bits.odin 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455
  1. package math_bits
  2. import "intrinsics"
  3. U8_MIN :: 0;
  4. U16_MIN :: 0;
  5. U32_MIN :: 0;
  6. U64_MIN :: 0;
  7. U8_MAX :: 1 << 8 - 1;
  8. U16_MAX :: 1 << 16 - 1;
  9. U32_MAX :: 1 << 32 - 1;
  10. U64_MAX :: 1 << 64 - 1;
  11. I8_MIN :: - 1 << 7;
  12. I16_MIN :: - 1 << 15;
  13. I32_MIN :: - 1 << 31;
  14. I64_MIN :: - 1 << 63;
  15. I8_MAX :: 1 << 7 - 1;
  16. I16_MAX :: 1 << 15 - 1;
  17. I32_MAX :: 1 << 31 - 1;
  18. I64_MAX :: 1 << 63 - 1;
  19. count_ones :: intrinsics.count_ones;
  20. count_zeros :: intrinsics.count_zeros;
  21. trailing_zeros :: intrinsics.count_trailing_zeros;
  22. leading_zeros :: intrinsics.count_leading_zeros;
  23. count_trailing_zeros :: intrinsics.count_trailing_zeros;
  24. count_leading_zeros :: intrinsics.count_leading_zeros;
  25. reverse_bits :: intrinsics.reverse_bits;
  26. byte_swap :: intrinsics.byte_swap;
  27. overflowing_add :: intrinsics.overflow_add;
  28. overflowing_sub :: intrinsics.overflow_sub;
  29. overflowing_mul :: intrinsics.overflow_mul;
  30. rotate_left8 :: proc(x: u8, k: int) -> u8 {
  31. n :: 8;
  32. s := uint(k) & (n-1);
  33. return x <<s | x>>(n-s);
  34. }
  35. rotate_left16 :: proc(x: u16, k: int) -> u16 {
  36. n :: 16;
  37. s := uint(k) & (n-1);
  38. return x <<s | x>>(n-s);
  39. }
  40. rotate_left32 :: proc(x: u32, k: int) -> u32 {
  41. n :: 32;
  42. s := uint(k) & (n-1);
  43. return x <<s | x>>(n-s);
  44. }
  45. rotate_left64 :: proc(x: u64, k: int) -> u64 {
  46. n :: 64;
  47. s := uint(k) & (n-1);
  48. return x <<s | x>>(n-s);
  49. }
  50. rotate_left :: proc(x: uint, k: int) -> uint {
  51. n :: 8*size_of(uint);
  52. s := uint(k) & (n-1);
  53. return x <<s | x>>(n-s);
  54. }
  55. from_be_u8 :: proc(i: u8) -> u8 { return i; }
  56. from_be_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
  57. from_be_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
  58. from_be_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
  59. from_be_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
  60. from_le_u8 :: proc(i: u8) -> u8 { return i; }
  61. from_le_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
  62. from_le_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
  63. from_le_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
  64. from_le_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
  65. to_be_u8 :: proc(i: u8) -> u8 { return i; }
  66. to_be_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
  67. to_be_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
  68. to_be_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
  69. to_be_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
  70. to_le_u8 :: proc(i: u8) -> u8 { return i; }
  71. to_le_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
  72. to_le_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
  73. to_le_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
  74. to_le_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
  75. len_u8 :: proc(x: u8) -> int {
  76. return int(len_u8_table[x]);
  77. }
  78. len_u16 :: proc(x: u16) -> (n: int) {
  79. x := x;
  80. if x >= 1<<8 {
  81. x >>= 8;
  82. n = 8;
  83. }
  84. return n + int(len_u8_table[x]);
  85. }
  86. len_u32 :: proc(x: u32) -> (n: int) {
  87. x := x;
  88. if x >= 1<<16 {
  89. x >>= 16;
  90. n = 16;
  91. }
  92. if x >= 1<<8 {
  93. x >>= 8;
  94. n += 8;
  95. }
  96. return n + int(len_u8_table[x]);
  97. }
  98. len_u64 :: proc(x: u64) -> (n: int) {
  99. x := x;
  100. if x >= 1<<32 {
