| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035 |
- package main
- import "core:fmt"
- import "core:mem"
- import "core:os"
- import "core:thread"
- import "core:time"
- import "core:reflect"
- import "core:runtime"
- import "intrinsics"
- /*
- The Odin programming language is fast, concise, readable, pragmatic and open sourced.
- It is designed with the intent of replacing C with the following goals:
- * simplicity
- * high performance
- * built for modern systems
- * joy of programming
- # Installing Odin
- Getting Started - https://odin-lang.org/docs/install/
- Instructions for downloading and install the Odin compiler and libraries.
- # Learning Odin
- Overview of Odin - https://odin-lang.org/docs/overview/
- An overview of the Odin programming language.
- Frequently Asked Questions (FAQ) - https://odin-lang.org/docs/faq/
- Answers to common questions about Odin.
- */
- the_basics :: proc() {
- fmt.println("\n# the basics");
- { // The Basics
- fmt.println("Hellope");
- // Lexical elements and literals
- // A comment
- my_integer_variable: int; // A comment for documentaton
- // Multi-line comments begin with /* and end with */. Multi-line comments can
- // also be nested (unlike in C):
- /*
- You can have any text or code here and
- have it be commented.
- /*
- NOTE: comments can be nested!
- */
- */
- // String literals are enclosed in double quotes and character literals in single quotes.
- // Special characters are escaped with a backslash \
- some_string := "This is a string";
- _ = 'A'; // unicode codepoint literal
- _ = '\n';
- _ = "C:\\Windows\\notepad.exe";
- // Raw string literals are enclosed with single back ticks
- _ = `C:\Windows\notepad.exe`;
- // The length of a string in bytes can be found using the built-in `len` procedure:
- _ = len("Foo");
- _ = len(some_string);
- // Numbers
- // Numerical literals are written similar to most other programming languages.
- // A useful feature in Odin is that underscores are allowed for better
- // readability: 1_000_000_000 (one billion). A number that contains a dot is a
- // floating point literal: 1.0e9 (one billion). If a number literal is suffixed
- // with i, is an imaginary number literal: 2i (2 multiply the square root of -1).
- // Binary literals are prefixed with 0b, octal literals with 0o, and hexadecimal
- // literals 0x. A leading zero does not produce an octal constant (unlike C).
- // In Odin, if a numeric constant can be represented by a type without
- // precision loss, it will automatically convert to that type.
- x: int = 1.0; // A float literal but it can be represented by an integer without precision loss
- // Constant literals are “untyped” which means that they can implicitly convert to a type.
- y: int; // `y` is typed of type `int`
- y = 1; // `1` is an untyped integer literal which can implicitly convert to `int`
- z: f64; // `z` is typed of type `f64` (64-bit floating point number)
- z = 1; // `1` is an untyped integer literal which can be implicitly converted to `f64`
- // No need for any suffixes or decimal places like in other languages
- // CONSTANTS JUST WORK!!!
- // Assignment statements
- h: int = 123; // declares a new variable `h` with type `int` and assigns a value to it
- h = 637; // assigns a new value to `h`
- // `=` is the assignment operator
- // You can assign multiple variables with it:
- a, b := 1, "hello"; // declares `a` and `b` and infers the types from the assignments
- b, a = "byte", 0;
- // Note: `:=` is two tokens, `:` and `=`. The following are equivalent,
- /*
- i: int = 123;
- i: = 123;
- i := 123;
- */
- // Constant declarations
- // Constants are entities (symbols) which have an assigned value.
- // The constant’s value cannot be changed.
- // The constant’s value must be able to be evaluated at compile time:
- X :: "what"; // constant `X` has the untyped string value "what"
- // Constants can be explicitly typed like a variable declaration:
- Y : int : 123;
- Z :: Y + 7; // constant computations are possible
- _ = my_integer_variable;
- _ = x;
- }
- }
- control_flow :: proc() {
- fmt.println("\n# control flow");
- { // Control flow
- // For loop
- // Odin has only one loop statement, the `for` loop
- // Basic for loop
- for i := 0; i < 10; i += 1 {
- fmt.println(i);
- }
- // NOTE: Unlike other languages like C, there are no parentheses `( )` surrounding the three components.
- // Braces `{ }` or a `do` are always required
- for i := 0; i < 10; i += 1 { }
- // for i := 0; i < 10; i += 1 do fmt.print();
- // The initial and post statements are optional
- i := 0;
- for ; i < 10; {
- i += 1;
- }
- // These semicolons can be dropped. This `for` loop is equivalent to C's `while` loop
- i = 0;
- for i < 10 {
- i += 1;
- }
- // If the condition is omitted, an infinite loop is produced:
- for {
- break;
- }
- // Range-based for loop
- // The basic for loop
- for j := 0; j < 10; j += 1 {
- fmt.println(j);
- }
- // can also be written
- for j in 0..<10 {
- fmt.println(j);
- }
- for j in 0..9 {
- fmt.println(j);
- }
- // Certain built-in types can be iterated over
- some_string := "Hello, 世界";
- for character in some_string { // Strings are assumed to be UTF-8
- fmt.println(character);
- }
- some_array := [3]int{1, 4, 9};
- for value in some_array {
- fmt.println(value);
- }
- some_slice := []int{1, 4, 9};
- for value in some_slice {
- fmt.println(value);
- }
- some_dynamic_array := [dynamic]int{1, 4, 9};
- defer delete(some_dynamic_array);
- for value in some_dynamic_array {
- fmt.println(value);
- }
- some_map := map[string]int{"A" = 1, "C" = 9, "B" = 4};
- defer delete(some_map);
- for key in some_map {
- fmt.println(key);
- }
- // Alternatively a second index value can be added
- for character, index in some_string {
- fmt.println(index, character);
- }
- for value, index in some_array {
- fmt.println(index, value);
- }
- for value, index in some_slice {
- fmt.println(index, value);
- }
- for value, index in some_dynamic_array {
- fmt.println(index, value);
- }
- for key, value in some_map {
- fmt.println(key, value);
- }
- // The iterated values are copies and cannot be written to.
- // The following idiom is useful for iterating over a container in a by-reference manner:
- for _, idx in some_slice {
- some_slice[idx] = (idx+1)*(idx+1);
- }
- // If statements
- x := 123;
- if x >= 0 {
- fmt.println("x is positive");
- }
- if y := -34; y < 0 {
- fmt.println("y is negative");
- }
- if y := 123; y < 0 {
- fmt.println("y is negative");
- } else if y == 0 {
- fmt.println("y is zero");
- } else {
- fmt.println("y is positive");
- }
- // Switch statement
- // A switch statement is another way to write a sequence of if-else statements.
- // In Odin, the default case is denoted as a case without any expression.
