123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553 |
- package big
- /*
- Copyright 2021 Jeroen van Rijn <[email protected]>.
- Made available under Odin's BSD-2 license.
- An arbitrary precision mathematics implementation in Odin.
- For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
- The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
- This file contains basic arithmetic operations like `add`, `sub`, `mul`, `div`, ...
- */
- import "core:mem"
- /*
- ===========================
- User-level routines
- ===========================
- */
- /*
- High-level addition. Handles sign.
- */
- int_add :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
- if dest == nil || a == nil || b == nil { return .Invalid_Pointer; }
- if err = clear_if_uninitialized(dest, a, b); err != nil { return err; }
- /*
- All parameters have been initialized.
- */
- return #force_inline internal_int_add_signed(dest, a, b, allocator);
- }
- /*
- Adds the unsigned `DIGIT` immediate to an `Int`,
- such that the `DIGIT` doesn't have to be turned into an `Int` first.
- dest = a + digit;
- */
- int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {
- if dest == nil || a == nil { return .Invalid_Pointer; }
- if err = clear_if_uninitialized(a); err != nil { return err; }
- /*
- Grow destination as required.
- */
- if err = grow(dest, a.used + 1, false, allocator); err != nil { return err; }
- /*
- All parameters have been initialized.
- */
- return #force_inline internal_int_add_digit(dest, a, digit);
- }
- /*
- High-level subtraction, dest = number - decrease. Handles signs.
- */
- int_sub :: proc(dest, number, decrease: ^Int, allocator := context.allocator) -> (err: Error) {
- if dest == nil || number == nil || decrease == nil { return .Invalid_Pointer; }
- if err = clear_if_uninitialized(dest, number, decrease); err != nil { return err; }
- /*
- All parameters have been initialized.
- */
- return #force_inline internal_int_sub_signed(dest, number, decrease, allocator);
- }
- /*
- Adds the unsigned `DIGIT` immediate to an `Int`,
- such that the `DIGIT` doesn't have to be turned into an `Int` first.
- dest = a - digit;
- */
- int_sub_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {
- if dest == nil || a == nil { return .Invalid_Pointer; }
- if err = clear_if_uninitialized(a); err != nil { return err; }
- /*
- Grow destination as required.
- */
- if err = grow(dest, a.used + 1, false, allocator); err != nil { return err; }
- /*
- All parameters have been initialized.
- */
- return #force_inline internal_int_sub_digit(dest, a, digit);
- }
- /*
- dest = src / 2
- dest = src >> 1
- */
- int_halve :: proc(dest, src: ^Int) -> (err: Error) {
- if dest == nil || src == nil { return .Invalid_Pointer; }
- if err = clear_if_uninitialized(dest, src); err != nil { return err; }
- /*
- Grow destination as required.
- */
- if dest != src { if err = grow(dest, src.used + 1); err != nil { return err; } }
- return #force_inline internal_int_shr1(dest, src);
- }
- halve :: proc { int_halve, };
- shr1 :: halve;
- /*
- dest = src * 2
- dest = src << 1
- */
- int_double :: proc(dest, src: ^Int) -> (err: Error) {
- if dest == nil || src == nil { return .Invalid_Pointer; }
- if err = clear_if_uninitialized(dest, src); err != nil { return err; }
- /*
- Grow destination as required.
- */
- if dest != src { if err = grow(dest, src.used + 1); err != nil { return err; } }
- return #force_inline internal_int_shl1(dest, src);
- }
- double :: proc { int_double, };
- shl1 :: double;
- /*
- Multiply by a DIGIT.
- */
- int_mul_digit :: proc(dest, src: ^Int, multiplier: DIGIT, allocator := context.allocator) -> (err: Error) {
- if dest == nil || src == nil { return .Invalid_Pointer; }
- if err = clear_if_uninitialized(src, dest); err != nil { return err; }
- return #force_inline internal_int_mul_digit(dest, src, multiplier, allocator);
- }
- /*
- High level multiplication (handles sign).
- */
- int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.allocator) -> (err: Error) {
- if dest == nil || src == nil || multiplier == nil { return .Invalid_Pointer; }
- if err = clear_if_uninitialized(dest, src, multiplier); err != nil { return err; }
- return #force_inline internal_int_mul(dest, src, multiplier, allocator);
- }
- mul :: proc { int_mul, int_mul_digit, };
- sqr :: proc(dest, src: ^Int) -> (err: Error) { return mul(dest, src, src); }
- /*
- divmod.