  101. x >>= 32;
  102. n = 32;
  103. }
  104. if x >= 1<<16 {
  105. x >>= 16;
  106. n += 16;
  107. }
  108. if x >= 1<<8 {
  109. x >>= 8;
  110. n += 8;
  111. }
  112. return n + int(len_u8_table[x]);
  113. }
  114. len_uint :: proc(x: uint) -> (n: int) {
  115. when size_of(uint) == size_of(u64) {
  116. return len_u64(u64(x));
  117. } else {
  118. return len_u32(u32(x));
  119. }
  120. }
  121. // returns the minimum number of bits required to represent x
  122. len :: proc{len_u8, len_u16, len_u32, len_u64, len_uint};
  123. add_u32 :: proc(x, y, carry: u32) -> (sum, carry_out: u32) {
  124. yc := y + carry;
  125. sum = x + yc;
  126. if sum < x || yc < y {
  127. carry_out = 1;
  128. }
  129. return;
  130. }
  131. add_u64 :: proc(x, y, carry: u64) -> (sum, carry_out: u64) {
  132. yc := y + carry;
  133. sum = x + yc;
  134. if sum < x || yc < y {
  135. carry_out = 1;
  136. }
  137. return;
  138. }
  139. add_uint :: proc(x, y, carry: uint) -> (sum, carry_out: uint) {
  140. yc := y + carry;
  141. sum = x + yc;
  142. if sum < x || yc < y {
  143. carry_out = 1;
  144. }
  145. return;
  146. }
  147. add :: proc{add_u32, add_u64, add_uint};
  148. sub_u32 :: proc(x, y, borrow: u32) -> (diff, borrow_out: u32) {
  149. yb := y + borrow;
  150. diff = x - yb;
  151. if diff > x || yb < y {
  152. borrow_out = 1;
  153. }
  154. return;
  155. }
  156. sub_u64 :: proc(x, y, borrow: u64) -> (diff, borrow_out: u64) {
  157. yb := y + borrow;
  158. diff = x - yb;
  159. if diff > x || yb < y {
  160. borrow_out = 1;
  161. }
  162. return;
  163. }
  164. sub_uint :: proc(x, y, borrow: uint) -> (diff, borrow_out: uint) {
  165. yb := y + borrow;
  166. diff = x - yb;
  167. if diff > x || yb < y {
  168. borrow_out = 1;
  169. }
  170. return;
  171. }
  172. sub :: proc{sub_u32, sub_u64, sub_uint};
  173. mul_u32 :: proc(x, y: u32) -> (hi, lo: u32) {
  174. z := u64(x) * u64(y);
  175. hi, lo = u32(z>>32), u32(z);
  176. return;
  177. }
  178. mul_u64 :: proc(x, y: u64) -> (hi, lo: u64) {
  179. mask :: 1<<32 - 1;
  180. x0, x1 := x & mask, x >> 32;
  181. y0, y1 := y & mask, y >> 32;
  182. w0 := x0 * y0;
  183. t := x1*y0 + w0>>32;
  184. w1, w2 := t & mask, t >> 32;
  185. w1 += x0 * y1;
  186. hi = x1*y1 + w2 + w1>>32;
  187. lo = x * y;
  188. return;
  189. }
  190. mul_uint :: proc(x, y: uint) -> (hi, lo: uint) {
  191. when size_of(uint) == size_of(u32) {
  192. a, b := mul_u32(u32(x), u32(y));
  193. } else {
  194. #assert(size_of(uint) == size_of(u64));
  195. a, b := mul_u64(u64(x), u64(y));
  196. }
  197. return uint(a), uint(b);
  198. }
  199. mul :: proc{mul_u32, mul_u64, mul_uint};
  200. div_u32 :: proc(hi, lo, y: u32) -> (quo, rem: u32) {
  201. assert(y != 0 && y <= hi);
  202. z := u64(hi)<<32 | u64(lo);
  203. quo, rem = u32(z/u64(y)), u32(z%u64(y));
  204. return;
  205. }
  206. div_u64 :: proc(hi, lo, y: u64) -> (quo, rem: u64) {
  207. y := y;
  208. two32 :: 1 << 32;
  209. mask32 :: two32 - 1;
  210. if y == 0 {
  211. panic("divide error");
  212. }
  213. if y <= hi {
  214. panic("overflow error");
  215. }
  216. s := uint(count_leading_zeros(y));
  217. y <<= s;
  218. yn1 := y >> 32;
  219. yn0 := y & mask32;
  220. un32 := hi<<s | lo>>(64-s);
  221. un10 := lo << s;
  222. un1 := un10 >> 32;
  223. un0 := un10 & mask32;
  224. q1 := un32 / yn1;
  225. rhat := un32 - q1*yn1;
  226. for q1 >= two32 || q1*yn0 > two32*rhat+un1 {
  227. q1 -= 1;
  228. rhat += yn1;
  229. if rhat >= two32 {
  230. break;
  231. }
  232. }
  233. un21 := un32*two32 + un1 - q1*y;
