test.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583
  1. from ctypes import *
  2. from random import *
  3. import math
  4. import os
  5. import platform
  6. import time
  7. from enum import Enum
  8. #
  9. # Normally, we report the number of passes and fails.
  10. # With EXIT_ON_FAIL set, we exit at the first fail.
  11. #
  12. EXIT_ON_FAIL = True
  13. #EXIT_ON_FAIL = False
  14. #
  15. # We skip randomized tests altogether if NO_RANDOM_TESTS is set.
  16. #
  17. NO_RANDOM_TESTS = True
  18. #NO_RANDOM_TESTS = False
  19. #
  20. # If TIMED_TESTS == False and FAST_TESTS == True, we cut down the number of iterations.
  21. # See below.
  22. #
  23. FAST_TESTS = True
  24. #
  25. # For timed tests we budget a second per `n` bits and iterate until we hit that time.
  26. # Otherwise, we specify the number of iterations per bit depth in BITS_AND_ITERATIONS.
  27. #
  28. TIMED_TESTS = False
  29. TIMED_BITS_PER_SECOND = 20_000
  30. #
  31. # How many iterations of each random test do we want to run?
  32. #
  33. BITS_AND_ITERATIONS = [
  34. ( 120, 10_000),
  35. ( 1_200, 1_000),
  36. ( 4_096, 100),
  37. (12_000, 10),
  38. ]
  39. if FAST_TESTS:
  40. for k in range(len(BITS_AND_ITERATIONS)):
  41. b, i = BITS_AND_ITERATIONS[k]
  42. BITS_AND_ITERATIONS[k] = (b, i // 10 if i >= 100 else 5)
  43. if NO_RANDOM_TESTS:
  44. BITS_AND_ITERATIONS = []
  45. #
  46. # Where is the DLL? If missing, build using: `odin build . -build-mode:shared`
  47. #
  48. if platform.system() == "Windows":
  49. LIB_PATH = os.getcwd() + os.sep + "big.dll"
  50. elif platform.system() == "Linux":
  51. LIB_PATH = os.getcwd() + os.sep + "big.so"
  52. elif platform.system() == "Darwin":
  53. LIB_PATH = os.getcwd() + os.sep + "big.dylib"
  54. else:
  55. print("Platform is unsupported.")
  56. exit(1)
  57. TOTAL_TIME = 0
  58. UNTIL_TIME = 0
  59. UNTIL_ITERS = 0
  60. def we_iterate():
  61. if TIMED_TESTS:
  62. return TOTAL_TIME < UNTIL_TIME
  63. else:
  64. global UNTIL_ITERS
  65. UNTIL_ITERS -= 1
  66. return UNTIL_ITERS != -1
  67. #
  68. # Error enum values
  69. #
  70. class Error(Enum):
  71. Okay = 0
  72. Out_Of_Memory = 1
  73. Invalid_Pointer = 2
  74. Invalid_Argument = 3
  75. Unknown_Error = 4
  76. Max_Iterations_Reached = 5
  77. Buffer_Overflow = 6
  78. Integer_Overflow = 7
  79. Division_by_Zero = 8
  80. Math_Domain_Error = 9
  81. Unimplemented = 127
  82. #
  83. # Set up exported procedures
  84. #
  85. try:
  86. l = cdll.LoadLibrary(LIB_PATH)
  87. except:
  88. print("Couldn't find or load " + LIB_PATH + ".")