- Both the quotient and remainder are optional and may be passed a nil.
- */
- int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int) -> (err: Error) {
- /*
- Early out if neither of the results is wanted.
- */
- if quotient == nil && remainder == nil { return nil; }
- if err = clear_if_uninitialized(numerator, denominator); err != nil { return err; }
- return #force_inline internal_divmod(quotient, remainder, numerator, denominator);
- }
- int_divmod_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT) -> (remainder: DIGIT, err: Error) {
- if quotient == nil { return 0, .Invalid_Pointer; };
- if err = clear_if_uninitialized(numerator); err != nil { return 0, err; }
- return #force_inline internal_divmod(quotient, numerator, denominator);
- }
- divmod :: proc{ int_divmod, int_divmod_digit, };
- int_div :: proc(quotient, numerator, denominator: ^Int) -> (err: Error) {
- if quotient == nil { return .Invalid_Pointer; };
- if err = clear_if_uninitialized(numerator, denominator); err != nil { return err; }
- return #force_inline internal_divmod(quotient, nil, numerator, denominator);
- }
- int_div_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT) -> (err: Error) {
- if quotient == nil { return .Invalid_Pointer; };
- if err = clear_if_uninitialized(numerator); err != nil { return err; }
- remainder: DIGIT;
- remainder, err = #force_inline internal_divmod(quotient, numerator, denominator);
- return err;
- }
- div :: proc { int_div, int_div_digit, };
- /*
- remainder = numerator % denominator.
- 0 <= remainder < denominator if denominator > 0
- denominator < remainder <= 0 if denominator < 0
- */
- int_mod :: proc(remainder, numerator, denominator: ^Int) -> (err: Error) {
- if remainder == nil { return .Invalid_Pointer; };
- if err = clear_if_uninitialized(numerator, denominator); err != nil { return err; }
- return #force_inline internal_int_mod(remainder, numerator, denominator);
- }
- int_mod_digit :: proc(numerator: ^Int, denominator: DIGIT) -> (remainder: DIGIT, err: Error) {
- return #force_inline internal_divmod(nil, numerator, denominator);
- }
- mod :: proc { int_mod, int_mod_digit, };
- /*
- remainder = (number + addend) % modulus.
- */
- int_addmod :: proc(remainder, number, addend, modulus: ^Int) -> (err: Error) {
- if remainder == nil { return .Invalid_Pointer; };
- if err = clear_if_uninitialized(number, addend, modulus); err != nil { return err; }
- return #force_inline internal_addmod(remainder, number, addend, modulus);
- }
- addmod :: proc { int_addmod, };
- /*
- remainder = (number - decrease) % modulus.
- */
- int_submod :: proc(remainder, number, decrease, modulus: ^Int) -> (err: Error) {
- if remainder == nil { return .Invalid_Pointer; };
- if err = clear_if_uninitialized(number, decrease, modulus); err != nil { return err; }
- return #force_inline internal_submod(remainder, number, decrease, modulus);
- }
- submod :: proc { int_submod, };
- /*
- remainder = (number * multiplicand) % modulus.
- */
- int_mulmod :: proc(remainder, number, multiplicand, modulus: ^Int) -> (err: Error) {
- if remainder == nil { return .Invalid_Pointer; };
- if err = clear_if_uninitialized(number, multiplicand, modulus); err != nil { return err; }
- return #force_inline internal_mulmod(remainder, number, multiplicand, modulus);
- }
- mulmod :: proc { int_mulmod, };
- /*
- remainder = (number * number) % modulus.
- */
- int_sqrmod :: proc(remainder, number, modulus: ^Int) -> (err: Error) {
- if remainder == nil { return .Invalid_Pointer; };
- if err = clear_if_uninitialized(number, modulus); err != nil { return err; }
- return #force_inline internal_sqrmod(remainder, number, modulus);
- }
- sqrmod :: proc { int_sqrmod, };
- int_factorial :: proc(res: ^Int, n: int) -> (err: Error) {
- if n < 0 || n > _FACTORIAL_MAX_N { return .Invalid_Argument; }
- if res == nil { return .Invalid_Pointer; }
- return #force_inline internal_int_factorial(res, n);
- }
- factorial :: proc { int_factorial, };
- /*
- Number of ways to choose `k` items from `n` items.
- Also known as the binomial coefficient.
- TODO: Speed up.
- Could be done faster by reusing code from factorial and reusing the common "prefix" results for n!, k! and n-k!
