123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573 |
- package math_big
- /*
- Copyright 2021 Jeroen van Rijn <[email protected]>.
- Made available under Odin's BSD-3 license.
- An arbitrary precision mathematics implementation in Odin.
- For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
- The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
- This file contains basic arithmetic operations like `add`, `sub`, `mul`, `div`, ...
- */
- /*
- ===========================
- User-level routines
- ===========================
- */
- /*
- High-level addition. Handles sign.
- */
- int_add :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(dest, a, b);
- context.allocator = allocator;
- internal_clear_if_uninitialized(dest, a, b) or_return;
- /*
- All parameters have been initialized.
- */
- return #force_inline internal_int_add_signed(dest, a, b);
- }
- /*
- Adds the unsigned `DIGIT` immediate to an `Int`,
- such that the `DIGIT` doesn't have to be turned into an `Int` first.
- dest = a + digit;
- */
- int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(dest, a);
- context.allocator = allocator;
- internal_clear_if_uninitialized(a) or_return;
- /*
- Grow destination as required.
- */
- grow(dest, a.used + 1) or_return;
- /*
- All parameters have been initialized.
- */
- return #force_inline internal_int_add_digit(dest, a, digit);
- }
- /*
- High-level subtraction, dest = number - decrease. Handles signs.
- */
- int_sub :: proc(dest, number, decrease: ^Int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(dest, number, decrease);
- context.allocator = allocator;
- internal_clear_if_uninitialized(dest, number, decrease) or_return;
- /*
- All parameters have been initialized.
- */
- return #force_inline internal_int_sub_signed(dest, number, decrease);
- }
- /*
- Adds the unsigned `DIGIT` immediate to an `Int`,
- such that the `DIGIT` doesn't have to be turned into an `Int` first.
- dest = a - digit;
- */
- int_sub_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(dest, a);
- context.allocator = allocator;
- internal_clear_if_uninitialized(a) or_return;
- /*
- Grow destination as required.
- */
- grow(dest, a.used + 1) or_return;
- /*
- All parameters have been initialized.
- */
- return #force_inline internal_int_sub_digit(dest, a, digit);
- }
- /*
- dest = src / 2
- dest = src >> 1
- */
- int_halve :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(dest, src);
- context.allocator = allocator;
- internal_clear_if_uninitialized(dest, src) or_return;
- /*
- Grow destination as required.
- */
- if dest != src { grow(dest, src.used + 1) or_return }
- return #force_inline internal_int_shr1(dest, src);
- }
- halve :: proc { int_halve, };
- shr1 :: halve;
- /*
- dest = src * 2
- dest = src << 1
- */
- int_double :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(dest, src);
- context.allocator = allocator;
- internal_clear_if_uninitialized(dest, src) or_return;
- /*
- Grow destination as required.
- */
- if dest != src { grow(dest, src.used + 1) or_return; }
- return #force_inline internal_int_shl1(dest, src);
- }
- double :: proc { int_double, };
- shl1 :: double;
- /*
- Multiply by a DIGIT.
- */
- int_mul_digit :: proc(dest, src: ^Int, multiplier: DIGIT, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(dest, src);
- context.allocator = allocator;
- internal_clear_if_uninitialized(src, dest) or_return;
- return #force_inline internal_int_mul_digit(dest, src, multiplier);
- }
- /*
- High level multiplication (handles sign).
- */
- int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(dest, src, multiplier);
- context.allocator = allocator;
- internal_clear_if_uninitialized(dest, src, multiplier) or_return;
- return #force_inline internal_int_mul(dest, src, multiplier);
- }
- mul :: proc { int_mul, int_mul_digit, };
- sqr :: proc(dest, src: ^Int) -> (err: Error) { return mul(dest, src, src); }
- /*
- divmod.
- Both the quotient and remainder are optional and may be passed a nil.
- */
- int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator;
- /*
- Early out if neither of the results is wanted.