- switch arch := ODIN_ARCH; arch {
- case "386":
- fmt.println("32-bit");
- case "amd64":
- fmt.println("64-bit");
- case: // default
- fmt.println("Unsupported architecture");
- }
- // Odin’s `switch` is like one in C or C++, except that Odin only runs the selected case.
- // This means that a `break` statement is not needed at the end of each case.
- // Another important difference is that the case values need not be integers nor constants.
- // To achieve a C-like fall through into the next case block, the keyword `fallthrough` can be used.
- one_angry_dwarf :: proc() -> int {
- fmt.println("one_angry_dwarf was called");
- return 1;
- }
- switch j := 0; j {
- case 0:
- case one_angry_dwarf():
- }
- // A switch statement without a condition is the same as `switch true`.
- // This can be used to write a clean and long if-else chain and have the
- // ability to break if needed
- switch {
- case x < 0:
- fmt.println("x is negative");
- case x == 0:
- fmt.println("x is zero");
- case:
- fmt.println("x is positive");
- }
- // A `switch` statement can also use ranges like a range-based loop:
- switch c := 'j'; c {
- case 'A'..'Z', 'a'..'z', '0'..'9':
- fmt.println("c is alphanumeric");
- }
- switch x {
- case 0..<10:
- fmt.println("units");
- case 10..<13:
- fmt.println("pre-teens");
- case 13..<20:
- fmt.println("teens");
- case 20..<30:
- fmt.println("twenties");
- }
- }
- { // Defer statement
- // A defer statement defers the execution of a statement until the end of
- // the scope it is in.
- // The following will print 4 then 234:
- {
- x := 123;
- defer fmt.println(x);
- {
- defer x = 4;
- x = 2;
- }
- fmt.println(x);
- x = 234;
- }
- // You can defer an entire block too:
- {
- bar :: proc() {}
- defer {
- fmt.println("1");
- fmt.println("2");
- }
- cond := false;
- defer if cond {
- bar();
- }
- }
- // Defer statements are executed in the reverse order that they were declared:
- {
- defer fmt.println("1");
- defer fmt.println("2");
- defer fmt.println("3");
- }
- // Will print 3, 2, and then 1.
- if false {
- f, err := os.open("my_file.txt");
- if err != 0 {
- // handle error
- }
- defer os.close(f);
- // rest of code
- }
- }
- { // When statement
- /*
- The when statement is almost identical to the if statement but with some differences:
- * Each condition must be a constant expression as a when
- statement is evaluated at compile time.
- * The statements within a branch do not create a new scope
- * The compiler checks the semantics and code only for statements
- that belong to the first condition that is true
- * An initial statement is not allowed in a when statement
- * when statements are allowed at file scope
- */
- // Example
- when ODIN_ARCH == "386" {
- fmt.println("32 bit");
- } else when ODIN_ARCH == "amd64" {
- fmt.println("64 bit");
- } else {
- fmt.println("Unsupported architecture");
- }
- // The when statement is very useful for writing platform specific code.
- // This is akin to the #if construct in C’s preprocessor however, in Odin,
- // it is type checked.
- }
- { // Branch statements
- cond, cond1, cond2 := false, false, false;
- one_step :: proc() { fmt.println("one_step"); }
- beyond :: proc() { fmt.println("beyond"); }
- // Break statement
- for cond {
- switch {
- case:
- if cond {
- break; // break out of the `switch` statement
- }
- }
- break; // break out of the `for` statement
- }
- loop: for cond1 {
- for cond2 {
- break loop; // leaves both loops
- }
- }
- // Continue statement
- for cond {
- if cond2 {
- continue;
- }
- fmt.println("Hellope");
- }
- // Fallthrough statement
- // Odin’s switch is like one in C or C++, except that Odin only runs the selected
- // case. This means that a break statement is not needed at the end of each case.
- // Another important difference is that the case values need not be integers nor
- // constants.
- // fallthrough can be used to explicitly fall through into the next case block:
- switch i := 0; i {
- case 0:
- one_step();
- fallthrough;
- case 1:
- beyond();
- }
- }
- }
- named_proc_return_parameters :: proc() {
- fmt.println("\n# named proc return parameters");
- foo0 :: proc() -> int {
- return 123;
- }
- foo1 :: proc() -> (a: int) {
- a = 123;
- return;
- }
- foo2 :: proc() -> (a, b: int) {
- // Named return values act like variables within the scope
- a = 321;
- b = 567;
- return b, a;
- }
- fmt.println("foo0 =", foo0()); // 123
- fmt.println("foo1 =", foo1()); // 123
- fmt.println("foo2 =", foo2()); // 567 321
- }
- explicit_procedure_overloading :: proc() {
- fmt.println("\n# explicit procedure overloading");
- add_ints :: proc(a, b: int) -> int {
- x := a + b;
- fmt.println("add_ints", x);
- return x;
- }
- add_floats :: proc(a, b: f32) -> f32 {
- x := a + b;
- fmt.println("add_floats", x);
- return x;
- }
- add_numbers :: proc(a: int, b: f32, c: u8) -> int {
- x := int(a) + int(b) + int(c);
- fmt.println("add_numbers", x);
- return x;
- }
- add :: proc{add_ints, add_floats, add_numbers};
- add(int(1), int(2));
- add(f32(1), f32(2));
- add(int(1), f32(2), u8(3));
- add(1, 2); // untyped ints coerce to int tighter than f32
- add(1.0, 2.0); // untyped floats coerce to f32 tighter than int
- add(1, 2, 3); // three parameters
- // Ambiguous answers
- // add(1.0, 2);
- // add(1, 2.0);
- }
- struct_type :: proc() {
- fmt.println("\n# struct type");
- // A struct is a record type in Odin. It is a collection of fields.
- // Struct fields are accessed by using a dot:
- {
- Vector2 :: struct {
- x: f32,
- y: f32,
- };
- v := Vector2{1, 2};
- v.x = 4;
- fmt.println(v.x);
- // Struct fields can be accessed through a struct pointer:
- v = Vector2{1, 2};
- p := &v;
- p.x = 1335;
- fmt.println(v);
- // We could write p^.x, however, it is to nice abstract the ability
- // to not explicitly dereference the pointer. This is very useful when
- // refactoring code to use a pointer rather than a value, and vice versa.