- We know that n >= k, otherwise we early out with res = 0.
- So:
- n-k, keep result
- n, start from previous result
- k, start from previous result
- */
- int_choose_digit :: proc(res: ^Int, n, k: int) -> (err: Error) {
- if res == nil { return .Invalid_Pointer; }
- if n < 0 || n > _FACTORIAL_MAX_N { return .Invalid_Argument; }
- if k > n { return zero(res); }
- /*
- res = n! / (k! * (n - k)!)
- */
- n_fac, k_fac, n_minus_k_fac := &Int{}, &Int{}, &Int{};
- defer destroy(n_fac, k_fac, n_minus_k_fac);
- if err = #force_inline internal_int_factorial(n_minus_k_fac, n - k); err != nil { return err; }
- if err = #force_inline internal_int_factorial(k_fac, k); err != nil { return err; }
- if err = #force_inline internal_mul(k_fac, k_fac, n_minus_k_fac); err != nil { return err; }
- if err = #force_inline internal_int_factorial(n_fac, n); err != nil { return err; }
- if err = #force_inline internal_div(res, n_fac, k_fac); err != nil { return err; }
- return err;
- }
- choose :: proc { int_choose_digit, };
- /*
- Function computing both GCD and (if target isn't `nil`) also LCM.
- */
- int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int) -> (err: Error) {
- if res_gcd == nil && res_lcm == nil { return nil; }
- if err = clear_if_uninitialized(res_gcd, res_lcm, a, b); err != nil { return err; }
- az, _ := is_zero(a); bz, _ := is_zero(b);
- if az && bz {
- if res_gcd != nil {
- if err = zero(res_gcd); err != nil { return err; }
- }
- if res_lcm != nil {
- if err = zero(res_lcm); err != nil { return err; }
- }
- return nil;
- }
- else if az {
- if res_gcd != nil {
- if err = abs(res_gcd, b); err != nil { return err; }
- }
- if res_lcm != nil {
- if err = zero(res_lcm); err != nil { return err; }
- }
- return nil;
- }
- else if bz {
- if res_gcd != nil {
- if err = abs(res_gcd, a); err != nil { return err; }
- }
- if res_lcm != nil {
- if err = zero(res_lcm); err != nil { return err; }
- }
- return nil;
- }
- return #force_inline _int_gcd_lcm(res_gcd, res_lcm, a, b);
- }
- gcd_lcm :: proc { int_gcd_lcm, };
- /*
- Greatest Common Divisor.
- */
- int_gcd :: proc(res, a, b: ^Int) -> (err: Error) {
- return #force_inline int_gcd_lcm(res, nil, a, b);
- }
- gcd :: proc { int_gcd, };
- /*
- Least Common Multiple.
- */
- int_lcm :: proc(res, a, b: ^Int) -> (err: Error) {
- return #force_inline int_gcd_lcm(nil, res, a, b);
- }
- lcm :: proc { int_lcm, };
- /*
- Internal function computing both GCD using the binary method,
- and, if target isn't `nil`, also LCM.
- Expects the arguments to have been initialized.
- */
- _int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int) -> (err: Error) {
- /*
- If both `a` and `b` are zero, return zero.
- If either `a` or `b`, return the other one.
- The `gcd` and `lcm` wrappers have already done this test,
- but `gcd_lcm` wouldn't have, so we still need to perform it.
- If neither result is wanted, we have nothing to do.
- */
- if res_gcd == nil && res_lcm == nil { return nil; }
- /*
- We need a temporary because `res_gcd` is allowed to be `nil`.
- */
- az, _ := is_zero(a); bz, _ := is_zero(b);
- if az && bz {
- /*
- GCD(0, 0) and LCM(0, 0) are both 0.
- */
- if res_gcd != nil {
- if err = zero(res_gcd); err != nil { return err; }
- }
- if res_lcm != nil {
- if err = zero(res_lcm); err != nil { return err; }
- }
- return nil;
- } else if az {
- /*
- We can early out with GCD = B and LCM = 0
- */
- if res_gcd != nil {
- if err = abs(res_gcd, b); err != nil { return err; }
- }
- if res_lcm != nil {
- if err = zero(res_lcm); err != nil { return err; }
- }
- return nil;
- } else if bz {
- /*
- We can early out with GCD = A and LCM = 0
- */
- if res_gcd != nil {
- if err = abs(res_gcd, a); err != nil { return err; }
- }
- if res_lcm != nil {
- if err = zero(res_lcm); err != nil { return err; }
- }
- return nil;
- }
- temp_gcd_res := &Int{};
- defer destroy(temp_gcd_res);
- /*
- If neither `a` or `b` was zero, we need to compute `gcd`.