  89. exit(1)
  90. def load(export_name, args, res):
  91. export_name.argtypes = args
  92. export_name.restype = res
  93. return export_name
  94. #
  95. # Result values will be passed in a struct { res: cstring, err: Error }
  96. #
  97. class Res(Structure):
  98. _fields_ = [("res", c_char_p), ("err", c_uint64)]
  99. error_string = load(l.test_error_string, [c_byte], c_char_p)
  100. add = load(l.test_add, [c_char_p, c_char_p], Res)
  101. sub = load(l.test_sub, [c_char_p, c_char_p], Res)
  102. mul = load(l.test_mul, [c_char_p, c_char_p], Res)
  103. div = load(l.test_div, [c_char_p, c_char_p], Res)
  104. # Powers and such
  105. int_log = load(l.test_log, [c_char_p, c_longlong], Res)
  106. int_pow = load(l.test_pow, [c_char_p, c_longlong], Res)
  107. int_sqrt = load(l.test_sqrt, [c_char_p], Res)
  108. int_root_n = load(l.test_root_n, [c_char_p, c_longlong], Res)
  109. # Logical operations
  110. int_shl_digit = load(l.test_shl_digit, [c_char_p, c_longlong], Res)
  111. int_shr_digit = load(l.test_shr_digit, [c_char_p, c_longlong], Res)
  112. int_shl = load(l.test_shl, [c_char_p, c_longlong], Res)
  113. int_shr = load(l.test_shr, [c_char_p, c_longlong], Res)
  114. int_shr_signed = load(l.test_shr_signed, [c_char_p, c_longlong], Res)
  115. int_factorial = load(l.test_factorial, [c_uint64], Res)
  116. int_gcd = load(l.test_gcd, [c_char_p, c_char_p], Res)
  117. int_lcm = load(l.test_lcm, [c_char_p, c_char_p], Res)
  118. def test(test_name: "", res: Res, param=[], expected_error = Error.Okay, expected_result = "", radix=16):
  119. passed = True
  120. r = None
  121. err = Error(res.err)
  122. if err != expected_error:
  123. error_loc = res.res.decode('utf-8')
  124. error = "{}: {} in '{}'".format(test_name, err, error_loc)
  125. if len(param):
  126. error += " with params {}".format(param)
  127. print(error, flush=True)
  128. passed = False
  129. elif err == Error.Okay:
  130. r = None
  131. try:
  132. r = res.res.decode('utf-8')
  133. r = int(res.res, radix)
  134. except:
  135. pass
  136. if r != expected_result:
  137. error = "{}: Result was '{}', expected '{}'".format(test_name, r, expected_result)
  138. if len(param):
  139. error += " with params {}".format(param)
  140. print(error, flush=True)
  141. passed = False
  142. if EXIT_ON_FAIL and not passed: exit(res.err)
  143. return passed
  144. def arg_to_odin(a):
  145. if a >= 0:
  146. s = hex(a)[2:]
  147. else:
  148. s = '-' + hex(a)[3:]
  149. return s.encode('utf-8')
  150. def test_add(a = 0, b = 0, expected_error = Error.Okay):
  151. args = [arg_to_odin(a), arg_to_odin(b)]
  152. res = add(*args)
  153. expected_result = None
  154. if expected_error == Error.Okay:
  155. expected_result = a + b
  156. return test("test_add", res, [a, b], expected_error, expected_result)
  157. def test_sub(a = 0, b = 0, expected_error = Error.Okay):
  158. args = [arg_to_odin(a), arg_to_odin(b)]
  159. res = sub(*args)
  160. expected_result = None
  161. if expected_error == Error.Okay:
  162. expected_result = a - b
  163. return test("test_sub", res, [a, b], expected_error, expected_result)
  164. def test_mul(a = 0, b = 0, expected_error = Error.Okay):
  165. args = [arg_to_odin(a), arg_to_odin(b)]
  166. try:
  167. res = mul(*args)
  168. except OSError as e:
  169. print("{} while trying to multiply {} x {}.".format(e, a, b))
  170. if EXIT_ON_FAIL: exit(3)
  171. return False
  172. expected_result = None
  173. if expected_error == Error.Okay:
  174. expected_result = a * b
  175. return test("test_mul", res, [a, b], expected_error, expected_result)
  176. def test_div(a = 0, b = 0, expected_error = Error.Okay):
  177. args = [arg_to_odin(a), arg_to_odin(b)]
  178. res = div(*args)
  179. expected_result = None
  180. if expected_error == Error.Okay:
  181. #
  182. # We don't round the division results, so if one component is negative, we're off by one.
  183. #
  184. if a < 0 and b > 0:
  185. expected_result = int(-(abs(a) // b))
  186. elif b < 0 and a > 0:
  187. expected_result = int(-(a // abs((b))))
  188. else:
  189. expected_result = a // b if b != 0 else None
  190. return test("test_div", res, [a, b], expected_error, expected_result)
  191. def test_log(a = 0, base = 0, expected_error = Error.Okay):
  192. args = [arg_to_odin(a), base]
  193. res = int_log(*args)
  194. expected_result = None
  195. if expected_error == Error.Okay:
  196. expected_result = int(math.log(a, base))
  197. return test("test_log", res, [a, base], expected_error, expected_result)
  198. def test_pow(base = 0, power = 0, expected_error = Error.Okay):
  199. args = [arg_to_odin(base), power]
  200. res = int_pow(*args)
  201. expected_result = None
  202. if expected_error == Error.Okay:
  203. if power < 0:
  204. expected_result = 0
  205. else:
  206. # NOTE(Jeroen): Don't use `math.pow`, it's a floating point approximation.