- }
- {
- // A struct literal can be denoted by providing the struct’s type
- // followed by {}. A struct literal must either provide all the
- // arguments or none:
- Vector3 :: struct {
- x, y, z: f32,
- };
- v: Vector3;
- v = Vector3{}; // Zero value
- v = Vector3{1, 4, 9};
- // You can list just a subset of the fields if you specify the
- // field by name (the order of the named fields does not matter):
- v = Vector3{z=1, y=2};
- assert(v.x == 0);
- assert(v.y == 2);
- assert(v.z == 1);
- }
- {
- // Structs can tagged with different memory layout and alignment requirements:
- a :: struct #align 4 {}; // align to 4 bytes
- b :: struct #packed {}; // remove padding between fields
- c :: struct #raw_union {}; // all fields share the same offset (0). This is the same as C's union
- }
- }
- union_type :: proc() {
- fmt.println("\n# union type");
- {
- val: union{int, bool};
- val = 137;
- if i, ok := val.(int); ok {
- fmt.println(i);
- }
- val = true;
- fmt.println(val);
- val = nil;
- switch v in val {
- case int: fmt.println("int", v);
- case bool: fmt.println("bool", v);
- case: fmt.println("nil");
- }
- }
- {
- // There is a duality between `any` and `union`
- // An `any` has a pointer to the data and allows for any type (open)
- // A `union` has as binary blob to store the data and allows only certain types (closed)
- // The following code is with `any` but has the same syntax
- val: any;
- val = 137;
- if i, ok := val.(int); ok {
- fmt.println(i);
- }
- val = true;
- fmt.println(val);
- val = nil;
- switch v in val {
- case int: fmt.println("int", v);
- case bool: fmt.println("bool", v);
- case: fmt.println("nil");
- }
- }
- Vector3 :: distinct [3]f32;
- Quaternion :: distinct quaternion128;
- // More realistic examples
- {
- // NOTE(bill): For the above basic examples, you may not have any
- // particular use for it. However, my main use for them is not for these
- // simple cases. My main use is for hierarchical types. Many prefer
- // subtyping, embedding the base data into the derived types. Below is
- // an example of this for a basic game Entity.
- Entity :: struct {
- id: u64,
- name: string,
- position: Vector3,
- orientation: Quaternion,
- derived: any,
- };
- Frog :: struct {
- using entity: Entity,
- jump_height: f32,
- };
- Monster :: struct {
- using entity: Entity,
- is_robot: bool,
- is_zombie: bool,
- };
- // See `parametric_polymorphism` procedure for details
- new_entity :: proc($T: typeid) -> ^Entity {
- t := new(T);
- t.derived = t^;
- return t;
- }
- entity := new_entity(Monster);
- switch e in entity.derived {
- case Frog:
- fmt.println("Ribbit");
- case Monster:
- if e.is_robot { fmt.println("Robotic"); }
- if e.is_zombie { fmt.println("Grrrr!"); }
- fmt.println("I'm a monster");
- }
- }
- {
- // NOTE(bill): A union can be used to achieve something similar. Instead
- // of embedding the base data into the derived types, the derived data
- // in embedded into the base type. Below is the same example of the
- // basic game Entity but using an union.
- Entity :: struct {
- id: u64,
- name: string,
- position: Vector3,
- orientation: Quaternion,
- derived: union {Frog, Monster},
- };
- Frog :: struct {
- using entity: ^Entity,
- jump_height: f32,
- };
- Monster :: struct {
- using entity: ^Entity,
- is_robot: bool,
- is_zombie: bool,
- };
- // See `parametric_polymorphism` procedure for details
- new_entity :: proc($T: typeid) -> ^Entity {
- t := new(Entity);
- t.derived = T{entity = t};
- return t;
- }
- entity := new_entity(Monster);
- switch e in entity.derived {
- case Frog:
- fmt.println("Ribbit");
- case Monster:
- if e.is_robot { fmt.println("Robotic"); }
- if e.is_zombie { fmt.println("Grrrr!"); }
- }
- // NOTE(bill): As you can see, the usage code has not changed, only its
- // memory layout. Both approaches have their own advantages but they can
- // be used together to achieve different results. The subtyping approach
- // can allow for a greater control of the memory layout and memory
- // allocation, e.g. storing the derivatives together. However, this is
- // also its disadvantage. You must either preallocate arrays for each
- // derivative separation (which can be easily missed) or preallocate a
- // bunch of "raw" memory; determining the maximum size of the derived
- // types would require the aid of metaprogramming. Unions solve this
- // particular problem as the data is stored with the base data.
- // Therefore, it is possible to preallocate, e.g. [100]Entity.
- // It should be noted that the union approach can have the same memory
- // layout as the any and with the same type restrictions by using a
- // pointer type for the derivatives.
- /*
- Entity :: struct {
- ...
- derived: union{^Frog, ^Monster},
- }
- Frog :: struct {
- using entity: Entity,
- ...
- }
- Monster :: struct {
- using entity: Entity,
- ...
- }
- new_entity :: proc(T: type) -> ^Entity {
- t := new(T);
- t.derived = t;
- return t;
- }
- */
- }
- }
- using_statement :: proc() {
- fmt.println("\n# using statement");
- // using can used to bring entities declared in a scope/namespace
- // into the current scope. This can be applied to import names, struct
- // fields, procedure fields, and struct values.
- Vector3 :: struct{x, y, z: f32};
- {
- Entity :: struct {
- position: Vector3,
- orientation: quaternion128,
- };
- // It can used like this:
- foo0 :: proc(entity: ^Entity) {
- fmt.println(entity.position.x, entity.position.y, entity.position.z);
- }
- // The entity members can be brought into the procedure scope by using it:
- foo1 :: proc(entity: ^Entity) {
- using entity;
- fmt.println(position.x, position.y, position.z);
- }
- // The using can be applied to the parameter directly:
- foo2 :: proc(using entity: ^Entity) {
- fmt.println(position.x, position.y, position.z);
- }
- // It can also be applied to sub-fields:
- foo3 :: proc(entity: ^Entity) {
- using entity.position;
- fmt.println(x, y, z);
- }
- }
- {
- // We can also apply the using statement to the struct fields directly,
- // making all the fields of position appear as if they on Entity itself:
- Entity :: struct {
- using position: Vector3,
- orientation: quaternion128,
- };
- foo :: proc(entity: ^Entity) {
- fmt.println(entity.x, entity.y, entity.z);
- }
- // Subtype polymorphism
- // It is possible to get subtype polymorphism, similar to inheritance-like
- // functionality in C++, but without the requirement of vtables or unknown
- // struct layout:
- Colour :: struct {r, g, b, a: u8};
- Frog :: struct {
- ribbit_volume: f32,
- using entity: Entity,
- colour: Colour,
- };
- frog: Frog;
- // Both work
- foo(&frog.entity);
- foo(&frog);
- frog.x = 123;
- // Note: using can be applied to arbitrarily many things, which allows
- // the ability to have multiple subtype polymorphism (but also its issues).
- // Note: using’d fields can still be referred by name.
- }
- { // using on an enum declaration
- using Foo :: enum {A, B, C};
- f0 := A;
- f1 := B;
- f2 := C;
- fmt.println(f0, f1, f2);
- fmt.println(len(Foo));
- }
- }
- implicit_context_system :: proc() {
- fmt.println("\n# implicit context system");
- // In each scope, there is an implicit value named context. This
- // context variable is local to each scope and is implicitly passed
- // by pointer to any procedure call in that scope (if the procedure
- // has the Odin calling convention).
