general.odin 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
  1. package linalg
  2. import "core:math"
  3. import "intrinsics"
  4. // Generic
  5. TAU :: 6.28318530717958647692528676655900576;
  6. PI :: 3.14159265358979323846264338327950288;
  7. E :: 2.71828182845904523536;
  8. τ :: TAU;
  9. π :: PI;
  10. e :: E;
  11. SQRT_TWO :: 1.41421356237309504880168872420969808;
  12. SQRT_THREE :: 1.73205080756887729352744634150587236;
  13. SQRT_FIVE :: 2.23606797749978969640917366873127623;
  14. LN2 :: 0.693147180559945309417232121458176568;
  15. LN10 :: 2.30258509299404568401799145468436421;
  16. MAX_F64_PRECISION :: 16; // Maximum number of meaningful digits after the decimal point for 'f64'
  17. MAX_F32_PRECISION :: 8; // Maximum number of meaningful digits after the decimal point for 'f32'
  18. RAD_PER_DEG :: TAU/360.0;
  19. DEG_PER_RAD :: 360.0/TAU;
  20. @private IS_NUMERIC :: intrinsics.type_is_numeric;
  21. @private IS_QUATERNION :: intrinsics.type_is_quaternion;
  22. @private IS_ARRAY :: intrinsics.type_is_array;
  23. @private IS_FLOAT :: intrinsics.type_is_float;
  24. @private BASE_TYPE :: intrinsics.type_base_type;
  25. @private ELEM_TYPE :: intrinsics.type_elem_type;
  26. scalar_dot :: proc(a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
  27. return a * b;
  28. }
  29. vector_dot :: proc(a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) {
  30. for i in 0..<N {
  31. c += a[i] * b[i];
  32. }
  33. return;
  34. }
  35. quaternion64_dot :: proc(a, b: $T/quaternion64) -> (c: f16) {
  36. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z;
  37. }
  38. quaternion128_dot :: proc(a, b: $T/quaternion128) -> (c: f32) {
  39. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z;
  40. }
  41. quaternion256_dot :: proc(a, b: $T/quaternion256) -> (c: f64) {
  42. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z;
  43. }
  44. dot :: proc{scalar_dot, vector_dot, quaternion64_dot, quaternion128_dot, quaternion256_dot};
  45. inner_product :: dot;
  46. outer_product :: proc(a: $A/[$M]$E, b: $B/[$N]E) -> (out: [M][N]E) where IS_NUMERIC(E) {
  47. for i in 0..<M {
  48. for j in 0..<N {
  49. out[i][j] = a[i]*b[j];
  50. }
  51. }
  52. return;
  53. }
  54. quaternion_inverse :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  55. return conj(q) * quaternion(1.0/dot(q, q), 0, 0, 0);
  56. }
  57. scalar_cross :: proc(a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
  58. return a * b;
  59. }
  60. vector_cross2 :: proc(a, b: $T/[2]$E) -> E where IS_NUMERIC(E) {
  61. return a[0]*b[1] - b[0]*a[1];
  62. }
  63. vector_cross3 :: proc(a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) {
  64. c[0] = a[1]*b[2] - b[1]*a[2];
  65. c[1] = a[2]*b[0] - b[2]*a[0];
  66. c[2] = a[0]*b[1] - b[0]*a[1];
  67. return;
  68. }
  69. quaternion_cross :: proc(q1, q2: $Q) -> (q3: Q) where IS_QUATERNION(Q) {
  70. q3.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y;
  71. q3.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z;
  72. q3.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x;
  73. q3.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z;
  74. return;
  75. }
  76. vector_cross :: proc{scalar_cross, vector_cross2, vector_cross3};
  77. cross :: proc{scalar_cross, vector_cross2, vector_cross3, quaternion_cross};
  78. vector_normalize :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  79. return v / length(v);
  80. }
  81. quaternion_normalize :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  82. return q/abs(q);
  83. }
  84. normalize :: proc{vector_normalize, quaternion_normalize};
  85. vector_normalize0 :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  86. m := length(v);
  87. return 0 if m == 0 else v/m;
  88. }
  89. quaternion_normalize0 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  90. m := abs(q);
