internal.odin 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695
  1. package runtime
  2. import "intrinsics"
  3. bswap_16 :: proc "none" (x: u16) -> u16 {
  4. return x>>8 | x<<8;
  5. }
  6. bswap_32 :: proc "none" (x: u32) -> u32 {
  7. return x>>24 | (x>>8)&0xff00 | (x<<8)&0xff0000 | x<<24;
  8. }
  9. bswap_64 :: proc "none" (x: u64) -> u64 {
  10. z := x;
  11. z = (z & 0x00000000ffffffff) << 32 | (z & 0xffffffff00000000) >> 32;
  12. z = (z & 0x0000ffff0000ffff) << 16 | (z & 0xffff0000ffff0000) >> 16;
  13. z = (z & 0x00ff00ff00ff00ff) << 8 | (z & 0xff00ff00ff00ff00) >> 8;
  14. return z;
  15. }
  16. bswap_128 :: proc "none" (x: u128) -> u128 {
  17. z := transmute([4]u32)x;
  18. z[0] = bswap_32(z[3]);
  19. z[1] = bswap_32(z[2]);
  20. z[2] = bswap_32(z[1]);
  21. z[3] = bswap_32(z[0]);
  22. return transmute(u128)z;
  23. }
  24. bswap_f16 :: proc "none" (f: f16) -> f16 {
  25. x := transmute(u16)f;
  26. z := bswap_16(x);
  27. return transmute(f16)z;
  28. }
  29. bswap_f32 :: proc "none" (f: f32) -> f32 {
  30. x := transmute(u32)f;
  31. z := bswap_32(x);
  32. return transmute(f32)z;
  33. }
  34. bswap_f64 :: proc "none" (f: f64) -> f64 {
  35. x := transmute(u64)f;
  36. z := bswap_64(x);
  37. return transmute(f64)z;
  38. }
  39. ptr_offset :: #force_inline proc "contextless" (ptr: $P/^$T, n: int) -> P {
  40. new := int(uintptr(ptr)) + size_of(T)*n;
  41. return P(uintptr(new));
  42. }
  43. is_power_of_two_int :: #force_inline proc(x: int) -> bool {
  44. if x <= 0 {
  45. return false;
  46. }
  47. return (x & (x-1)) == 0;
  48. }
  49. align_forward_int :: #force_inline proc(ptr, align: int) -> int {
  50. assert(is_power_of_two_int(align));
  51. p := ptr;
  52. modulo := p & (align-1);
  53. if modulo != 0 {
  54. p += align - modulo;
  55. }
  56. return p;
  57. }
  58. is_power_of_two_uintptr :: #force_inline proc(x: uintptr) -> bool {
  59. if x <= 0 {
  60. return false;
  61. }
  62. return (x & (x-1)) == 0;
  63. }
  64. align_forward_uintptr :: #force_inline proc(ptr, align: uintptr) -> uintptr {
  65. assert(is_power_of_two_uintptr(align));
  66. p := ptr;
  67. modulo := p & (align-1);
  68. if modulo != 0 {
  69. p += align - modulo;
  70. }
  71. return p;
  72. }
  73. mem_zero :: proc "contextless" (data: rawptr, len: int) -> rawptr {
  74. if data == nil {
  75. return nil;
  76. }
  77. if len < 0 {
  78. return data;
  79. }
  80. memset(data, 0, len);
  81. return data;
  82. }
  83. mem_copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
  84. if src == nil {
  85. return dst;
  86. }
  87. // NOTE(bill): This _must_ be implemented like C's memmove
  88. foreign _ {
  89. when size_of(rawptr) == 8 {
  90. @(link_name="llvm.memmove.p0i8.p0i8.i64")
  91. llvm_memmove :: proc "none" (dst, src: rawptr, len: int, is_volatile: bool = false) ---;
  92. } else {
  93. @(link_name="llvm.memmove.p0i8.p0i8.i32")
  94. llvm_memmove :: proc "none" (dst, src: rawptr, len: int, is_volatile: bool = false) ---;
  95. }
  96. }
  97. llvm_memmove(dst, src, len);
  98. return dst;
  99. }
  100. mem_copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
  101. if src == nil {
  102. return dst;
  103. }
  104. // NOTE(bill): This _must_ be implemented like C's memcpy
  105. foreign _ {
  106. when size_of(rawptr) == 8 {
  107. @(link_name="llvm.memcpy.p0i8.p0i8.i64")
  108. llvm_memcpy :: proc "none" (dst, src: rawptr, len: int, is_volatile: bool = false) ---;
  109. } else {
  110. @(link_name="llvm.memcpy.p0i8.p0i8.i32")
  111. llvm_memcpy :: proc "none" (dst, src: rawptr, len: int, is_volatile: bool = false) ---;
  112. }
  113. }
  114. llvm_memcpy(dst, src, len);