- // The main purpose of the implicit context system is for the ability
- // to intercept third-party code and libraries and modify their
- // functionality. One such case is modifying how a library allocates
- // something or logs something. In C, this was usually achieved with
- // the library defining macros which could be overridden so that the
- // user could define what he wanted. However, not many libraries
- // supported this in many languages by default which meant intercepting
- // third-party code to see what it does and to change how it does it is
- // not possible.
- c := context; // copy the current scope's context
- context.user_index = 456;
- {
- context.allocator = my_custom_allocator();
- context.user_index = 123;
- what_a_fool_believes(); // the `context` for this scope is implicitly passed to `what_a_fool_believes`
- }
- // `context` value is local to the scope it is in
- assert(context.user_index == 456);
- what_a_fool_believes :: proc() {
- c := context; // this `context` is the same as the parent procedure that it was called from
- // From this example, context.user_index == 123
- // An context.allocator is assigned to the return value of `my_custom_allocator()`
- assert(context.user_index == 123);
- // The memory management procedure use the `context.allocator` by
- // default unless explicitly specified otherwise
- china_grove := new(int);
- free(china_grove);
- _ = c;
- }
- my_custom_allocator :: mem.nil_allocator;
- _ = c;
- // By default, the context value has default values for its parameters which is
- // decided in the package runtime. What the defaults are are compiler specific.
- // To see what the implicit context value contains, please see the following
- // definition in package runtime.
- }
- parametric_polymorphism :: proc() {
- fmt.println("\n# parametric polymorphism");
- print_value :: proc(value: $T) {
- fmt.printf("print_value: %T %v\n", value, value);
- }
- v1: int = 1;
- v2: f32 = 2.1;
- v3: f64 = 3.14;
- v4: string = "message";
- print_value(v1);
- print_value(v2);
- print_value(v3);
- print_value(v4);
- fmt.println();
- add :: proc(p, q: $T) -> T {
- x: T = p + q;
- return x;
- }
- a := add(3, 4);
- fmt.printf("a: %T = %v\n", a, a);
- b := add(3.2, 4.3);
- fmt.printf("b: %T = %v\n", b, b);
- // This is how `new` is implemented
- alloc_type :: proc($T: typeid) -> ^T {
- t := cast(^T)alloc(size_of(T), align_of(T));
- t^ = T{}; // Use default initialization value
- return t;
- }
- copy_slice :: proc(dst, src: []$T) -> int {
- n := min(len(dst), len(src));
- if n > 0 {
- mem.copy(&dst[0], &src[0], n*size_of(T));
- }
- return n;
- }
- double_params :: proc(a: $A, b: $B) -> A {
- return a + A(b);
- }
- fmt.println(double_params(12, 1.345));
- { // Polymorphic Types and Type Specialization
- Table_Slot :: struct($Key, $Value: typeid) {
- occupied: bool,
- hash: u32,
- key: Key,
- value: Value,
- };
- TABLE_SIZE_MIN :: 32;
- Table :: struct($Key, $Value: typeid) {
- count: int,
- allocator: mem.Allocator,
- slots: []Table_Slot(Key, Value),
- };
- // Only allow types that are specializations of a (polymorphic) slice
- make_slice :: proc($T: typeid/[]$E, len: int) -> T {
- return make(T, len);
- }
- // Only allow types that are specializations of `Table`
- allocate :: proc(table: ^$T/Table, capacity: int) {
- c := context;
- if table.allocator.procedure != nil {
- c.allocator = table.allocator;
- }
- context = c;
- table.slots = make_slice(type_of(table.slots), max(capacity, TABLE_SIZE_MIN));
- }
- expand :: proc(table: ^$T/Table) {
- c := context;
- if table.allocator.procedure != nil {
- c.allocator = table.allocator;
- }
- context = c;
- old_slots := table.slots;
- defer delete(old_slots);
- cap := max(2*len(table.slots), TABLE_SIZE_MIN);
- allocate(table, cap);
- for s in old_slots {
- if s.occupied {
- put(table, s.key, s.value);
- }
- }
- }
- // Polymorphic determination of a polymorphic struct
- // put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) {
- put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) {
- hash := get_hash(key); // Ad-hoc method which would fail in a different scope
- index := find_index(table, key, hash);
- if index < 0 {
- if f64(table.count) >= 0.75*f64(len(table.slots)) {
- expand(table);
- }
- assert(table.count <= len(table.slots));
- index = int(hash % u32(len(table.slots)));
- for table.slots[index].occupied {
- if index += 1; index >= len(table.slots) {
- index = 0;
- }
- }
- table.count += 1;
- }
- slot := &table.slots[index];
- slot.occupied = true;
- slot.hash = hash;
- slot.key = key;
- slot.value = value;
- }
- // find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) {
- find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) {
- hash := get_hash(key);
- index := find_index(table, key, hash);
- if index < 0 {
- return Value{}, false;
- }
- return table.slots[index].value, true;
- }
- find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int {
- if len(table.slots) <= 0 {
- return -1;
- }
- index := int(hash % u32(len(table.slots)));
- for table.slots[index].occupied {
- if table.slots[index].hash == hash {
- if table.slots[index].key == key {
- return index;
- }
- }
- if index += 1; index >= len(table.slots) {
- index = 0;
- }
- }
- return -1;
- }
- get_hash :: proc(s: string) -> u32 { // fnv32a
- h: u32 = 0x811c9dc5;
- for i in 0..<len(s) {
- h = (h ~ u32(s[i])) * 0x01000193;
- }
- return h;
- }
- table: Table(string, int);
- for i in 0..36 { put(&table, "Hellope", i); }
- for i in 0..42 { put(&table, "World!", i); }
- found, _ := find(&table, "Hellope");
- fmt.printf("`found` is %v\n", found);
- found, _ = find(&table, "World!");
- fmt.printf("`found` is %v\n", found);
- // I would not personally design a hash table like this in production
- // but this is a nice basic example
- // A better approach would either use a `u64` or equivalent for the key
- // and let the user specify the hashing function or make the user store
- // the hashing procedure with the table
- }
- { // Parametric polymorphic union