  91. return 0 if m == 0 else q/m;
  92. }
  93. normalize0 :: proc{vector_normalize0, quaternion_normalize0};
  94. vector_length :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
  95. return math.sqrt(dot(v, v));
  96. }
  97. vector_length2 :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
  98. return dot(v, v);
  99. }
  100. quaternion_length :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  101. return abs(q);
  102. }
  103. quaternion_length2 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  104. return dot(q, q);
  105. }
  106. scalar_triple_product :: proc(a, b, c: $T/[$N]$E) -> E where IS_NUMERIC(E) {
  107. // a . (b x c)
  108. // b . (c x a)
  109. // c . (a x b)
  110. return dot(a, cross(b, c));
  111. }
  112. vector_triple_product :: proc(a, b, c: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  113. // a x (b x c)
  114. // (a . c)b - (a . b)c
  115. return cross(a, cross(b, c));
  116. }
  117. length :: proc{vector_length, quaternion_length};
  118. length2 :: proc{vector_length2, quaternion_length2};
  119. projection :: proc(x, normal: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  120. return dot(x, normal) / dot(normal, normal) * normal;
  121. }
  122. identity :: proc($T: typeid/[$N][N]$E) -> (m: T) {
  123. for i in 0..<N {
  124. m[i][i] = E(1);
  125. }
  126. return m;
  127. }
  128. trace :: proc(m: $T/[$N][N]$E) -> (tr: E) {
  129. for i in 0..<N {
  130. tr += m[i][i];
  131. }
  132. return;
  133. }
  134. transpose :: proc(a: $T/[$N][$M]$E) -> (m: T) {
  135. for j in 0..<M {
  136. for i in 0..<N {
  137. m[j][i] = a[i][j];
  138. }
  139. }
  140. return;
  141. }
  142. matrix_mul :: proc(a, b: $M/[$N][N]$E) -> (c: M)
  143. where !IS_ARRAY(E),
  144. IS_NUMERIC(E) {
  145. for i in 0..<N {
  146. for k in 0..<N {
  147. for j in 0..<N {
  148. c[k][i] += a[j][i] * b[k][j];
  149. }
  150. }
  151. }
  152. return;
  153. }
  154. matrix_comp_mul :: proc(a, b: $M/[$J][$I]$E) -> (c: M)
  155. where !IS_ARRAY(E),
  156. IS_NUMERIC(E) {
  157. for j in 0..<J {
  158. for i in 0..<I {
  159. c[j][i] = a[j][i] * b[j][i];
  160. }
  161. }
  162. return;
  163. }
  164. matrix_mul_differ :: proc(a: $A/[$J][$I]$E, b: $B/[$K][J]E) -> (c: [K][I]E)
  165. where !IS_ARRAY(E),
  166. IS_NUMERIC(E),
  167. I != K {
  168. for k in 0..<K {
  169. for j in 0..<J {
  170. for i in 0..<I {
  171. c[k][i] += a[j][i] * b[k][j];
  172. }
  173. }
  174. }
  175. return;
  176. }
  177. matrix_mul_vector :: proc(a: $A/[$I][$J]$E, b: $B/[I]E) -> (c: B)
  178. where !IS_ARRAY(E),
  179. IS_NUMERIC(E) {
  180. for i in 0..<I {
  181. for j in 0..<J {
  182. c[j] += a[i][j] * b[i];
  183. }
  184. }
  185. return;
  186. }
  187. quaternion_mul_quaternion :: proc(q1, q2: $Q) -> Q where IS_QUATERNION(Q) {
  188. return q1 * q2;
  189. }
  190. quaternion64_mul_vector3 :: proc(q: $Q/quaternion64, v: $V/[3]$F/f16) -> V {
  191. Raw_Quaternion :: struct {xyz: [3]f16, r: f16};
  192. q := transmute(Raw_Quaternion)q;
  193. v := transmute([3]f16)v;
  194. t := cross(2*q.xyz, v);
  195. return V(v + q.r*t + cross(q.xyz, t));
  196. }
  197. quaternion128_mul_vector3 :: proc(q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
  198. Raw_Quaternion :: struct {xyz: [3]f32, r: f32};
  199. q := transmute(Raw_Quaternion)q;
  200. v := transmute([3]f32)v;
  201. t := cross(2*q.xyz, v);
  202. return V(v + q.r*t + cross(q.xyz, t));
  203. }
  204. quaternion256_mul_vector3 :: proc(q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
  205. Raw_Quaternion :: struct {xyz: [3]f64, r: f64};
  206. q := transmute(Raw_Quaternion)q;
  207. v := transmute([3]f64)v;
  208. t := cross(2*q.xyz, v);
  209. return V(v + q.r*t + cross(q.xyz, t));
  210. }