- */
- if quotient == nil && remainder == nil { return nil; }
- internal_clear_if_uninitialized(numerator, denominator) or_return;
- return #force_inline internal_divmod(quotient, remainder, numerator, denominator);
- }
- int_divmod_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) {
- assert_if_nil(quotient, numerator);
- context.allocator = allocator;
- internal_clear_if_uninitialized(numerator) or_return;
- return #force_inline internal_divmod(quotient, numerator, denominator);
- }
- divmod :: proc{ int_divmod, int_divmod_digit, };
- int_div :: proc(quotient, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(quotient, numerator, denominator);
- context.allocator = allocator;
- internal_clear_if_uninitialized(numerator, denominator) or_return;
- return #force_inline internal_divmod(quotient, nil, numerator, denominator);
- }
- int_div_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(quotient, numerator);
- context.allocator = allocator;
- internal_clear_if_uninitialized(numerator) or_return;
- _ = #force_inline internal_divmod(quotient, numerator, denominator) or_return;
- return;
- }
- div :: proc { int_div, int_div_digit, };
- /*
- remainder = numerator % denominator.
- 0 <= remainder < denominator if denominator > 0
- denominator < remainder <= 0 if denominator < 0
- */
- int_mod :: proc(remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(remainder, numerator, denominator);
- context.allocator = allocator;
- internal_clear_if_uninitialized(numerator, denominator) or_return;
- return #force_inline internal_int_mod(remainder, numerator, denominator);
- }
- int_mod_digit :: proc(numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) {
- return #force_inline internal_divmod(nil, numerator, denominator, allocator);
- }
- mod :: proc { int_mod, int_mod_digit, };
- /*
- remainder = (number + addend) % modulus.
- */
- int_addmod :: proc(remainder, number, addend, modulus: ^Int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(remainder, number, addend);
- context.allocator = allocator;
- internal_clear_if_uninitialized(number, addend, modulus) or_return;
- return #force_inline internal_addmod(remainder, number, addend, modulus);
- }
- addmod :: proc { int_addmod, };
- /*
- remainder = (number - decrease) % modulus.
- */
- int_submod :: proc(remainder, number, decrease, modulus: ^Int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(remainder, number, decrease);
- context.allocator = allocator;
- internal_clear_if_uninitialized(number, decrease, modulus) or_return;
- return #force_inline internal_submod(remainder, number, decrease, modulus);
- }
- submod :: proc { int_submod, };
- /*
- remainder = (number * multiplicand) % modulus.
- */
- int_mulmod :: proc(remainder, number, multiplicand, modulus: ^Int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(remainder, number, multiplicand);
- context.allocator = allocator;
- internal_clear_if_uninitialized(number, multiplicand, modulus) or_return;
- return #force_inline internal_mulmod(remainder, number, multiplicand, modulus);
- }
- mulmod :: proc { int_mulmod, };
- /*
- remainder = (number * number) % modulus.
- */
- int_sqrmod :: proc(remainder, number, modulus: ^Int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(remainder, number, modulus);
- context.allocator = allocator;
- internal_clear_if_uninitialized(number, modulus) or_return;
- return #force_inline internal_sqrmod(remainder, number, modulus);
- }
- sqrmod :: proc { int_sqrmod, };
- int_factorial :: proc(res: ^Int, n: int, allocator := context.allocator) -> (err: Error) {
- if n < 0 || n > FACTORIAL_MAX_N { return .Invalid_Argument; }
- assert_if_nil(res);
- return #force_inline internal_int_factorial(res, n, allocator);
- }
- factorial :: proc { int_factorial, };
- /*
- Number of ways to choose `k` items from `n` items.
- Also known as the binomial coefficient.
- TODO: Speed up.
- Could be done faster by reusing code from factorial and reusing the common "prefix" results for n!, k! and n-k!
- We know that n >= k, otherwise we early out with res = 0.
- So:
- n-k, keep result
- n, start from previous result
- k, start from previous result
- */
- int_choose_digit :: proc(res: ^Int, n, k: int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(res);
- context.allocator = allocator;
- if n < 0 || n > FACTORIAL_MAX_N { return .Invalid_Argument; }
- if k > n { return internal_zero(res); }
- /*
- res = n! / (k! * (n - k)!)