  234. q0 := un21 / yn1;
  235. rhat = un21 - q0*yn1;
  236. for q0 >= two32 || q0*yn0 > two32*rhat+un0 {
  237. q0 -= 1;
  238. rhat += yn1;
  239. if rhat >= two32 {
  240. break;
  241. }
  242. }
  243. return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s;
  244. }
  245. div_uint :: proc(hi, lo, y: uint) -> (quo, rem: uint) {
  246. when size_of(uint) == size_of(u32) {
  247. a, b := div_u32(u32(hi), u32(lo), u32(y));
  248. } else {
  249. #assert(size_of(uint) == size_of(u64));
  250. a, b := div_u64(u64(hi), u64(lo), u64(y));
  251. }
  252. return uint(a), uint(b);
  253. }
  254. div :: proc{div_u32, div_u64, div_uint};
  255. is_power_of_two_u8 :: proc(i: u8) -> bool { return i > 0 && (i & (i-1)) == 0; }
  256. is_power_of_two_i8 :: proc(i: i8) -> bool { return i > 0 && (i & (i-1)) == 0; }
  257. is_power_of_two_u16 :: proc(i: u16) -> bool { return i > 0 && (i & (i-1)) == 0; }
  258. is_power_of_two_i16 :: proc(i: i16) -> bool { return i > 0 && (i & (i-1)) == 0; }
  259. is_power_of_two_u32 :: proc(i: u32) -> bool { return i > 0 && (i & (i-1)) == 0; }
  260. is_power_of_two_i32 :: proc(i: i32) -> bool { return i > 0 && (i & (i-1)) == 0; }
  261. is_power_of_two_u64 :: proc(i: u64) -> bool { return i > 0 && (i & (i-1)) == 0; }
  262. is_power_of_two_i64 :: proc(i: i64) -> bool { return i > 0 && (i & (i-1)) == 0; }
  263. is_power_of_two_uint :: proc(i: uint) -> bool { return i > 0 && (i & (i-1)) == 0; }
  264. is_power_of_two_int :: proc(i: int) -> bool { return i > 0 && (i & (i-1)) == 0; }
  265. is_power_of_two :: proc{
  266. is_power_of_two_u8, is_power_of_two_i8,
  267. is_power_of_two_u16, is_power_of_two_i16,
  268. is_power_of_two_u32, is_power_of_two_i32,
  269. is_power_of_two_u64, is_power_of_two_i64,
  270. is_power_of_two_uint, is_power_of_two_int,
  271. };
  272. @private
  273. len_u8_table := [256]u8{
  274. 0 = 0,
  275. 1 = 1,
  276. 2..<4 = 2,
  277. 4..<8 = 3,
  278. 8..<16 = 4,
  279. 16..<32 = 5,
  280. 32..<64 = 6,
  281. 64..<128 = 7,
  282. 128..<256 = 8,
  283. };
  284. bitfield_extract_u8 :: proc(value: u8, offset, bits: uint) -> u8 { return (value >> offset) & u8(1<<bits - 1); }
  285. bitfield_extract_u16 :: proc(value: u16, offset, bits: uint) -> u16 { return (value >> offset) & u16(1<<bits - 1); }
  286. bitfield_extract_u32 :: proc(value: u32, offset, bits: uint) -> u32 { return (value >> offset) & u32(1<<bits - 1); }
  287. bitfield_extract_u64 :: proc(value: u64, offset, bits: uint) -> u64 { return (value >> offset) & u64(1<<bits - 1); }
  288. bitfield_extract_u128 :: proc(value: u128, offset, bits: uint) -> u128 { return (value >> offset) & u128(1<<bits - 1); }
  289. bitfield_extract_uint :: proc(value: uint, offset, bits: uint) -> uint { return (value >> offset) & uint(1<<bits - 1); }
  290. bitfield_extract_i8 :: proc(value: i8, offset, bits: uint) -> i8 {
  291. v := (u8(value) >> offset) & u8(1<<bits - 1);
  292. m := u8(1<<(bits-1));
  293. r := (v~m) - m;
  294. return i8(r);
  295. }
  296. bitfield_extract_i16 :: proc(value: i16, offset, bits: uint) -> i16 {
  297. v := (u16(value) >> offset) & u16(1<<bits - 1);
  298. m := u16(1<<(bits-1));
  299. r := (v~m) - m;
  300. return i16(r);
  301. }
  302. bitfield_extract_i32 :: proc(value: i32, offset, bits: uint) -> i32 {
  303. v := (u32(value) >> offset) & u32(1<<bits - 1);
  304. m := u32(1<<(bits-1));
  305. r := (v~m) - m;
  306. return i32(r);
  307. }
  308. bitfield_extract_i64 :: proc(value: i64, offset, bits: uint) -> i64 {
  309. v := (u64(value) >> offset) & u64(1<<bits - 1);
  310. m := u64(1<<(bits-1));