- Error :: enum {
- Foo0,
- Foo1,
- Foo2,
- Foo3,
- };
- Para_Union :: union($T: typeid) {T, Error};
- r: Para_Union(int);
- fmt.println(typeid_of(type_of(r)));
- fmt.println(r);
- r = 123;
- fmt.println(r);
- r = Error.Foo0; // r = .Foo0; is allow too, see implicit selector expressions below
- fmt.println(r);
- }
- { // Polymorphic names
- foo :: proc($N: $I, $T: typeid) -> (res: [N]T) {
- // `N` is the constant value passed
- // `I` is the type of N
- // `T` is the type passed
- fmt.printf("Generating an array of type %v from the value %v of type %v\n",
- typeid_of(type_of(res)), N, typeid_of(I));
- for i in 0..<N {
- res[i] = T(i*i);
- }
- return;
- }
- T :: int;
- array := foo(4, T);
- for v, i in array {
- assert(v == T(i*i));
- }
- // Matrix multiplication
- mul :: proc(a: [$M][$N]$T, b: [N][$P]T) -> (c: [M][P]T) {
- for i in 0..<M {
- for j in 0..<P {
- for k in 0..<N {
- c[i][j] += a[i][k] * b[k][j];
- }
- }
- }
- return;
- }
- x := [2][3]f32{
- {1, 2, 3},
- {3, 2, 1},
- };
- y := [3][2]f32{
- {0, 8},
- {6, 2},
- {8, 4},
- };
- z := mul(x, y);
- assert(z == {{36, 24}, {20, 32}});
- }
- }
- prefix_table := [?]string{
- "White",
- "Red",
- "Green",
- "Blue",
- "Octarine",
- "Black",
- };
- threading_example :: proc() {
- if ODIN_OS == "darwin" {
- // TODO: Fix threads on darwin/macOS
- return;
- }
- fmt.println("\n# threading_example");
- { // Basic Threads
- fmt.println("\n## Basic Threads");
- worker_proc :: proc(t: ^thread.Thread) {
- for iteration in 1..5 {
- fmt.printf("Thread %d is on iteration %d\n", t.user_index, iteration);
- fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration);
- time.sleep(1 * time.Millisecond);
- }
- }
- threads := make([dynamic]^thread.Thread, 0, len(prefix_table));
- defer delete(threads);
- for in prefix_table {
- if t := thread.create(worker_proc); t != nil {
- t.init_context = context;
- t.user_index = len(threads);
- append(&threads, t);
- thread.start(t);
- }
- }
- for len(threads) > 0 {
- for i := 0; i < len(threads); /**/ {
- if t := threads[i]; thread.is_done(t) {
- fmt.printf("Thread %d is done\n", t.user_index);
- thread.destroy(t);
- ordered_remove(&threads, i);
- } else {
- i += 1;
- }
- }
- }
- }
- { // Thread Pool
- fmt.println("\n## Thread Pool");
- task_proc :: proc(t: ^thread.Task) {
- index := t.user_index % len(prefix_table);
- for iteration in 1..5 {
- fmt.printf("Worker Task %d is on iteration %d\n", t.user_index, iteration);
- fmt.printf("`%s`: iteration %d\n", prefix_table[index], iteration);
- time.sleep(1 * time.Millisecond);
- }
- }
- pool: thread.Pool;
- thread.pool_init(pool=&pool, thread_count=3);
- defer thread.pool_destroy(&pool);
- for i in 0..<30 {
- thread.pool_add_task(pool=&pool, procedure=task_proc, data=nil, user_index=i);
- }
- thread.pool_start(&pool);
- thread.pool_wait_and_process(&pool);
- }
- }
- array_programming :: proc() {
- fmt.println("\n# array programming");
- {
- a := [3]f32{1, 2, 3};
- b := [3]f32{5, 6, 7};
- c := a * b;
- d := a + b;
- e := 1 + (c - d) / 2;
- fmt.printf("%.1f\n", e); // [0.5, 3.0, 6.5]
- }
- {
- a := [3]f32{1, 2, 3};
- b := swizzle(a, 2, 1, 0);
- assert(b == [3]f32{3, 2, 1});
- c := swizzle(a, 0, 0);
- assert(c == [2]f32{1, 1});
- assert(c == 1);
- }
- {
- Vector3 :: distinct [3]f32;
- a := Vector3{1, 2, 3};
- b := Vector3{5, 6, 7};
- c := (a * b)/2 + 1;
- d := c.x + c.y + c.z;
- fmt.printf("%.1f\n", d); // 22.0
- cross :: proc(a, b: Vector3) -> Vector3 {
- i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1);
- j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0);
- return i - j;
- }
- blah :: proc(a: Vector3) -> f32 {
- return a.x + a.y + a.z;
- }
- x := cross(a, b);
- fmt.println(x);
- fmt.println(blah(x));
- }
- }
- map_type :: proc() {
- fmt.println("\n# map type");
- m := make(map[string]int);
- defer delete(m);
- m["Bob"] = 2;
- m["Ted"] = 5;
- fmt.println(m["Bob"]);
- delete_key(&m, "Ted");
- // If an element of a key does not exist, the zero value of the
- // element will be returned. To check to see if an element exists
- // can be done in two ways:
- elem, ok := m["Bob"];
- exists := "Bob" in m;
- _, _ = elem, ok;
- _ = exists;
- }
- implicit_selector_expression :: proc() {
- fmt.println("\n# implicit selector expression");
- Foo :: enum {A, B, C};
- f: Foo;
- f = Foo.A;
- f = .A;
- BAR :: bit_set[Foo]{.B, .C};
- switch f {
- case .A:
- fmt.println("HITHER");
- case .B:
- fmt.println("NEVER");
- case .C:
- fmt.println("FOREVER");
- }
- my_map := make(map[Foo]int);
- defer delete(my_map);
- my_map[.A] = 123;
- my_map[Foo.B] = 345;
- fmt.println(my_map[.A] + my_map[Foo.B] + my_map[.C]);
- }
- partial_switch :: proc() {
- fmt.println("\n# partial_switch");
- { // enum
- Foo :: enum {
- A,
- B,
- C,
- D,
- };
- f := Foo.A;
- switch f {
- case .A: fmt.println("A");
- case .B: fmt.println("B");
- case .C: fmt.println("C");
- case .D: fmt.println("D");
- case: fmt.println("?");
- }
- #partial switch f {
- case .A: fmt.println("A");
- case .D: fmt.println("D");
- }
- }
- { // union
- Foo :: union {int, bool};
- f: Foo = 123;
- switch in f {
- case int: fmt.println("int");
- case bool: fmt.println("bool");
- case:
- }
- #partial switch in f {
- case bool: fmt.println("bool");
- }
- }
- }
- cstring_example :: proc() {
- fmt.println("\n# cstring_example");
- W :: "Hellope";
- X :: cstring(W);
- Y :: string(X);
- w := W;
- _ = w;
- x: cstring = X;
- y: string = Y;
- z := string(x);
- fmt.println(x, y, z);
- fmt.println(len(x), len(y), len(z));
- fmt.println(len(W), len(X), len(Y));
- // IMPORTANT NOTE for cstring variables
- // len(cstring) is O(N)
- // cast(string)cstring is O(N)
- }
- bit_set_type :: proc() {
- fmt.println("\n# bit_set type");
- {
- using Day :: enum {
- Sunday,
- Monday,
- Tuesday,
- Wednesday,
- Thursday,
- Friday,
- Saturday,
- };
- Days :: distinct bit_set[Day];
- WEEKEND :: Days{Sunday, Saturday};
- d: Days;
- d = {Sunday, Monday};
- e := d + WEEKEND;
- e += {Monday};
- fmt.println(d, e);
- ok := Saturday in e; // `in` is only allowed for `map` and `bit_set` types