- */
- n_fac, k_fac, n_minus_k_fac := &Int{}, &Int{}, &Int{};
- defer internal_destroy(n_fac, k_fac, n_minus_k_fac);
- #force_inline internal_int_factorial(n_minus_k_fac, n - k) or_return;
- #force_inline internal_int_factorial(k_fac, k) or_return;
- #force_inline internal_mul(k_fac, k_fac, n_minus_k_fac) or_return;
- #force_inline internal_int_factorial(n_fac, n) or_return;
- #force_inline internal_div(res, n_fac, k_fac) or_return;
- return;
- }
- choose :: proc { int_choose_digit, };
- /*
- Function computing both GCD and (if target isn't `nil`) also LCM.
- */
- int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
- if res_gcd == nil && res_lcm == nil { return nil; }
- assert_if_nil(a, b);
- context.allocator = allocator;
- internal_clear_if_uninitialized(a, b) or_return;
- return #force_inline internal_int_gcd_lcm(res_gcd, res_lcm, a, b);
- }
- gcd_lcm :: proc { int_gcd_lcm, };
- /*
- Greatest Common Divisor.
- */
- int_gcd :: proc(res, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
- return #force_inline int_gcd_lcm(res, nil, a, b, allocator);
- }
- gcd :: proc { int_gcd, };
- /*
- Least Common Multiple.
- */
- int_lcm :: proc(res, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
- return #force_inline int_gcd_lcm(nil, res, a, b, allocator);
- }
- lcm :: proc { int_lcm, };
- /*
- remainder = numerator % (1 << bits)
- */
- int_mod_bits :: proc(remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(remainder, numerator);
- context.allocator = allocator;
- internal_clear_if_uninitialized(remainder, numerator) or_return;
- if bits < 0 { return .Invalid_Argument; }
- return #force_inline internal_int_mod_bits(remainder, numerator, bits);
- }
- mod_bits :: proc { int_mod_bits, };
- /*
- Logs and roots and such.
- */
- int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -> (res: int, err: Error) {
- assert_if_nil(a);
- context.allocator = allocator;
- internal_clear_if_uninitialized(a) or_return;
- return #force_inline internal_int_log(a, base);
- }
- digit_log :: proc(a: DIGIT, base: DIGIT) -> (log: int, err: Error) {
- return #force_inline internal_digit_log(a, base);
- }
- log :: proc { int_log, digit_log, };
- /*
- Calculate `dest = base^power` using a square-multiply algorithm.
- */
- int_pow :: proc(dest, base: ^Int, power: int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(dest, base);
- context.allocator = allocator;
- internal_clear_if_uninitialized(dest, base) or_return;
- return #force_inline internal_int_pow(dest, base, power);
- }
- /*
- Calculate `dest = base^power` using a square-multiply algorithm.
- */
- int_pow_int :: proc(dest: ^Int, base, power: int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(dest);
- return #force_inline internal_pow(dest, base, power, allocator);
- }
- pow :: proc { int_pow, int_pow_int, small_pow, };
- exp :: pow;
- small_pow :: proc(base: _WORD, exponent: _WORD) -> (result: _WORD) {
- return #force_inline internal_small_pow(base, exponent);
- }
- /*
- This function is less generic than `root_n`, simpler and faster.
- */
- int_sqrt :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
- assert_if_nil(dest, src);
- context.allocator = allocator;
- internal_clear_if_uninitialized(dest, src) or_return;
- return #force_inline internal_int_sqrt(dest, src);
- }
- sqrt :: proc { int_sqrt, };
- /*
- Find the nth root of an Integer.
- Result found such that `(dest)**n <= src` and `(dest+1)**n > src`
- This algorithm uses Newton's approximation `x[i+1] = x[i] - f(x[i])/f'(x[i])`,
- which will find the root in `log(n)` time where each step involves a fair bit.
- */
- int_root_n :: proc(dest, src: ^Int, n: int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator;
- /*
- Fast path for n == 2.
- */
- if n == 2 { return sqrt(dest, src); }
- assert_if_nil(dest, src);
- /*
- Initialize dest + src if needed.
