internal_linux.odin 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131
  1. package runtime
  2. import "intrinsics"
  3. @(link_name="__umodti3")
  4. umodti3 :: proc "c" (a, b: u128) -> u128 {
  5. r: u128 = ---;
  6. _ = udivmod128(a, b, &r);
  7. return r;
  8. }
  9. @(link_name="__udivmodti4")
  10. udivmodti4 :: proc "c" (a, b: u128, rem: ^u128) -> u128 {
  11. return udivmod128(a, b, rem);
  12. }
  13. @(link_name="__udivti3")
  14. udivti3 :: proc "c" (a, b: u128) -> u128 {
  15. return udivmodti4(a, b, nil);
  16. }
  17. @(link_name="__modti3")
  18. modti3 :: proc "c" (a, b: i128) -> i128 {
  19. s_a := a >> (128 - 1);
  20. s_b := b >> (128 - 1);
  21. an := (a ~ s_a) - s_a;
  22. bn := (b ~ s_b) - s_b;
  23. r: u128 = ---;
  24. _ = udivmod128(transmute(u128)an, transmute(u128)bn, &r);
  25. return (transmute(i128)r ~ s_a) - s_a;
  26. }
  27. @(link_name="__divmodti4")
  28. divmodti4 :: proc "c" (a, b: i128, rem: ^i128) -> i128 {
  29. u := udivmod128(transmute(u128)a, transmute(u128)b, cast(^u128)rem);
  30. return transmute(i128)u;
  31. }
  32. @(link_name="__divti3")
  33. divti3 :: proc "c" (a, b: i128) -> i128 {
  34. u := udivmodti4(transmute(u128)a, transmute(u128)b, nil);
  35. return transmute(i128)u;
  36. }
  37. @(link_name="__fixdfti")
  38. fixdfti :: proc(a: u64) -> i128 {
  39. significandBits :: 52;
  40. typeWidth :: (size_of(u64)*8);
  41. exponentBits :: (typeWidth - significandBits - 1);
  42. maxExponent :: ((1 << exponentBits) - 1);
  43. exponentBias :: (maxExponent >> 1);
  44. implicitBit :: (u64(1) << significandBits);
  45. significandMask :: (implicitBit - 1);
  46. signBit :: (u64(1) << (significandBits + exponentBits));
  47. absMask :: (signBit - 1);
  48. exponentMask :: (absMask ~ significandMask);
  49. // Break a into sign, exponent, significand
  50. aRep := a;
  51. aAbs := aRep & absMask;
  52. sign := i128(-1 if aRep & signBit != 0 else 1);
  53. exponent := u64((aAbs >> significandBits) - exponentBias);
  54. significand := u64((aAbs & significandMask) | implicitBit);
  55. // If exponent is negative, the result is zero.
  56. if exponent < 0 {
  57. return 0;
  58. }
  59. // If the value is too large for the integer type, saturate.
  60. if exponent >= size_of(i128) * 8 {
  61. return max(i128) if sign == 1 else min(i128);
  62. }
  63. // If 0 <= exponent < significandBits, right shift to get the result.
  64. // Otherwise, shift left.
  65. if exponent < significandBits {
  66. return sign * i128(significand >> (significandBits - exponent));
  67. } else {
  68. return sign * (i128(significand) << (exponent - significandBits));
  69. }
  70. }
  71. @(link_name="__floattidf")
  72. floattidf :: proc(a: i128) -> f64 {
  73. DBL_MANT_DIG :: 53;
  74. if a == 0 {
  75. return 0.0;
  76. }
  77. a := a;
  78. N :: size_of(i128) * 8;
  79. s := a >> (N-1);
  80. a = (a ~ s) - s;
  81. sd: = N - intrinsics.count_leading_zeros(a); // number of significant digits
  82. e := u32(sd - 1); // exponent
  83. if sd > DBL_MANT_DIG {
  84. switch sd {
  85. case DBL_MANT_DIG + 1:
  86. a <<= 1;
  87. case DBL_MANT_DIG + 2:
  88. // okay
  89. case:
  90. a = i128(u128(a) >> u128(sd - (DBL_MANT_DIG+2))) |
  91. i128(u128(a) & (~u128(0) >> u128(N + DBL_MANT_DIG+2 - sd)) != 0);
  92. };
  93. a |= i128((a & 4) != 0);
  94. a += 1;
  95. a >>= 2;
  96. if a & (1 << DBL_MANT_DIG) != 0 {
  97. a >>= 1;
  98. e += 1;
  99. }
  100. } else {
  101. a <<= u128(DBL_MANT_DIG - sd);
  102. }
  103. fb: [2]u32;
  104. fb[1] = (u32(s) & 0x80000000) | // sign
  105. ((e + 1023) << 20) | // exponent
  106. u32((u64(a) >> 32) & 0x000FFFFF); // mantissa-high
  107. fb[1] = u32(a); // mantissa-low
  108. return transmute(f64)fb;
  109. }