  207. # Use built-in `pow` or `a**b` instead.
  208. expected_result = pow(base, power)
  209. return test("test_pow", res, [base, power], expected_error, expected_result)
  210. def test_sqrt(number = 0, expected_error = Error.Okay):
  211. args = [arg_to_odin(number)]
  212. res = int_sqrt(*args)
  213. expected_result = None
  214. if expected_error == Error.Okay:
  215. if number < 0:
  216. expected_result = 0
  217. else:
  218. expected_result = int(math.isqrt(number))
  219. return test("test_sqrt", res, [number], expected_error, expected_result)
  220. def root_n(number, root):
  221. u, s = number, number + 1
  222. while u < s:
  223. s = u
  224. t = (root-1) * s + number // pow(s, root - 1)
  225. u = t // root
  226. return s
  227. def test_root_n(number = 0, root = 0, expected_error = Error.Okay):
  228. args = [arg_to_odin(number), root]
  229. res = int_root_n(*args)
  230. expected_result = None
  231. if expected_error == Error.Okay:
  232. if number < 0:
  233. expected_result = 0
  234. else:
  235. expected_result = root_n(number, root)
  236. return test("test_root_n", res, [number, root], expected_error, expected_result)
  237. def test_shl_digit(a = 0, digits = 0, expected_error = Error.Okay):
  238. args = [arg_to_odin(a), digits]
  239. res = int_shl_digit(*args)
  240. expected_result = None
  241. if expected_error == Error.Okay:
  242. expected_result = a << (digits * 60)
  243. return test("test_shl_digit", res, [a, digits], expected_error, expected_result)
  244. def test_shr_digit(a = 0, digits = 0, expected_error = Error.Okay):
  245. args = [arg_to_odin(a), digits]
  246. res = int_shr_digit(*args)
  247. expected_result = None
  248. if expected_error == Error.Okay:
  249. if a < 0:
  250. # Don't pass negative numbers. We have a shr_signed.
  251. return False
  252. else:
  253. expected_result = a >> (digits * 60)
  254. return test("test_shr_digit", res, [a, digits], expected_error, expected_result)
  255. def test_shl(a = 0, bits = 0, expected_error = Error.Okay):
  256. args = [arg_to_odin(a), bits]
  257. res = int_shl(*args)
  258. expected_result = None
  259. if expected_error == Error.Okay:
  260. expected_result = a << bits
  261. return test("test_shl", res, [a, bits], expected_error, expected_result)
  262. def test_shr(a = 0, bits = 0, expected_error = Error.Okay):
  263. args = [arg_to_odin(a), bits]
  264. res = int_shr(*args)
  265. expected_result = None
  266. if expected_error == Error.Okay:
  267. if a < 0:
  268. # Don't pass negative numbers. We have a shr_signed.
  269. return False
  270. else:
  271. expected_result = a >> bits
  272. return test("test_shr", res, [a, bits], expected_error, expected_result)
  273. def test_shr_signed(a = 0, bits = 0, expected_error = Error.Okay):
  274. args = [arg_to_odin(a), bits]
  275. res = int_shr_signed(*args)
  276. expected_result = None
  277. if expected_error == Error.Okay:
  278. expected_result = a >> bits
  279. return test("test_shr_signed", res, [a, bits], expected_error, expected_result)
  280. def test_factorial(n = 0, expected_error = Error.Okay):
  281. args = [n]
  282. res = int_factorial(*args)
  283. expected_result = None
  284. if expected_error == Error.Okay:
  285. expected_result = math.factorial(n)
  286. return test("test_factorial", res, [n], expected_error, expected_result)
  287. def test_gcd(a = 0, b = 0, expected_error = Error.Okay):
  288. args = [arg_to_odin(a), arg_to_odin(b)]
  289. res = int_gcd(*args)
  290. expected_result = None
  291. if expected_error == Error.Okay:
  292. expected_result = math.gcd(a, b)
  293. return test("test_gcd", res, [a, b], expected_error, expected_result)
  294. def test_lcm(a = 0, b = 0, expected_error = Error.Okay):
  295. args = [arg_to_odin(a), arg_to_odin(b)]
  296. res = int_lcm(*args)
  297. expected_result = None
  298. if expected_error == Error.Okay:
  299. expected_result = math.lcm(a, b)
  300. return test("test_lcm", res, [a, b], expected_error, expected_result)
  301. # TODO(Jeroen): Make sure tests cover edge cases, fast paths, and so on.