- fmt.println(ok);
- if Saturday in e {
- fmt.println("Saturday in", e);
- }
- X :: Saturday in WEEKEND; // Constant evaluation
- fmt.println(X);
- fmt.println("Cardinality:", card(e));
- }
- {
- x: bit_set['A'..'Z'];
- #assert(size_of(x) == size_of(u32));
- y: bit_set[0..8; u16];
- fmt.println(typeid_of(type_of(x))); // bit_set[A..Z]
- fmt.println(typeid_of(type_of(y))); // bit_set[0..8; u16]
- x += {'F'};
- assert('F' in x);
- x -= {'F'};
- assert('F' not_in x);
- y += {1, 4, 2};
- assert(2 in y);
- }
- {
- Letters :: bit_set['A'..'Z'];
- a := Letters{'A', 'B'};
- b := Letters{'A', 'B', 'C', 'D', 'F'};
- c := Letters{'A', 'B'};
- assert(a <= b); // 'a' is a subset of 'b'
- assert(b >= a); // 'b' is a superset of 'a'
- assert(a < b); // 'a' is a strict subset of 'b'
- assert(b > a); // 'b' is a strict superset of 'a'
- assert(!(a < c)); // 'a' is a not strict subset of 'c'
- assert(!(c > a)); // 'c' is a not strict superset of 'a'
- }
- }
- deferred_procedure_associations :: proc() {
- fmt.println("\n# deferred procedure associations");
- @(deferred_out=closure)
- open :: proc(s: string) -> bool {
- fmt.println(s);
- return true;
- }
- closure :: proc(ok: bool) {
- fmt.println("Goodbye?", ok);
- }
- if open("Welcome") {
- fmt.println("Something in the middle, mate.");
- }
- }
- reflection :: proc() {
- fmt.println("\n# reflection");
- Foo :: struct {
- x: int `tag1`,
- y: string `json:"y_field"`,
- z: bool, // no tag
- };
- id := typeid_of(Foo);
- names := reflect.struct_field_names(id);
- types := reflect.struct_field_types(id);
- tags := reflect.struct_field_tags(id);
- assert(len(names) == len(types) && len(names) == len(tags));
- fmt.println("Foo :: struct {");
- for tag, i in tags {
- name, type := names[i], types[i];
- if tag != "" {
- fmt.printf("\t%s: %T `%s`,\n", name, type, tag);
- } else {
- fmt.printf("\t%s: %T,\n", name, type);
- }
- }
- fmt.println("}");
- for tag, i in tags {
- if val, ok := reflect.struct_tag_lookup(tag, "json"); ok {
- fmt.printf("json: %s -> %s\n", names[i], val);
- }
- }
- }
- quaternions :: proc() {
- // Not just an April Fool's Joke any more, but a fully working thing!
- fmt.println("\n# quaternions");
- { // Quaternion operations
- q := 1 + 2i + 3j + 4k;
- r := quaternion(5, 6, 7, 8);
- t := q * r;
- fmt.printf("(%v) * (%v) = %v\n", q, r, t);
- v := q / r;
- fmt.printf("(%v) / (%v) = %v\n", q, r, v);
- u := q + r;
- fmt.printf("(%v) + (%v) = %v\n", q, r, u);
- s := q - r;
- fmt.printf("(%v) - (%v) = %v\n", q, r, s);
- }
- { // The quaternion types
- q128: quaternion128; // 4xf32
- q256: quaternion256; // 4xf64
- q128 = quaternion(1, 0, 0, 0);
- q256 = 1; // quaternion(1, 0, 0, 0);
- }
- { // Built-in procedures
- q := 1 + 2i + 3j + 4k;
- fmt.println("q =", q);
- fmt.println("real(q) =", real(q));
- fmt.println("imag(q) =", imag(q));
- fmt.println("jmag(q) =", jmag(q));
- fmt.println("kmag(q) =", kmag(q));
- fmt.println("conj(q) =", conj(q));
- fmt.println("abs(q) =", abs(q));
- }
- { // Conversion of a complex type to a quaternion type
- c := 1 + 2i;
- q := quaternion256(c);
- fmt.println(c);
- fmt.println(q);
- }
- { // Memory layout of Quaternions
- q := 1 + 2i + 3j + 4k;
- a := transmute([4]f64)q;
- fmt.println("Quaternion memory layout: xyzw/(ijkr)");
- fmt.println(q); // 1.000+2.000i+3.000j+4.000k
- fmt.println(a); // [2.000, 3.000, 4.000, 1.000]
- }
- }
- unroll_for_statement :: proc() {
- fmt.println("\n#'#unroll for' statements");
- // '#unroll for' works the same as if the 'inline' prefix did not
- // exist but these ranged loops are explicitly unrolled which can
- // be very very useful for certain optimizations
- fmt.println("Ranges");
- #unroll for x, i in 1..<4 {
- fmt.println(x, i);
- }
- fmt.println("Strings");
- #unroll for r, i in "Hello, 世界" {
- fmt.println(r, i);
- }
- fmt.println("Arrays");
- #unroll for elem, idx in ([4]int{1, 4, 9, 16}) {
- fmt.println(elem, idx);
- }
- Foo_Enum :: enum {
- A = 1,
- B,
- C = 6,
- D,
- };
- fmt.println("Enum types");
- #unroll for elem, idx in Foo_Enum {
- fmt.println(elem, idx);
- }
- }
- where_clauses :: proc() {
- fmt.println("\n#procedure 'where' clauses");
- { // Sanity checks
- simple_sanity_check :: proc(x: [2]int)
- where len(x) > 1,
- type_of(x) == [2]int {
- fmt.println(x);
- }
- }
- { // Parametric polymorphism checks
- cross_2d :: proc(a, b: $T/[2]$E) -> E
- where intrinsics.type_is_numeric(E) {
- return a.x*b.y - a.y*b.x;
- }
- cross_3d :: proc(a, b: $T/[3]$E) -> T
- where intrinsics.type_is_numeric(E) {
- x := a.y*b.z - a.z*b.y;
- y := a.z*b.x - a.x*b.z;
- z := a.x*b.y - a.y*b.z;
- return T{x, y, z};
- }
- a := [2]int{1, 2};
- b := [2]int{5, -3};
- fmt.println(cross_2d(a, b));
- x := [3]f32{1, 4, 9};
- y := [3]f32{-5, 0, 3};
- fmt.println(cross_3d(x, y));
- // Failure case
- // i := [2]bool{true, false};
- // j := [2]bool{false, true};
- // fmt.println(cross_2d(i, j));
- }
- { // Procedure groups usage
- foo :: proc(x: [$N]int) -> bool
- where N > 2 {
- fmt.println(#procedure, "was called with the parameter", x);
- return true;
- }
- bar :: proc(x: [$N]int) -> bool
- where 0 < N,
- N <= 2 {
- fmt.println(#procedure, "was called with the parameter", x);
- return false;
- }
- baz :: proc{foo, bar};
- x := [3]int{1, 2, 3};
- y := [2]int{4, 9};
- ok_x := baz(x);
- ok_y := baz(y);
- assert(ok_x == true);
- assert(ok_y == false);
- }
- { // Record types
- Foo :: struct($T: typeid, $N: int)
- where intrinsics.type_is_integer(T),
- N > 2 {
- x: [N]T,
- y: [N-2]T,
- };
- T :: i32;
- N :: 5;
- f: Foo(T, N);
- #assert(size_of(f) == (N+N-2)*size_of(T));
- }
- }
- when ODIN_OS == "windows" {
- foreign import kernel32 "system:kernel32.lib"
- }
- foreign_system :: proc() {
- fmt.println("\n#foreign system");
- when ODIN_OS == "windows" {
- // It is sometimes necessarily to interface with foreign code,
- // such as a C library. In Odin, this is achieved through the
- // foreign system. You can “import” a library into the code
- // using the same semantics as a normal import declaration.
