0, .Port_Required
- }
- // Create new TCP socket
- os_sock: linux.Fd
- os_sock, errno = linux.socket(_unwrap_os_family(family_from_endpoint(endpoint)), .STREAM, {.CLOEXEC}, .TCP)
- if errno != .NONE {
- // TODO(flysand): should return invalid file descriptor here casted as TCP_Socket
- return {}, Create_Socket_Error(errno)
- }
- // NOTE(tetra): This is so that if we crash while the socket is open, we can
- // bypass the cooldown period, and allow the next run of the program to
- // use the same address immediately.
- reuse_addr: b32 = true
- _ = linux.setsockopt(os_sock, linux.SOL_SOCKET, linux.Socket_Option.REUSEADDR, &reuse_addr)
- addr := _unwrap_os_addr(endpoint)
- errno = linux.connect(linux.Fd(os_sock), &addr)
- if errno != .NONE {
- return cast(TCP_Socket) os_sock, Dial_Error(errno)
- }
- // NOTE(tetra): Not vital to succeed; error ignored
- no_delay: b32 = cast(b32) options.no_delay
- _ = linux.setsockopt(os_sock, linux.SOL_TCP, linux.Socket_TCP_Option.NODELAY, &no_delay)
- return cast(TCP_Socket) os_sock, nil
- }
- @(private)
- _bind :: proc(sock: Any_Socket, endpoint: Endpoint) -> (Network_Error) {
- addr := _unwrap_os_addr(endpoint)
- errno := linux.bind(_unwrap_os_socket(sock), &addr)
- if errno != .NONE {
- return Bind_Error(errno)
- }
- return nil
- }
- @(private)
- _listen_tcp :: proc(endpoint: Endpoint, backlog := 1000) -> (TCP_Socket, Network_Error) {
- errno: linux.Errno
- assert(backlog > 0 && i32(backlog) < max(i32))
- // Figure out the address family and address of the endpoint
- ep_family := _unwrap_os_family(family_from_endpoint(endpoint))
- ep_address := _unwrap_os_addr(endpoint)
- // Create TCP socket
- os_sock: linux.Fd
- os_sock, errno = linux.socket(ep_family, .STREAM, {.CLOEXEC}, .TCP)
- if errno != .NONE {
- // TODO(flysand): should return invalid file descriptor here casted as TCP_Socket
- return {}, Create_Socket_Error(errno)
- }
- // NOTE(tetra): This is so that if we crash while the socket is open, we can
- // bypass the cooldown period, and allow the next run of the program to
- // use the same address immediately.
- //
- // TODO(tetra, 2022-02-15): Confirm that this doesn't mean other processes can hijack the address!
- do_reuse_addr: b32 = true
- errno = linux.setsockopt(os_sock, linux.SOL_SOCKET, linux.Socket_Option.REUSEADDR, &do_reuse_addr)
- if errno != .NONE {
- return cast(TCP_Socket) os_sock, Listen_Error(errno)
- }
- // Bind the socket to endpoint address
- errno = linux.bind(os_sock, &ep_address)
- if errno != .NONE {
- return cast(TCP_Socket) os_sock, Bind_Error(errno)
- }
- // Listen on bound socket
- errno = linux.listen(os_sock, cast(i32) backlog)
- if errno != .NONE {
- return cast(TCP_Socket) os_sock, Listen_Error(errno)
- }
- return cast(TCP_Socket) os_sock, nil
- }
- @(private)
- _accept_tcp :: proc(sock: TCP_Socket, options := default_tcp_options) -> (tcp_client: TCP_Socket, endpoint: Endpoint, err: Network_Error) {
- addr: linux.Sock_Addr_Any
- client_sock, errno := linux.accept(linux.Fd(sock), &addr)
- if errno != .NONE {
- return {}, {}, Accept_Error(errno)
- }
- // NOTE(tetra): Not vital to succeed; error ignored
- val: b32 = cast(b32) options.no_delay
- _ = linux.setsockopt(client_sock, linux.SOL_TCP, linux.Socket_TCP_Option.NODELAY, &val)
- return TCP_Socket(client_sock), _wrap_os_addr(addr), nil
- }
- @(private)
- _close :: proc(sock: Any_Socket) {
- linux.close(_unwrap_os_socket(sock))
- }
- @(private)
- _recv_tcp :: proc(tcp_sock: TCP_Socket, buf: []byte) -> (int, Network_Error) {
- if len(buf) <= 0 {
- return 0, nil
- }
- bytes_read, errno := linux.recv(linux.Fd(tcp_sock), buf, {})
- if errno != .NONE {
- return 0, TCP_Recv_Error(errno)
- }
- return int(bytes_read), nil
- }
- @(private)
- _recv_udp :: proc(udp_sock: UDP_Socket, buf: []byte) -> (int, Endpoint, Network_Error) {
- if len(buf) <= 0 {
- // NOTE(flysand): It was returning no error, I didn't change anything
- return 0, {}, {}
- }
- // NOTE(tetra): On Linux, if the buffer is too small to fit the entire datagram payload, the rest is silently discarded,
- // and no error is returned.
- // However, if you pass MSG_TRUNC here, 'res' will be the size of the incoming message, rather than how much was read.
- // We can use this fact to detect this condition and return .Buffer_Too_Small.