- */
- internal_clear_if_uninitialized(dest, src) or_return;
- return #force_inline internal_int_root_n(dest, src, n);
- }
- root_n :: proc { int_root_n, };
- /*
- Comparison routines.
- */
- int_is_initialized :: proc(a: ^Int) -> bool {
- if a == nil { return false; }
- return #force_inline internal_int_is_initialized(a);
- }
- int_is_zero :: proc(a: ^Int, allocator := context.allocator) -> (zero: bool, err: Error) {
- assert_if_nil(a);
- context.allocator = allocator;
- internal_clear_if_uninitialized(a) or_return;
- return #force_inline internal_is_zero(a), nil;
- }
- int_is_positive :: proc(a: ^Int, allocator := context.allocator) -> (positive: bool, err: Error) {
- assert_if_nil(a);
- context.allocator = allocator;
- internal_clear_if_uninitialized(a) or_return;
- return #force_inline internal_is_positive(a), nil;
- }
- int_is_negative :: proc(a: ^Int, allocator := context.allocator) -> (negative: bool, err: Error) {
- assert_if_nil(a);
- context.allocator = allocator;
- internal_clear_if_uninitialized(a) or_return;
- return #force_inline internal_is_negative(a), nil;
- }
- int_is_even :: proc(a: ^Int, allocator := context.allocator) -> (even: bool, err: Error) {
- assert_if_nil(a);
- context.allocator = allocator;
- internal_clear_if_uninitialized(a) or_return;
- return #force_inline internal_is_even(a), nil;
- }
- int_is_odd :: proc(a: ^Int, allocator := context.allocator) -> (odd: bool, err: Error) {
- assert_if_nil(a);
- context.allocator = allocator;
- internal_clear_if_uninitialized(a) or_return;
- return #force_inline internal_is_odd(a), nil;
- }
- platform_int_is_power_of_two :: #force_inline proc(a: int) -> bool {
- return ((a) != 0) && (((a) & ((a) - 1)) == 0);
- }
- int_is_power_of_two :: proc(a: ^Int, allocator := context.allocator) -> (res: bool, err: Error) {
- assert_if_nil(a);
- context.allocator = allocator;
- internal_clear_if_uninitialized(a) or_return;
- return #force_inline internal_is_power_of_two(a), nil;
- }
- /*
- Compare two `Int`s, signed.
- */
- int_compare :: proc(a, b: ^Int, allocator := context.allocator) -> (comparison: int, err: Error) {
- assert_if_nil(a, b);
- context.allocator = allocator;
- internal_clear_if_uninitialized(a, b) or_return;
- return #force_inline internal_cmp(a, b), nil;
- }
- int_cmp :: int_compare;
- /*
- Compare an `Int` to an unsigned number upto the size of the backing type.
- */
- int_compare_digit :: proc(a: ^Int, b: DIGIT, allocator := context.allocator) -> (comparison: int, err: Error) {
- assert_if_nil(a);
- context.allocator = allocator;
- internal_clear_if_uninitialized(a) or_return;
- return #force_inline internal_cmp_digit(a, b), nil;
- }
- int_cmp_digit :: int_compare_digit;
- /*
- Compare the magnitude of two `Int`s, unsigned.
- */
- int_compare_magnitude :: proc(a, b: ^Int, allocator := context.allocator) -> (res: int, err: Error) {
- assert_if_nil(a, b);
- context.allocator = allocator;
- internal_clear_if_uninitialized(a, b) or_return;
- return #force_inline internal_cmp_mag(a, b), nil;
- }
- /*
- Check if remainders are possible squares - fast exclude non-squares.
- Returns `true` if `a` is a square, `false` if not.
- Assumes `a` not to be `nil` and to have been initialized.
- */
- int_is_square :: proc(a: ^Int, allocator := context.allocator) -> (square: bool, err: Error) {
- assert_if_nil(a);
- context.allocator = allocator;
- internal_clear_if_uninitialized(a) or_return;
- return #force_inline internal_int_is_square(a);
- }
|