- // This foreign import declaration will create a
- // “foreign import name” which can then be used to associate
- // entities within a foreign block.
- foreign kernel32 {
- ExitProcess :: proc "stdcall" (exit_code: u32) ---
- }
- // Foreign procedure declarations have the cdecl/c calling
- // convention by default unless specified otherwise. Due to
- // foreign procedures do not have a body declared within this
- // code, you need append the --- symbol to the end to distinguish
- // it as a procedure literal without a body and not a procedure type.
- // The attributes system can be used to change specific properties
- // of entities declared within a block:
- @(default_calling_convention = "std")
- foreign kernel32 {
- @(link_name="GetLastError") get_last_error :: proc() -> i32 ---
- }
- // Example using the link_prefix attribute
- @(default_calling_convention = "std")
- @(link_prefix = "Get")
- foreign kernel32 {
- LastError :: proc() -> i32 ---
- }
- }
- }
- ranged_fields_for_array_compound_literals :: proc() {
- fmt.println("\n#ranged fields for array compound literals");
- { // Normal Array Literal
- foo := [?]int{1, 4, 9, 16};
- fmt.println(foo);
- }
- { // Indexed
- foo := [?]int{
- 3 = 16,
- 1 = 4,
- 2 = 9,
- 0 = 1,
- };
- fmt.println(foo);
- }
- { // Ranges
- i := 2;
- foo := [?]int {
- 0 = 123,
- 5..9 = 54,
- 10..<16 = i*3 + (i-1)*2,
- };
- #assert(len(foo) == 16);
- fmt.println(foo); // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8]
- }
- { // Slice and Dynamic Array support
- i := 2;
- foo_slice := []int {
- 0 = 123,
- 5..9 = 54,
- 10..<16 = i*3 + (i-1)*2,
- };
- assert(len(foo_slice) == 16);
- fmt.println(foo_slice); // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8]
- foo_dynamic_array := [dynamic]int {
- 0 = 123,
- 5..9 = 54,
- 10..<16 = i*3 + (i-1)*2,
- };
- assert(len(foo_dynamic_array) == 16);
- fmt.println(foo_dynamic_array); // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8]
- }
- }
- deprecated_attribute :: proc() {
- @(deprecated="Use foo_v2 instead")
- foo_v1 :: proc(x: int) {
- fmt.println("foo_v1");
- }
- foo_v2 :: proc(x: int) {
- fmt.println("foo_v2");
- }
- // NOTE: Uncomment to see the warning messages
- // foo_v1(1);
- }
- range_statements_with_multiple_return_values :: proc() {
- // IMPORTANT NOTE(bill, 2019-11-02): This feature is subject to be changed/removed
- fmt.println("\n#range statements with multiple return values");
- My_Iterator :: struct {
- index: int,
- data: []i32,
- };
- make_my_iterator :: proc(data: []i32) -> My_Iterator {
- return My_Iterator{data = data};
- }
- my_iterator :: proc(it: ^My_Iterator) -> (val: i32, idx: int, cond: bool) {
- if cond = it.index < len(it.data); cond {
- val = it.data[it.index];
- idx = it.index;
- it.index += 1;
- }
- return;
- }
- data := make([]i32, 6);
- for _, i in data {
- data[i] = i32(i*i);
- }
- {
- it := make_my_iterator(data);
- for val in my_iterator(&it) {
- fmt.println(val);
- }
- }
- {
- it := make_my_iterator(data);
- for val, idx in my_iterator(&it) {
- fmt.println(val, idx);
- }
- }
- {
- it := make_my_iterator(data);
- for {
- val, _, cond := my_iterator(&it);
- if !cond {
- break;
- }
- fmt.println(val);
- }
- }
- }
- soa_struct_layout :: proc() {
- fmt.println("\n#SOA Struct Layout");
- {
- Vector3 :: struct {x, y, z: f32};
- N :: 2;
- v_aos: [N]Vector3;
- v_aos[0].x = 1;
- v_aos[0].y = 4;
- v_aos[0].z = 9;
- fmt.println(len(v_aos));
- fmt.println(v_aos[0]);
- fmt.println(v_aos[0].x);
- fmt.println(&v_aos[0].x);
- v_aos[1] = {0, 3, 4};
- v_aos[1].x = 2;
- fmt.println(v_aos[1]);
- fmt.println(v_aos);
- v_soa: #soa[N]Vector3;
- v_soa[0].x = 1;
- v_soa[0].y = 4;
- v_soa[0].z = 9;
- // Same syntax as AOS and treat as if it was an array
- fmt.println(len(v_soa));
- fmt.println(v_soa[0]);
- fmt.println(v_soa[0].x);
- fmt.println(&v_soa[0].x);
- v_soa[1] = {0, 3, 4};
- v_soa[1].x = 2;
- fmt.println(v_soa[1]);
- // Can use SOA syntax if necessary
- v_soa.x[0] = 1;
- v_soa.y[0] = 4;
- v_soa.z[0] = 9;
- fmt.println(v_soa.x[0]);
- // Same pointer addresses with both syntaxes
- assert(&v_soa[0].x == &v_soa.x[0]);
- // Same fmt printing
- fmt.println(v_aos);
- fmt.println(v_soa);
- }
- {
- // Works with arrays of length <= 4 which have the implicit fields xyzw/rgba
- Vector3 :: distinct [3]f32;
- N :: 2;
- v_aos: [N]Vector3;
- v_aos[0].x = 1;
- v_aos[0].y = 4;
- v_aos[0].z = 9;
- v_soa: #soa[N]Vector3;
- v_soa[0].x = 1;
- v_soa[0].y = 4;
- v_soa[0].z = 9;
- }
- {
- // SOA Slices
- // Vector3 :: struct {x, y, z: f32};
- Vector3 :: struct {x: i8, y: i16, z: f32};
- N :: 3;
- v: #soa[N]Vector3;
- v[0].x = 1;