- from_addr: linux.Sock_Addr_Any
- bytes_read, errno := linux.recvfrom(linux.Fd(udp_sock), buf, {.TRUNC}, &from_addr)
- if errno != .NONE {
- return 0, {}, UDP_Recv_Error(errno)
- }
- if bytes_read > len(buf) {
- // NOTE(tetra): The buffer has been filled, with a partial message.
- return len(buf), {}, .Buffer_Too_Small
- }
- return bytes_read, _wrap_os_addr(from_addr), nil
- }
- @(private)
- _send_tcp :: proc(tcp_sock: TCP_Socket, buf: []byte) -> (int, Network_Error) {
- total_written := 0
- for total_written < len(buf) {
- limit := min(int(max(i32)), len(buf) - total_written)
- remaining := buf[total_written:][:limit]
- res, errno := linux.send(linux.Fd(tcp_sock), remaining, {.NOSIGNAL})
- if errno == .EPIPE {
- // If the peer is disconnected when we are trying to send we will get an `EPIPE` error,
- // so we turn that into a clearer error
- return total_written, TCP_Send_Error.Connection_Closed
- } else if errno != .NONE {
- return total_written, TCP_Send_Error(errno)
- }
- total_written += int(res)
- }
- return total_written, nil
- }
- @(private)
- _send_udp :: proc(udp_sock: UDP_Socket, buf: []byte, to: Endpoint) -> (int, Network_Error) {
- to_addr := _unwrap_os_addr(to)
- bytes_written, errno := linux.sendto(linux.Fd(udp_sock), buf, {}, &to_addr)
- if errno != .NONE {
- return bytes_written, UDP_Send_Error(errno)
- }
- return int(bytes_written), nil
- }
- @(private)
- _shutdown :: proc(sock: Any_Socket, manner: Shutdown_Manner) -> (err: Network_Error) {
- os_sock := _unwrap_os_socket(sock)
- errno := linux.shutdown(os_sock, cast(linux.Shutdown_How) manner)
- if errno != .NONE {
- return Shutdown_Error(errno)
- }
- return nil
- }
- // TODO(flysand): Figure out what we want to do with this on core:sys/ level.
- @(private)
- _set_option :: proc(sock: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Network_Error {
- level: int
- if option == .TCP_Nodelay {
- level = int(linux.SOL_TCP)
- } else {
- level = int(linux.SOL_SOCKET)
- }
- os_sock := _unwrap_os_socket(sock)
- // NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool;
- // it _has_ to be a b32.
- // I haven't tested if you can give more than that. <-- (flysand) probably not, posix explicitly specifies an int
- bool_value: b32
- int_value: i32
- timeval_value: linux.Time_Val
- errno: linux.Errno
- switch option {
- case
- .Reuse_Address,
- .Keep_Alive,
- .Out_Of_Bounds_Data_Inline,
- .TCP_Nodelay:
- // TODO: verify whether these are options or not on Linux
- // .Broadcast, <-- yes
- // .Conditional_Accept,
- // .Dont_Linger:
- switch x in value {
- case bool, b8:
- x2 := x
- bool_value = b32((^bool)(&x2)^)
- case b16:
- bool_value = b32(x)
- case b32:
- bool_value = b32(x)
- case b64:
- bool_value = b32(x)
- case:
- panic("set_option() value must be a boolean here", loc)
- }
- errno = linux.setsockopt(os_sock, level, int(option), &bool_value)
- case
- .Linger,
- .Send_Timeout,
- .Receive_Timeout:
- t, ok := value.(time.Duration)
- if !ok {
- panic("set_option() value must be a time.Duration here", loc)
- }
- micros := cast(i64) (time.duration_microseconds(t))
- timeval_value.microseconds = cast(int) (micros % 1e6)
- timeval_value.seconds = cast(int) ((micros - i64(timeval_value.microseconds)) / 1e6)
- errno = linux.setsockopt(os_sock, level, int(option), &timeval_value)
- case
- .Receive_Buffer_Size,
- .Send_Buffer_Size:
- // TODO: check for out of range values and return .Value_Out_Of_Range?
- switch i in value {
- case i8, u8: i2 := i; int_value = i32((^u8)(&i2)^)
- case i16, u16: i2 := i; int_value = i32((^u16)(&i2)^)
- case i32, u32: i2 := i; int_value = i32((^u32)(&i2)^)
- case i64, u64: i2 := i; int_value = i32((^u64)(&i2)^)
- case i128, u128: i2 := i; int_value = i32((^u128)(&i2)^)
- case int, uint: i2 := i; int_value = i32((^uint)(&i2)^)
- case:
- panic("set_option() value must be an integer here", loc)
- }
- errno = linux.setsockopt(os_sock, level, int(option), &int_value)
- }
- if errno != .NONE {
- return Socket_Option_Error(errno)
- }
- return nil
- }
- @(private)
- _set_blocking :: proc(sock: Any_Socket, should_block: bool) -> (err: Network_Error) {
- errno: linux.Errno
- flags: linux.Open_Flags
- os_sock := _unwrap_os_socket(sock)
- flags, errno = linux.fcntl(os_sock, linux.F_GETFL)
- if errno != .NONE {
- return Set_Blocking_Error(errno)
- }
- if should_block {
- flags -= {.NONBLOCK}
- } else {
- flags += {.NONBLOCK}
- }
- errno = linux.fcntl(os_sock, linux.F_SETFL, flags)
- if errno != .NONE {
- return Set_Blocking_Error(errno)
- }
- return nil
- }
|