  115. return dst;
  116. }
  117. DEFAULT_ALIGNMENT :: 2*align_of(rawptr);
  118. mem_alloc_bytes :: #force_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) {
  119. if size == 0 {
  120. return nil, nil;
  121. }
  122. if allocator.procedure == nil {
  123. return nil, nil;
  124. }
  125. return allocator.procedure(allocator.data, .Alloc, size, alignment, nil, 0, loc);
  126. }
  127. mem_alloc :: #force_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> (rawptr, Allocator_Error) {
  128. if size == 0 {
  129. return nil, nil;
  130. }
  131. if allocator.procedure == nil {
  132. return nil, nil;
  133. }
  134. data, err := allocator.procedure(allocator.data, .Alloc, size, alignment, nil, 0, loc);
  135. return raw_data(data), err;
  136. }
  137. mem_free :: #force_inline proc(ptr: rawptr, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
  138. if ptr == nil {
  139. return .None;
  140. }
  141. if allocator.procedure == nil {
  142. return .None;
  143. }
  144. _, err := allocator.procedure(allocator.data, .Free, 0, 0, ptr, 0, loc);
  145. return err;
  146. }
  147. mem_free_all :: #force_inline proc(allocator := context.allocator, loc := #caller_location) -> (err: Allocator_Error) {
  148. if allocator.procedure != nil {
  149. _, err = allocator.procedure(allocator.data, .Free_All, 0, 0, nil, 0, loc);
  150. }
  151. return;
  152. }
  153. mem_resize :: #force_inline proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> (new_ptr: rawptr, err: Allocator_Error) {
  154. new_data: []byte;
  155. switch {
  156. case allocator.procedure == nil:
  157. return;
  158. case new_size == 0:
  159. new_data, err = allocator.procedure(allocator.data, .Free, 0, 0, ptr, 0, loc);
  160. case ptr == nil:
  161. new_data, err = allocator.procedure(allocator.data, .Alloc, new_size, alignment, nil, 0, loc);
  162. case:
  163. new_data, err = allocator.procedure(allocator.data, .Resize, new_size, alignment, ptr, old_size, loc);
  164. }
  165. new_ptr = raw_data(new_data);
  166. return;
  167. }
  168. memory_equal :: proc "contextless" (a, b: rawptr, n: int) -> bool {
  169. return memory_compare(a, b, n) == 0;
  170. }
  171. memory_compare :: proc "contextless" (a, b: rawptr, n: int) -> int #no_bounds_check {
  172. switch {
  173. case a == b: return 0;
  174. case a == nil: return -1;
  175. case b == nil: return +1;
  176. }
  177. x := uintptr(a);
  178. y := uintptr(b);
  179. n := uintptr(n);
  180. SU :: size_of(uintptr);
  181. fast := n/SU + 1;
  182. offset := (fast-1)*SU;
  183. curr_block := uintptr(0);
  184. if n < SU {
  185. fast = 0;
  186. }
  187. for /**/; curr_block < fast; curr_block += 1 {
  188. va := (^uintptr)(x + curr_block * size_of(uintptr))^;
  189. vb := (^uintptr)(y + curr_block * size_of(uintptr))^;
  190. if va ~ vb != 0 {
  191. for pos := curr_block*SU; pos < n; pos += 1 {
  192. a := (^byte)(x+pos)^;
  193. b := (^byte)(y+pos)^;
  194. if a ~ b != 0 {
  195. return -1 if (int(a) - int(b)) < 0 else +1;
  196. }
  197. }
  198. }
  199. }
  200. for /**/; offset < n; offset += 1 {
  201. a := (^byte)(x+offset)^;
  202. b := (^byte)(y+offset)^;
  203. if a ~ b != 0 {
  204. return -1 if (int(a) - int(b)) < 0 else +1;
  205. }
  206. }
  207. return 0;
  208. }
  209. memory_compare_zero :: proc "contextless" (a: rawptr, n: int) -> int #no_bounds_check {
  210. x := uintptr(a);
  211. n := uintptr(n);
  212. SU :: size_of(uintptr);
  213. fast := n/SU + 1;
  214. offset := (fast-1)*SU;
  215. curr_block := uintptr(0);
  216. if n < SU {
  217. fast = 0;
  218. }
  219. for /**/; curr_block < fast; curr_block += 1 {