- v[0].y = 4;
- v[0].z = 9;
- s: #soa[]Vector3;
- s = v[:];
- assert(len(s) == N);
- fmt.println(s);
- fmt.println(s[0].x);
- a := s[1:2];
- assert(len(a) == 1);
- fmt.println(a);
- d: #soa[dynamic]Vector3;
- append_soa(&d, Vector3{1, 2, 3}, Vector3{4, 5, 9}, Vector3{-4, -4, 3});
- fmt.println(d);
- fmt.println(len(d));
- fmt.println(cap(d));
- fmt.println(d[:]);
- }
- { // soa_zip and soa_unzip
- fmt.println("\nsoa_zip and soa_unzip");
- x := []i32{1, 3, 9};
- y := []f32{2, 4, 16};
- z := []b32{true, false, true};
- // produce an #soa slice the normal slices passed
- s := soa_zip(a=x, b=y, c=z);
- // iterate over the #soa slice
- for v, i in s {
- fmt.println(v, i); // exactly the same as s[i]
- // NOTE: 'v' is NOT a temporary value but has a specialized addressing mode
- // which means that when accessing v.a etc, it does the correct transformation
- // internally:
- // s[i].a === s.a[i]
- fmt.println(v.a, v.b, v.c);
- }
- // Recover the slices from the #soa slice
- a, b, c := soa_unzip(s);
- fmt.println(a, b, c);
- }
- }
- constant_literal_expressions :: proc() {
- fmt.println("\n#constant literal expressions");
- Bar :: struct {x, y: f32};
- Foo :: struct {a, b: int, using c: Bar};
- FOO_CONST :: Foo{b = 2, a = 1, c = {3, 4}};
- fmt.println(FOO_CONST.a);
- fmt.println(FOO_CONST.b);
- fmt.println(FOO_CONST.c);
- fmt.println(FOO_CONST.c.x);
- fmt.println(FOO_CONST.c.y);
- fmt.println(FOO_CONST.x); // using works as expected
- fmt.println(FOO_CONST.y);
- fmt.println("-------");
- ARRAY_CONST :: [3]int{1 = 4, 2 = 9, 0 = 1};
- fmt.println(ARRAY_CONST[0]);
- fmt.println(ARRAY_CONST[1]);
- fmt.println(ARRAY_CONST[2]);
- fmt.println("-------");
- FOO_ARRAY_DEFAULTS :: [3]Foo{{}, {}, {}};
- fmt.println(FOO_ARRAY_DEFAULTS[2].x);
- fmt.println("-------");
- Baz :: enum{A=5, B, C, D};
- ENUM_ARRAY_CONST :: [Baz]int{.A .. .C = 1, .D = 16};
- fmt.println(ENUM_ARRAY_CONST[.A]);
- fmt.println(ENUM_ARRAY_CONST[.B]);
- fmt.println(ENUM_ARRAY_CONST[.C]);
- fmt.println(ENUM_ARRAY_CONST[.D]);
- fmt.println("-------");
- Partial_Baz :: enum{A=5, B, C, D=16};
- #assert(len(Partial_Baz) < len(#partial [Partial_Baz]int));
- PARTIAL_ENUM_ARRAY_CONST :: #partial [Partial_Baz]int{.A .. .C = 1, .D = 16};
- fmt.println(PARTIAL_ENUM_ARRAY_CONST[.A]);
- fmt.println(PARTIAL_ENUM_ARRAY_CONST[.B]);
- fmt.println(PARTIAL_ENUM_ARRAY_CONST[.C]);
- fmt.println(PARTIAL_ENUM_ARRAY_CONST[.D]);
- fmt.println("-------");
- STRING_CONST :: "Hellope!";
- fmt.println(STRING_CONST[0]);
- fmt.println(STRING_CONST[2]);
- fmt.println(STRING_CONST[3]);
- fmt.println(STRING_CONST[0:5]);
- fmt.println(STRING_CONST[3:][:4]);
- }
- union_maybe :: proc() {
- fmt.println("\n#union #maybe");
- // NOTE: This is already built-in, and this is just a reimplementation to explain the behaviour
- Maybe :: union($T: typeid) #maybe {T};
- i: Maybe(u8);
- p: Maybe(^u8); // No tag is stored for pointers, nil is the sentinel value
- #assert(size_of(i) == size_of(u8) + size_of(u8));
- #assert(size_of(p) == size_of(^u8));
- i = 123;
- x := i.?;
- y, y_ok := p.?;
- p = &x;
- z, z_ok := p.?;
- fmt.println(i, p);
- fmt.println(x, &x);
- fmt.println(y, y_ok);
- fmt.println(z, z_ok);
- }
- dummy_procedure :: proc() {
- fmt.println("dummy_procedure");
- }
- explicit_context_definition :: proc "c" () {
- // Try commenting the following statement out below
- context = runtime.default_context();
- fmt.println("\n#explicit context definition");
- dummy_procedure();
- }
- relative_data_types :: proc() {
- fmt.println("\n#relative data types");
- x: int = 123;
- ptr: #relative(i16) ^int;
- ptr = &x;
- fmt.println(ptr^);
- arr := [3]int{1, 2, 3};
- s := arr[:];
- rel_slice: #relative(i16) []int;
- rel_slice = s;
- fmt.println(rel_slice);
- fmt.println(rel_slice[:]);
- fmt.println(rel_slice[1]);
- }
- main :: proc() {
- when true {
- the_basics();
- control_flow();
- named_proc_return_parameters();
- explicit_procedure_overloading();
- struct_type();
- union_type();
- using_statement();
- implicit_context_system();
- parametric_polymorphism();
- array_programming();
- map_type();
- implicit_selector_expression();
- partial_switch();
- cstring_example();
- bit_set_type();
- deferred_procedure_associations();
- reflection();
- quaternions();
- unroll_for_statement();
- where_clauses();
- foreign_system();
- ranged_fields_for_array_compound_literals();
- deprecated_attribute();
- range_statements_with_multiple_return_values();
- threading_example();
- soa_struct_layout();
- constant_literal_expressions();
- union_maybe();
- explicit_context_definition();
- relative_data_types();
- }
- }
|