- Get copies of `a` and `b` we can modify.
- */
- u, v := &Int{}, &Int{};
- defer destroy(u, v);
- if err = copy(u, a); err != nil { return err; }
- if err = copy(v, b); err != nil { return err; }
- /*
- Must be positive for the remainder of the algorithm.
- */
- u.sign = .Zero_or_Positive; v.sign = .Zero_or_Positive;
- /*
- B1. Find the common power of two for `u` and `v`.
- */
- u_lsb, _ := count_lsb(u);
- v_lsb, _ := count_lsb(v);
- k := min(u_lsb, v_lsb);
- if k > 0 {
- /*
- Divide the power of two out.
- */
- if err = shr(u, u, k); err != nil { return err; }
- if err = shr(v, v, k); err != nil { return err; }
- }
- /*
- Divide any remaining factors of two out.
- */
- if u_lsb != k {
- if err = shr(u, u, u_lsb - k); err != nil { return err; }
- }
- if v_lsb != k {
- if err = shr(v, v, v_lsb - k); err != nil { return err; }
- }
- for v.used != 0 {
- /*
- Make sure `v` is the largest.
- */
- if c, _ := cmp_mag(u, v); c == 1 {
- /*
- Swap `u` and `v` to make sure `v` is >= `u`.
- */
- swap(u, v);
- }
- /*
- Subtract smallest from largest.
- */
- if err = sub(v, v, u); err != nil { return err; }
- /*
- Divide out all factors of two.
- */
- b, _ := count_lsb(v);
- if err = shr(v, v, b); err != nil { return err; }
- }
- /*
- Multiply by 2**k which we divided out at the beginning.
- */
- if err = shl(temp_gcd_res, u, k); err != nil { return err; }
- temp_gcd_res.sign = .Zero_or_Positive;
- /*
- We've computed `gcd`, either the long way, or because one of the inputs was zero.
- If we don't want `lcm`, we're done.
- */
- if res_lcm == nil {
- swap(temp_gcd_res, res_gcd);
- return nil;
- }
- /*
- Computes least common multiple as `|a*b|/gcd(a,b)`
- Divide the smallest by the GCD.
- */
- if c, _ := cmp_mag(a, b); c == -1 {
- /*
- Store quotient in `t2` such that `t2 * b` is the LCM.
- */
- if err = div(res_lcm, a, temp_gcd_res); err != nil { return err; }
- err = mul(res_lcm, res_lcm, b);
- } else {
- /*
- Store quotient in `t2` such that `t2 * a` is the LCM.
- */
- if err = div(res_lcm, a, temp_gcd_res); err != nil { return err; }
- err = mul(res_lcm, res_lcm, b);
- }
- if res_gcd != nil {
- swap(temp_gcd_res, res_gcd);
- }
- /*
- Fix the sign to positive and return.
- */
- res_lcm.sign = .Zero_or_Positive;
- return err;
- }
- /*
- remainder = numerator % (1 << bits)
- */
- int_mod_bits :: proc(remainder, numerator: ^Int, bits: int) -> (err: Error) {
- if err = clear_if_uninitialized(remainder); err != nil { return err; }
- if err = clear_if_uninitialized(numerator); err != nil { return err; }
- if bits < 0 { return .Invalid_Argument; }
- if bits == 0 { return zero(remainder); }
- /*
- If the modulus is larger than the value, return the value.
- */
- err = copy(remainder, numerator);
- if bits >= (numerator.used * _DIGIT_BITS) || err != nil {
- return;
- }
- /*
- Zero digits above the last digit of the modulus.
- */
- zero_count := (bits / _DIGIT_BITS);
- zero_count += 0 if (bits % _DIGIT_BITS == 0) else 1;
- /*
- Zero remainder. Special case, can't use `zero_unused`.
- */
- if zero_count > 0 {
- mem.zero_slice(remainder.digit[zero_count:]);
- }
- /*
- Clear the digit that is not completely outside/inside the modulus.
- */
- remainder.digit[bits / _DIGIT_BITS] &= DIGIT(1 << DIGIT(bits % _DIGIT_BITS)) - DIGIT(1);
- return clamp(remainder);
- }
- mod_bits :: proc { int_mod_bits, };
|