  220. va := (^uintptr)(x + curr_block * size_of(uintptr))^;
  221. if va ~ 0 != 0 {
  222. for pos := curr_block*SU; pos < n; pos += 1 {
  223. a := (^byte)(x+pos)^;
  224. if a ~ 0 != 0 {
  225. return -1 if int(a) < 0 else +1;
  226. }
  227. }
  228. }
  229. }
  230. for /**/; offset < n; offset += 1 {
  231. a := (^byte)(x+offset)^;
  232. if a ~ 0 != 0 {
  233. return -1 if int(a) < 0 else +1;
  234. }
  235. }
  236. return 0;
  237. }
  238. string_eq :: proc "contextless" (a, b: string) -> bool {
  239. x := transmute(Raw_String)a;
  240. y := transmute(Raw_String)b;
  241. switch {
  242. case x.len != y.len: return false;
  243. case x.len == 0: return true;
  244. case x.data == y.data: return true;
  245. }
  246. return string_cmp(a, b) == 0;
  247. }
  248. string_cmp :: proc "contextless" (a, b: string) -> int {
  249. x := transmute(Raw_String)a;
  250. y := transmute(Raw_String)b;
  251. return memory_compare(x.data, y.data, min(x.len, y.len));
  252. }
  253. string_ne :: #force_inline proc "contextless" (a, b: string) -> bool { return !string_eq(a, b); }
  254. string_lt :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) < 0; }
  255. string_gt :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) > 0; }
  256. string_le :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) <= 0; }
  257. string_ge :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) >= 0; }
  258. cstring_len :: proc "contextless" (s: cstring) -> int {
  259. p0 := uintptr((^byte)(s));
  260. p := p0;
  261. for p != 0 && (^byte)(p)^ != 0 {
  262. p += 1;
  263. }
  264. return int(p - p0);
  265. }
  266. cstring_to_string :: proc "contextless" (s: cstring) -> string {
  267. if s == nil {
  268. return "";
  269. }
  270. ptr := (^byte)(s);
  271. n := cstring_len(s);
  272. return transmute(string)Raw_String{ptr, n};
  273. }
  274. complex64_eq :: #force_inline proc "contextless" (a, b: complex64) -> bool { return real(a) == real(b) && imag(a) == imag(b); }
  275. complex64_ne :: #force_inline proc "contextless" (a, b: complex64) -> bool { return real(a) != real(b) || imag(a) != imag(b); }
  276. complex128_eq :: #force_inline proc "contextless" (a, b: complex128) -> bool { return real(a) == real(b) && imag(a) == imag(b); }
  277. complex128_ne :: #force_inline proc "contextless" (a, b: complex128) -> bool { return real(a) != real(b) || imag(a) != imag(b); }
  278. quaternion128_eq :: #force_inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b); }
  279. quaternion128_ne :: #force_inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b); }
  280. quaternion256_eq :: #force_inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b); }
  281. quaternion256_ne :: #force_inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b); }
  282. string_decode_rune :: #force_inline proc "contextless" (s: string) -> (rune, int) {
  283. // NOTE(bill): Duplicated here to remove dependency on package unicode/utf8
  284. @static accept_sizes := [256]u8{
  285. 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x00-0x0f
  286. 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x10-0x1f
  287. 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x20-0x2f
  288. 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x30-0x3f
  289. 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x40-0x4f
  290. 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x50-0x5f
  291. 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x60-0x6f
  292. 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x70-0x7f
  293. 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x80-0x8f
  294. 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x90-0x9f
