alloc.odin 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. package mem
  2. import "core:runtime"
  3. // NOTE(bill, 2019-12-31): These are defined in `package runtime` as they are used in the `context`. This is to prevent an import definition cycle.
  4. Allocator_Mode :: runtime.Allocator_Mode;
  5. /*
  6. Allocator_Mode :: enum byte {
  7. Alloc,
  8. Free,
  9. Free_All,
  10. Resize,
  11. Query_Features,
  12. }
  13. */
  14. Allocator_Mode_Set :: runtime.Allocator_Mode_Set;
  15. /*
  16. Allocator_Mode_Set :: distinct bit_set[Allocator_Mode];
  17. */
  18. Allocator_Query_Info :: runtime.Allocator_Query_Info;
  19. /*
  20. Allocator_Query_Info :: struct {
  21. pointer: Maybe(rawptr),
  22. size: Maybe(int),
  23. alignment: Maybe(int),
  24. }
  25. */
  26. Allocator_Error :: runtime.Allocator_Error;
  27. /*
  28. Allocator_Error :: enum byte {
  29. None = 0,
  30. Out_Of_Memory = 1,
  31. Invalid_Pointer = 2,
  32. Invalid_Argument = 3,
  33. }
  34. */
  35. Allocator_Proc :: runtime.Allocator_Proc;
  36. /*
  37. Allocator_Proc :: #type proc(allocator_data: rawptr, mode: Allocator_Mode,
  38. size, alignment: int,
  39. old_memory: rawptr, old_size: int, location: Source_Code_Location = #caller_location) -> ([]byte, Allocator_Error);
  40. */
  41. Allocator :: runtime.Allocator;
  42. /*
  43. Allocator :: struct {
  44. procedure: Allocator_Proc,
  45. data: rawptr,
  46. }
  47. */
  48. DEFAULT_ALIGNMENT :: 2*align_of(rawptr);
  49. alloc :: proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> rawptr {
  50. if size == 0 {
  51. return nil;
  52. }
  53. if allocator.procedure == nil {
  54. return nil;
  55. }
  56. data, err := allocator.procedure(allocator.data, Allocator_Mode.Alloc, size, alignment, nil, 0, loc);
  57. _ = err;
  58. return raw_data(data);
  59. }
  60. alloc_bytes :: proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) {
  61. if size == 0 {
  62. return nil, nil;
  63. }
  64. if allocator.procedure == nil {
  65. return nil, nil;
  66. }
  67. return allocator.procedure(allocator.data, Allocator_Mode.Alloc, size, alignment, nil, 0, loc);
  68. }
  69. free :: proc(ptr: rawptr, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
  70. if ptr == nil {
  71. return nil;
  72. }
  73. if allocator.procedure == nil {
  74. return nil;
  75. }
  76. _, err := allocator.procedure(allocator.data, Allocator_Mode.Free, 0, 0, ptr, 0, loc);
  77. return err;
  78. }
  79. free_bytes :: proc(bytes: []byte, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
  80. if bytes == nil {
  81. return nil;
  82. }
  83. if allocator.procedure == nil {
  84. return nil;
  85. }
  86. _, err := allocator.procedure(allocator.data, Allocator_Mode.Free, 0, 0, raw_data(bytes), len(bytes), loc);
  87. return err;
  88. }
  89. free_all :: proc(allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
  90. if allocator.procedure != nil {
  91. _, err := allocator.procedure(allocator.data, Allocator_Mode.Free_All, 0, 0, nil, 0, loc);
  92. return err;
  93. }
  94. return nil;
  95. }
  96. resize :: proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> rawptr {
  97. if allocator.procedure == nil {
  98. return nil;
  99. }
  100. if new_size == 0 {
  101. if ptr != nil {
  102. allocator.procedure(allocator.data, Allocator_Mode.Free, 0, 0, ptr, old_size, loc);
  103. }
  104. return nil;
  105. } else if ptr == nil {
  106. _, err := allocator.procedure(allocator.data, Allocator_Mode.Alloc, new_size, alignment, nil, 0, loc);
  107. _ = err;
  108. return nil;
  109. }
  110. data, err := allocator.procedure(allocator.data, Allocator_Mode.Resize, new_size, alignment, ptr, old_size, loc);
  111. _ = err;
  112. return raw_data(data);
  113. }
  114. resize_bytes :: proc(old_data: []byte, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) {
  115. if allocator.procedure == nil {
  116. return nil, nil;
  117. }
  118. ptr := raw_data(old_data);
  119. old_size := len(old_data);
  120. if new_size == 0 {
  121. if ptr != nil {
  122. _, err := allocator.procedure(allocator.data, Allocator_Mode.Free, 0, 0, ptr, old_size, loc);
  123. return nil, err;
  124. }
  125. return nil, nil;
  126. } else if ptr == nil {
  127. return allocator.procedure(allocator.data, Allocator_Mode.Alloc, new_size, alignment, nil, 0, loc);
  128. }
  129. return allocator.procedure(allocator.data, Allocator_Mode.Resize, new_size, alignment, ptr, old_size, loc);
  130. }
  131. query_features :: proc(allocator: Allocator, loc := #caller_location) -> (set: Allocator_Mode_Set) {
  132. if allocator.procedure != nil {
  133. allocator.procedure(allocator.data, Allocator_Mode.Query_Features, 0, 0, &set, 0, loc);
  134. return set;
  135. }
  136. return nil;
  137. }
  138. query_info :: proc(pointer: rawptr, allocator: Allocator, loc := #caller_location) -> (props: Allocator_Query_Info) {
  139. props.pointer = pointer;
  140. if allocator.procedure != nil {