  311. r := (v~m) - m;
  312. return i64(r);
  313. }
  314. bitfield_extract_i128 :: proc(value: i128, offset, bits: uint) -> i128 {
  315. v := (u128(value) >> offset) & u128(1<<bits - 1);
  316. m := u128(1<<(bits-1));
  317. r := (v~m) - m;
  318. return i128(r);
  319. }
  320. bitfield_extract_int :: proc(value: int, offset, bits: uint) -> int {
  321. v := (uint(value) >> offset) & uint(1<<bits - 1);
  322. m := uint(1<<(bits-1));
  323. r := (v~m) - m;
  324. return int(r);
  325. }
  326. bitfield_extract :: proc{
  327. bitfield_extract_u8,
  328. bitfield_extract_u16,
  329. bitfield_extract_u32,
  330. bitfield_extract_u64,
  331. bitfield_extract_u128,
  332. bitfield_extract_uint,
  333. bitfield_extract_i8,
  334. bitfield_extract_i16,
  335. bitfield_extract_i32,
  336. bitfield_extract_i64,
  337. bitfield_extract_i128,
  338. bitfield_extract_int,
  339. };
  340. bitfield_insert_u8 :: proc(base, insert: u8, offset, bits: uint) -> u8 {
  341. mask := u8(1<<bits - 1);
  342. return (base &~ (mask<<offset)) | ((insert&mask) << offset);
  343. }
  344. bitfield_insert_u16 :: proc(base, insert: u16, offset, bits: uint) -> u16 {
  345. mask := u16(1<<bits - 1);
  346. return (base &~ (mask<<offset)) | ((insert&mask) << offset);
  347. }
  348. bitfield_insert_u32 :: proc(base, insert: u32, offset, bits: uint) -> u32 {
  349. mask := u32(1<<bits - 1);
  350. return (base &~ (mask<<offset)) | ((insert&mask) << offset);
  351. }
  352. bitfield_insert_u64 :: proc(base, insert: u64, offset, bits: uint) -> u64 {
  353. mask := u64(1<<bits - 1);
  354. return (base &~ (mask<<offset)) | ((insert&mask) << offset);
  355. }
  356. bitfield_insert_u128 :: proc(base, insert: u128, offset, bits: uint) -> u128 {
  357. mask := u128(1<<bits - 1);
  358. return (base &~ (mask<<offset)) | ((insert&mask) << offset);
  359. }
  360. bitfield_insert_uint :: proc(base, insert: uint, offset, bits: uint) -> uint {
  361. mask := uint(1<<bits - 1);
  362. return (base &~ (mask<<offset)) | ((insert&mask) << offset);
  363. }
  364. bitfield_insert_i8 :: proc(base, insert: i8, offset, bits: uint) -> i8 {
  365. mask := i8(1<<bits - 1);
  366. return (base &~ (mask<<offset)) | ((insert&mask) << offset);
  367. }
  368. bitfield_insert_i16 :: proc(base, insert: i16, offset, bits: uint) -> i16 {
  369. mask := i16(1<<bits - 1);
  370. return (base &~ (mask<<offset)) | ((insert&mask) << offset);
  371. }
  372. bitfield_insert_i32 :: proc(base, insert: i32, offset, bits: uint) -> i32 {
  373. mask := i32(1<<bits - 1);
  374. return (base &~ (mask<<offset)) | ((insert&mask) << offset);
  375. }
  376. bitfield_insert_i64 :: proc(base, insert: i64, offset, bits: uint) -> i64 {
  377. mask := i64(1<<bits - 1);
  378. return (base &~ (mask<<offset)) | ((insert&mask) << offset);
  379. }
  380. bitfield_insert_i128 :: proc(base, insert: i128, offset, bits: uint) -> i128 {
  381. mask := i128(1<<bits - 1);
  382. return (base &~ (mask<<offset)) | ((insert&mask) << offset);
  383. }
  384. bitfield_insert_int :: proc(base, insert: int, offset, bits: uint) -> int {
  385. mask := int(1<<bits - 1);
  386. return (base &~ (mask<<offset)) | ((insert&mask) << offset);
  387. }
  388. bitfield_insert :: proc{
  389. bitfield_insert_u8,
  390. bitfield_insert_u16,
  391. bitfield_insert_u32,
  392. bitfield_insert_u64,
  393. bitfield_insert_u128,
  394. bitfield_insert_uint,
  395. bitfield_insert_i8,
  396. bitfield_insert_i16,
  397. bitfield_insert_i32,
  398. bitfield_insert_i64,
  399. bitfield_insert_i128,
  400. bitfield_insert_int,
  401. };