  295. 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xa0-0xaf
  296. 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xb0-0xbf
  297. 0xf1, 0xf1, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xc0-0xcf
  298. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xd0-0xdf
  299. 0x13, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x23, 0x03, 0x03, // 0xe0-0xef
  300. 0x34, 0x04, 0x04, 0x04, 0x44, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xf0-0xff
  301. };
  302. Accept_Range :: struct {lo, hi: u8};
  303. @static accept_ranges := [5]Accept_Range{
  304. {0x80, 0xbf},
  305. {0xa0, 0xbf},
  306. {0x80, 0x9f},
  307. {0x90, 0xbf},
  308. {0x80, 0x8f},
  309. };
  310. MASKX :: 0b0011_1111;
  311. MASK2 :: 0b0001_1111;
  312. MASK3 :: 0b0000_1111;
  313. MASK4 :: 0b0000_0111;
  314. LOCB :: 0b1000_0000;
  315. HICB :: 0b1011_1111;
  316. RUNE_ERROR :: '\ufffd';
  317. n := len(s);
  318. if n < 1 {
  319. return RUNE_ERROR, 0;
  320. }
  321. s0 := s[0];
  322. x := accept_sizes[s0];
  323. if x >= 0xF0 {
  324. mask := rune(x) << 31 >> 31; // NOTE(bill): Create 0x0000 or 0xffff.
  325. return rune(s[0])&~mask | RUNE_ERROR&mask, 1;
  326. }
  327. sz := x & 7;
  328. accept := accept_ranges[x>>4];
  329. if n < int(sz) {
  330. return RUNE_ERROR, 1;
  331. }
  332. b1 := s[1];
  333. if b1 < accept.lo || accept.hi < b1 {
  334. return RUNE_ERROR, 1;
  335. }
  336. if sz == 2 {
  337. return rune(s0&MASK2)<<6 | rune(b1&MASKX), 2;
  338. }
  339. b2 := s[2];
  340. if b2 < LOCB || HICB < b2 {
  341. return RUNE_ERROR, 1;
  342. }
  343. if sz == 3 {
  344. return rune(s0&MASK3)<<12 | rune(b1&MASKX)<<6 | rune(b2&MASKX), 3;
  345. }
  346. b3 := s[3];
  347. if b3 < LOCB || HICB < b3 {
  348. return RUNE_ERROR, 1;
  349. }
  350. return rune(s0&MASK4)<<18 | rune(b1&MASKX)<<12 | rune(b2&MASKX)<<6 | rune(b3&MASKX), 4;
  351. }
  352. @(default_calling_convention = "none")
  353. foreign {
  354. @(link_name="llvm.sqrt.f32") _sqrt_f32 :: proc(x: f32) -> f32 ---
  355. @(link_name="llvm.sqrt.f64") _sqrt_f64 :: proc(x: f64) -> f64 ---
  356. }
  357. abs_f16 :: #force_inline proc "contextless" (x: f16) -> f16 {
  358. return -x if x < 0 else x;
  359. }
  360. abs_f32 :: #force_inline proc "contextless" (x: f32) -> f32 {
  361. return -x if x < 0 else x;
  362. }
  363. abs_f64 :: #force_inline proc "contextless" (x: f64) -> f64 {
  364. return -x if x < 0 else x;
  365. }
  366. min_f16 :: proc(a, b: f16) -> f16 {
  367. return a if a < b else b;
  368. }
  369. min_f32 :: proc(a, b: f32) -> f32 {
  370. return a if a < b else b;
  371. }
  372. min_f64 :: proc(a, b: f64) -> f64 {
  373. return a if a < b else b;
  374. }
  375. max_f16 :: proc(a, b: f16) -> f16 {
  376. return a if a > b else b;
  377. }
  378. max_f32 :: proc(a, b: f32) -> f32 {
  379. return a if a > b else b;
  380. }
  381. max_f64 :: proc(a, b: f64) -> f64 {
  382. return a if a > b else b;
  383. }
  384. abs_complex32 :: #force_inline proc "contextless" (x: complex32) -> f16 {
  385. r, i := real(x), imag(x);
  386. return f16(_sqrt_f32(f32(r*r + i*i)));
  387. }
  388. abs_complex64 :: #force_inline proc "contextless" (x: complex64) -> f32 {
  389. r, i := real(x), imag(x);
  390. return _sqrt_f32(r*r + i*i);
  391. }
  392. abs_complex128 :: #force_inline proc "contextless" (x: complex128) -> f64 {
  393. r, i := real(x), imag(x);
  394. return _sqrt_f64(r*r + i*i);
  395. }
  396. abs_quaternion64 :: #force_inline proc "contextless" (x: quaternion64) -> f16 {
  397. r, i, j, k := real(x), imag(x), jmag(x), kmag(x);
  398. return f16(_sqrt_f32(f32(r*r + i*i + j*j + k*k)));
  399. }