  141. allocator.procedure(allocator.data, Allocator_Mode.Query_Info, 0, 0, &props, 0, loc);
  142. }
  143. return;
  144. }
  145. delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) {
  146. free(raw_data(str), allocator, loc);
  147. }
  148. delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) {
  149. free((^byte)(str), allocator, loc);
  150. }
  151. delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) {
  152. free(raw_data(array), array.allocator, loc);
  153. }
  154. delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) {
  155. free(raw_data(array), allocator, loc);
  156. }
  157. delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) {
  158. raw := transmute(Raw_Map)m;
  159. delete_slice(raw.hashes, raw.entries.allocator, loc);
  160. free(raw.entries.data, raw.entries.allocator, loc);
  161. }
  162. delete :: proc{
  163. delete_string,
  164. delete_cstring,
  165. delete_dynamic_array,
  166. delete_slice,
  167. delete_map,
  168. };
  169. new :: proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> ^T {
  170. return new_aligned(T, align_of(T), allocator, loc);
  171. }
  172. new_aligned :: proc($T: typeid, alignment: int, allocator := context.allocator, loc := #caller_location) -> ^T {
  173. ptr := (^T)(alloc(size_of(T), alignment, allocator, loc));
  174. if ptr != nil { ptr^ = T{}; }
  175. return ptr;
  176. }
  177. new_clone :: proc(data: $T, allocator := context.allocator, loc := #caller_location) -> ^T {
  178. ptr := (^T)(alloc(size_of(T), align_of(T), allocator, loc));
  179. if ptr != nil { ptr^ = data; }
  180. return ptr;
  181. }
  182. make_slice :: proc($T: typeid/[]$E, auto_cast len: int, allocator := context.allocator, loc := #caller_location) -> T {
  183. return make_aligned(T, len, align_of(E), allocator, loc);
  184. }
  185. make_aligned :: proc($T: typeid/[]$E, auto_cast len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> T {
  186. runtime.make_slice_error_loc(loc, len);
  187. data := alloc(size_of(E)*len, alignment, allocator, loc);
  188. if data == nil && size_of(E) != 0 {
  189. return nil;
  190. }
  191. zero(data, size_of(E)*len);
  192. s := Raw_Slice{data, len};
  193. return transmute(T)s;
  194. }
  195. make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> T {
  196. return make_dynamic_array_len_cap(T, 0, 16, allocator, loc);
  197. }
  198. make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, auto_cast len: int, allocator := context.allocator, loc := #caller_location) -> T {
  199. return make_dynamic_array_len_cap(T, len, len, allocator, loc);
  200. }
  201. make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, auto_cast len: int, auto_cast cap: int, allocator := context.allocator, loc := #caller_location) -> T {
  202. runtime.make_dynamic_array_error_loc(loc, len, cap);
  203. data := alloc(size_of(E)*cap, align_of(E), allocator, loc);
  204. s := Raw_Dynamic_Array{data, len, cap, allocator};
  205. if data == nil && size_of(E) != 0 {
  206. s.len, s.cap = 0, 0;
  207. }
  208. zero(data, size_of(E)*len);
  209. return transmute(T)s;
  210. }
  211. make_map :: proc($T: typeid/map[$K]$E, auto_cast cap: int = 16, allocator := context.allocator, loc := #caller_location) -> T {
  212. runtime.make_map_expr_error_loc(loc, cap);
  213. context.allocator = allocator;
  214. m: T;
  215. reserve_map(&m, cap);
  216. return m;
  217. }
  218. make :: proc{
  219. make_slice,
  220. make_dynamic_array,
  221. make_dynamic_array_len,
  222. make_dynamic_array_len_cap,
  223. make_map,
  224. };
  225. default_resize_align :: proc(old_memory: rawptr, old_size, new_size, alignment: int, allocator := context.allocator, loc := #caller_location) -> rawptr {
  226. if old_memory == nil {
  227. return alloc(new_size, alignment, allocator, loc);
  228. }
  229. if new_size == 0 {
  230. free(old_memory, allocator, loc);
  231. return nil;
  232. }
  233. if new_size == old_size {
  234. return old_memory;
  235. }
  236. new_memory := alloc(new_size, alignment, allocator, loc);
  237. if new_memory == nil {
  238. return nil;
  239. }
  240. copy(new_memory, old_memory, min(old_size, new_size));
  241. free(old_memory, allocator, loc);
  242. return new_memory;
  243. }
  244. default_resize_bytes_align :: proc(old_data: []byte, new_size, alignment: int, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) {
  245. old_memory := raw_data(old_data);
  246. old_size := len(old_data);
  247. if old_memory == nil {
  248. return alloc_bytes(new_size, alignment, allocator, loc);
  249. }
  250. if new_size == 0 {
  251. err := free_bytes(old_data, allocator, loc);
  252. return nil, err;
  253. }
  254. if new_size == old_size {
  255. return old_data, .None;
  256. }
  257. new_memory, err := alloc_bytes(new_size, alignment, allocator, loc);
  258. if new_memory == nil || err != nil {
  259. return nil, err;
  260. }
  261. runtime.copy(new_memory, old_data);
  262. free_bytes(old_data, allocator, loc);
  263. return new_memory, err;
  264. }