  211. quaternion_mul_vector3 :: proc{quaternion64_mul_vector3, quaternion128_mul_vector3, quaternion256_mul_vector3};
  212. mul :: proc{
  213. matrix_mul,
  214. matrix_mul_differ,
  215. matrix_mul_vector,
  216. quaternion64_mul_vector3,
  217. quaternion128_mul_vector3,
  218. quaternion256_mul_vector3,
  219. quaternion_mul_quaternion,
  220. };
  221. vector_to_ptr :: proc(v: ^$V/[$N]$E) -> ^E where IS_NUMERIC(E), N > 0 #no_bounds_check {
  222. return &v[0];
  223. }
  224. matrix_to_ptr :: proc(m: ^$A/[$I][$J]$E) -> ^E where IS_NUMERIC(E), I > 0, J > 0 #no_bounds_check {
  225. return &m[0][0];
  226. }
  227. to_ptr :: proc{vector_to_ptr, matrix_to_ptr};
  228. // Splines
  229. vector_slerp :: proc(x, y: $T/[$N]$E, a: E) -> T {
  230. cos_alpha := dot(x, y);
  231. alpha := math.acos(cos_alpha);
  232. sin_alpha := math.sin(alpha);
  233. t1 := math.sin((1 - a) * alpha) / sin_alpha;
  234. t2 := math.sin(a * alpha) / sin_alpha;
  235. return x * t1 + y * t2;
  236. }
  237. catmull_rom :: proc(v1, v2, v3, v4: $T/[$N]$E, s: E) -> T {
  238. s2 := s*s;
  239. s3 := s2*s;
  240. f1 := -s3 + 2 * s2 - s;
  241. f2 := 3 * s3 - 5 * s2 + 2;
  242. f3 := -3 * s3 + 4 * s2 + s;
  243. f4 := s3 - s2;
  244. return (f1 * v1 + f2 * v2 + f3 * v3 + f4 * v4) * 0.5;
  245. }
  246. hermite :: proc(v1, t1, v2, t2: $T/[$N]$E, s: E) -> T {
  247. s2 := s*s;
  248. s3 := s2*s;
  249. f1 := 2 * s3 - 3 * s2 + 1;
  250. f2 := -2 * s3 + 3 * s2;
  251. f3 := s3 - 2 * s2 + s;
  252. f4 := s3 - s2;
  253. return f1 * v1 + f2 * v2 + f3 * t1 + f4 * t2;
  254. }
  255. cubic :: proc(v1, v2, v3, v4: $T/[$N]$E, s: E) -> T {
  256. return ((v1 * s + v2) * s + v3) * s + v4;
  257. }
  258. array_cast :: proc(v: $A/[$N]$T, $Elem_Type: typeid) -> (w: [N]Elem_Type) {
  259. for i in 0..<N {
  260. w[i] = Elem_Type(v[i]);
  261. }
  262. return;
  263. }
  264. matrix_cast :: proc(v: $A/[$M][$N]$T, $Elem_Type: typeid) -> (w: [M][N]Elem_Type) {
  265. for i in 0..<M {
  266. for j in 0..<N {
  267. w[i][j] = Elem_Type(v[i][j]);
  268. }
  269. }
  270. return;
  271. }
  272. to_f32 :: #force_inline proc(v: $A/[$N]$T) -> [N]f32 { return array_cast(v, f32); }
  273. to_f64 :: #force_inline proc(v: $A/[$N]$T) -> [N]f64 { return array_cast(v, f64); }
  274. to_i8 :: #force_inline proc(v: $A/[$N]$T) -> [N]i8 { return array_cast(v, i8); }
  275. to_i16 :: #force_inline proc(v: $A/[$N]$T) -> [N]i16 { return array_cast(v, i16); }
  276. to_i32 :: #force_inline proc(v: $A/[$N]$T) -> [N]i32 { return array_cast(v, i32); }
  277. to_i64 :: #force_inline proc(v: $A/[$N]$T) -> [N]i64 { return array_cast(v, i64); }
  278. to_int :: #force_inline proc(v: $A/[$N]$T) -> [N]int { return array_cast(v, int); }
  279. to_u8 :: #force_inline proc(v: $A/[$N]$T) -> [N]u8 { return array_cast(v, u8); }
  280. to_u16 :: #force_inline proc(v: $A/[$N]$T) -> [N]u16 { return array_cast(v, u16); }
  281. to_u32 :: #force_inline proc(v: $A/[$N]$T) -> [N]u32 { return array_cast(v, u32); }
  282. to_u64 :: #force_inline proc(v: $A/[$N]$T) -> [N]u64 { return array_cast(v, u64); }
  283. to_uint :: #force_inline proc(v: $A/[$N]$T) -> [N]uint { return array_cast(v, uint); }
  284. to_complex32 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex32 { return array_cast(v, complex32); }
  285. to_complex64 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex64 { return array_cast(v, complex64); }
  286. to_complex128 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex128 { return array_cast(v, complex128); }
  287. to_quaternion64 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion64 { return array_cast(v, quaternion64); }
  288. to_quaternion128 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion128 { return array_cast(v, quaternion128); }
  289. to_quaternion256 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion256 { return array_cast(v, quaternion256); }