  302. #
  303. # The last two arguments in tests are the expected error and expected result.
  304. #
  305. # The expected error defaults to None.
  306. # By default the Odin implementation will be tested against the Python one.
  307. # You can override that by supplying an expected result as the last argument instead.
  308. TESTS = {
  309. test_add: [
  310. [ 1234, 5432],
  311. ],
  312. test_sub: [
  313. [ 1234, 5432],
  314. ],
  315. test_mul: [
  316. [ 1234, 5432],
  317. [ 0xd3b4e926aaba3040e1c12b5ea553b5, 0x1a821e41257ed9281bee5bc7789ea7],
  318. ],
  319. test_div: [
  320. [ 54321, 12345],
  321. [ 55431, 0, Error.Division_by_Zero],
  322. [ 12980742146337069150589594264770969721, 4611686018427387904 ],
  323. ],
  324. test_log: [
  325. [ 3192, 1, Error.Invalid_Argument],
  326. [ -1234, 2, Error.Math_Domain_Error],
  327. [ 0, 2, Error.Math_Domain_Error],
  328. [ 1024, 2],
  329. ],
  330. test_pow: [
  331. [ 0, -1, Error.Math_Domain_Error ], # Math
  332. [ 0, 0 ], # 1
  333. [ 0, 2 ], # 0
  334. [ 42, -1,], # 0
  335. [ 42, 1 ], # 1
  336. [ 42, 0 ], # 42
  337. [ 42, 2 ], # 42*42
  338. ],
  339. test_sqrt: [
  340. [ -1, Error.Invalid_Argument, ],
  341. [ 42, Error.Okay, ],
  342. [ 12345678901234567890, Error.Okay, ],
  343. [ 1298074214633706907132624082305024, Error.Okay, ],
  344. ],
  345. test_root_n: [
  346. [ 1298074214633706907132624082305024, 2, Error.Okay, ],
  347. ],
  348. test_shl_digit: [
  349. [ 3192, 1 ],
  350. [ 1298074214633706907132624082305024, 2 ],
  351. [ 1024, 3 ],
  352. ],
  353. test_shr_digit: [
  354. [ 3680125442705055547392, 1 ],
  355. [ 1725436586697640946858688965569256363112777243042596638790631055949824, 2 ],
  356. [ 219504133884436710204395031992179571, 2 ],
  357. ],
  358. test_shl: [
  359. [ 3192, 1 ],
  360. [ 1298074214633706907132624082305024, 2 ],
  361. [ 1024, 3 ],
  362. ],
  363. test_shr: [
  364. [ 3680125442705055547392, 1 ],
  365. [ 1725436586697640946858688965569256363112777243042596638790631055949824, 2 ],
  366. [ 219504133884436710204395031992179571, 2 ],
  367. ],
  368. test_shr_signed: [
  369. [ -611105530635358368578155082258244262, 12 ],
  370. [ -149195686190273039203651143129455, 12 ],
  371. [ 611105530635358368578155082258244262, 12 ],
  372. [ 149195686190273039203651143129455, 12 ],
  373. ],
  374. test_factorial: [
  375. [ 12_345 ],
  376. ],
  377. test_gcd: [
  378. [ 23, 25, ],
  379. [ 125, 25, ],
  380. [ 125, 0, ],
  381. [ 0, 0, ],
  382. [ 0, 125,],
  383. ],
  384. test_lcm: [
  385. [ 23, 25,],
  386. [ 125, 25, ],
  387. [ 125, 0, ],
  388. [ 0, 0, ],
  389. [ 0, 125,],
  390. ],
  391. }
  392. total_passes = 0
  393. total_failures = 0
  394. #
  395. # test_shr_signed also tests shr, so we're not going to test shr randomly.
  396. #
  397. RANDOM_TESTS = [
  398. test_add, test_sub, test_mul, test_div,
  399. test_log, test_pow, test_sqrt, test_root_n,
  400. test_shl_digit, test_shr_digit, test_shl, test_shr_signed,
  401. test_gcd, test_lcm,
  402. ]
  403. SKIP_LARGE = [
  404. test_pow, test_root_n, # test_gcd,
  405. ]
  406. SKIP_LARGEST = []
  407. # Untimed warmup.