  400. abs_quaternion128 :: #force_inline proc "contextless" (x: quaternion128) -> f32 {
  401. r, i, j, k := real(x), imag(x), jmag(x), kmag(x);
  402. return _sqrt_f32(r*r + i*i + j*j + k*k);
  403. }
  404. abs_quaternion256 :: #force_inline proc "contextless" (x: quaternion256) -> f64 {
  405. r, i, j, k := real(x), imag(x), jmag(x), kmag(x);
  406. return _sqrt_f64(r*r + i*i + j*j + k*k);
  407. }
  408. quo_complex32 :: proc "contextless" (n, m: complex32) -> complex32 {
  409. e, f: f16;
  410. if abs(real(m)) >= abs(imag(m)) {
  411. ratio := imag(m) / real(m);
  412. denom := real(m) + ratio*imag(m);
  413. e = (real(n) + imag(n)*ratio) / denom;
  414. f = (imag(n) - real(n)*ratio) / denom;
  415. } else {
  416. ratio := real(m) / imag(m);
  417. denom := imag(m) + ratio*real(m);
  418. e = (real(n)*ratio + imag(n)) / denom;
  419. f = (imag(n)*ratio - real(n)) / denom;
  420. }
  421. return complex(e, f);
  422. }
  423. quo_complex64 :: proc "contextless" (n, m: complex64) -> complex64 {
  424. e, f: f32;
  425. if abs(real(m)) >= abs(imag(m)) {
  426. ratio := imag(m) / real(m);
  427. denom := real(m) + ratio*imag(m);
  428. e = (real(n) + imag(n)*ratio) / denom;
  429. f = (imag(n) - real(n)*ratio) / denom;
  430. } else {
  431. ratio := real(m) / imag(m);
  432. denom := imag(m) + ratio*real(m);
  433. e = (real(n)*ratio + imag(n)) / denom;
  434. f = (imag(n)*ratio - real(n)) / denom;
  435. }
  436. return complex(e, f);
  437. }
  438. quo_complex128 :: proc "contextless" (n, m: complex128) -> complex128 {
  439. e, f: f64;
  440. if abs(real(m)) >= abs(imag(m)) {
  441. ratio := imag(m) / real(m);
  442. denom := real(m) + ratio*imag(m);
  443. e = (real(n) + imag(n)*ratio) / denom;
  444. f = (imag(n) - real(n)*ratio) / denom;
  445. } else {
  446. ratio := real(m) / imag(m);
  447. denom := imag(m) + ratio*real(m);
  448. e = (real(n)*ratio + imag(n)) / denom;
  449. f = (imag(n)*ratio - real(n)) / denom;
  450. }
  451. return complex(e, f);
  452. }
  453. mul_quaternion64 :: proc "contextless" (q, r: quaternion64) -> quaternion64 {
  454. q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
  455. r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
  456. t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3;
  457. t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2;
  458. t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1;
  459. t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0;
  460. return quaternion(t0, t1, t2, t3);
  461. }
  462. mul_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 {
  463. q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
  464. r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
  465. t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3;
  466. t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2;
  467. t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1;
  468. t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0;
  469. return quaternion(t0, t1, t2, t3);
  470. }
  471. mul_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 {
  472. q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
  473. r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
  474. t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3;
  475. t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2;
  476. t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1;
  477. t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0;
  478. return quaternion(t0, t1, t2, t3);
  479. }
  480. quo_quaternion64 :: proc "contextless" (q, r: quaternion64) -> quaternion64 {
  481. q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
  482. r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
  483. invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3);
  484. t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2;
  485. t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2;
  486. t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2;
  487. t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2;
  488. return quaternion(t0, t1, t2, t3);
  489. }
  490. quo_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 {
  491. q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
  492. r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
  493. invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3);
  494. t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2;
  495. t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2;
  496. t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2;
  497. t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2;
  498. return quaternion(t0, t1, t2, t3);
  499. }
  500. quo_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 {
  501. q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
  502. r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
  503. invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3);
  504. t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2;
  505. t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2;
  506. t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2;
  507. t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2;
  508. return quaternion(t0, t1, t2, t3);
  509. }
  510. @(link_name="__truncsfhf2")
  511. truncsfhf2 :: proc "c" (value: f32) -> u16 {
  512. v: struct #raw_union { i: u32, f: f32 };
  513. i, s, e, m: i32;
  514. v.f = value;
  515. i = i32(v.i);
  516. s = (i >> 16) & 0x00008000;
  517. e = ((i >> 23) & 0x000000ff) - (127 - 15);
  518. m = i & 0x007fffff;
  519. if (e <= 0) {
  520. if (e < -10) {
  521. return u16(s);
  522. }
  523. m = (m | 0x00800000) >> u32(1 - e);
  524. if (m & 0x00001000) != 0 {
  525. m += 0x00002000;
  526. }
  527. return u16(s | (m >> 13));
  528. } else if (e == 0xff - (127 - 15)) {
  529. if (m == 0) {
  530. return u16(s | 0x7c00); /* NOTE(bill): infinity */
  531. } else {
  532. /* NOTE(bill): NAN */
  533. m >>= 13;
  534. return u16(s | 0x7c00 | m | i32(m == 0));
  535. }
  536. } else {
  537. if (m & 0x00001000) != 0 {
  538. m += 0x00002000;
  539. if (m & 0x00800000) != 0 {
  540. m = 0;
  541. e += 1;
  542. }
  543. }
  544. if (e > 30) {
  545. f := 1e12;
  546. for j := 0; j < 10; j += 1 {
  547. /* NOTE(bill): Cause overflow */
  548. g := intrinsics.volatile_load(&f);
  549. g *= g;
  550. intrinsics.volatile_store(&f, g);
  551. }
  552. return u16(s | 0x7c00);
  553. }
  554. return u16(s | (e << 10) | (m >> 13));
  555. }
  556. }
  557. @(link_name="__truncdfhf2")
  558. truncdfhf2 :: proc "c" (value: f64) -> u16 {
  559. return truncsfhf2(f32(value));
  560. }
  561. @(link_name="__gnu_h2f_ieee")
  562. gnu_h2f_ieee :: proc "c" (value: u16) -> f32 {
  563. fp32 :: struct #raw_union { u: u32, f: f32 };
  564. v: fp32;
  565. magic, inf_or_nan: fp32;
  566. magic.u = u32((254 - 15) << 23);
  567. inf_or_nan.u = u32((127 + 16) << 23);
  568. v.u = u32(value & 0x7fff) << 13;
  569. v.f *= magic.f;
  570. if v.f >= inf_or_nan.f {
  571. v.u |= 255 << 23;
  572. }
  573. v.u |= u32(value & 0x8000) << 16;
  574. return v.f;
  575. }
  576. @(link_name="__gnu_f2h_ieee")
  577. gnu_f2h_ieee :: proc "c" (value: f32) -> u16 {
  578. return truncsfhf2(value);
  579. }
  580. @(link_name="__extendhfsf2")
  581. extendhfsf2 :: proc "c" (value: u16) -> f32 {
  582. return gnu_h2f_ieee(value);
  583. }