  408. for test_proc in TESTS:
  409. for t in TESTS[test_proc]:
  410. res = test_proc(*t)
  411. if __name__ == '__main__':
  412. print("---- math/big tests ----")
  413. print()
  414. for test_proc in TESTS:
  415. count_pass = 0
  416. count_fail = 0
  417. TIMINGS = {}
  418. for t in TESTS[test_proc]:
  419. start = time.perf_counter()
  420. res = test_proc(*t)
  421. diff = time.perf_counter() - start
  422. TOTAL_TIME += diff
  423. if test_proc not in TIMINGS:
  424. TIMINGS[test_proc] = diff
  425. else:
  426. TIMINGS[test_proc] += diff
  427. if res:
  428. count_pass += 1
  429. total_passes += 1
  430. else:
  431. count_fail += 1
  432. total_failures += 1
  433. print("{name}: {count_pass:,} passes and {count_fail:,} failures in {timing:.3f} ms.".format(name=test_proc.__name__, count_pass=count_pass, count_fail=count_fail, timing=TIMINGS[test_proc] * 1_000))
  434. for BITS, ITERATIONS in BITS_AND_ITERATIONS:
  435. print()
  436. print("---- math/big with two random {bits:,} bit numbers ----".format(bits=BITS))
  437. print()
  438. for test_proc in RANDOM_TESTS:
  439. if BITS > 1_200 and test_proc in SKIP_LARGE: continue
  440. if BITS > 4_096 and test_proc in SKIP_LARGEST: continue
  441. count_pass = 0
  442. count_fail = 0
  443. TIMINGS = {}
  444. UNTIL_ITERS = ITERATIONS
  445. if test_proc == test_root_n and BITS == 1_200:
  446. UNTIL_ITERS /= 10
  447. UNTIL_TIME = TOTAL_TIME + BITS / TIMED_BITS_PER_SECOND
  448. # We run each test for a second per 20k bits
  449. while we_iterate():
  450. a = randint(-(1 << BITS), 1 << BITS)
  451. b = randint(-(1 << BITS), 1 << BITS)
  452. if test_proc == test_div:
  453. # We've already tested division by zero above.
  454. bits = int(BITS * 0.6)
  455. b = randint(-(1 << bits), 1 << bits)
  456. if b == 0:
  457. b == 42
  458. elif test_proc == test_log:
  459. # We've already tested log's domain errors.
  460. a = randint(1, 1 << BITS)
  461. b = randint(2, 1 << 60)
  462. elif test_proc == test_pow:
  463. b = randint(1, 10)
  464. elif test_proc == test_sqrt:
  465. a = randint(1, 1 << BITS)
  466. b = Error.Okay
  467. elif test_proc == test_root_n:
  468. a = randint(1, 1 << BITS)
  469. b = randint(1, 10);
  470. elif test_proc == test_shl_digit:
  471. b = randint(0, 10);
  472. elif test_proc == test_shr_digit:
  473. a = abs(a)
  474. b = randint(0, 10);
  475. elif test_proc == test_shl:
  476. b = randint(0, min(BITS, 120));
  477. elif test_proc == test_shr_signed:
  478. b = randint(0, min(BITS, 120));
  479. else:
  480. b = randint(0, 1 << BITS)
  481. res = None
  482. start = time.perf_counter()
  483. res = test_proc(a, b)
  484. diff = time.perf_counter() - start
  485. TOTAL_TIME += diff
  486. if test_proc not in TIMINGS:
  487. TIMINGS[test_proc] = diff
  488. else:
  489. TIMINGS[test_proc] += diff
  490. if res:
  491. count_pass += 1; total_passes += 1
  492. else:
  493. count_fail += 1; total_failures += 1
  494. print("{name}: {count_pass:,} passes and {count_fail:,} failures in {timing:.3f} ms.".format(name=test_proc.__name__, count_pass=count_pass, count_fail=count_fail, timing=TIMINGS[test_proc] * 1_000))
  495. print()
  496. print("---- THE END ----")
  497. print()
  498. print("total: {count_pass:,} passes and {count_fail:,} failures in {timing:.3f} ms.".format(count_pass=total_passes, count_fail=total_failures, timing=TOTAL_TIME * 1_000))
  499. if total_failures:
  500. exit(1)