bits.odin 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. package math_bits
  2. import "core:intrinsics"
  3. U8_MIN :: 0
  4. U16_MIN :: 0
  5. U32_MIN :: 0
  6. U64_MIN :: 0
  7. U8_MAX :: 1 << 8 - 1
  8. U16_MAX :: 1 << 16 - 1
  9. U32_MAX :: 1 << 32 - 1
  10. U64_MAX :: 1 << 64 - 1
  11. I8_MIN :: - 1 << 7
  12. I16_MIN :: - 1 << 15
  13. I32_MIN :: - 1 << 31
  14. I64_MIN :: - 1 << 63
  15. I8_MAX :: 1 << 7 - 1
  16. I16_MAX :: 1 << 15 - 1
  17. I32_MAX :: 1 << 31 - 1
  18. I64_MAX :: 1 << 63 - 1
  19. count_ones :: intrinsics.count_ones
  20. count_zeros :: intrinsics.count_zeros
  21. trailing_zeros :: intrinsics.count_trailing_zeros
  22. leading_zeros :: intrinsics.count_leading_zeros
  23. count_trailing_zeros :: intrinsics.count_trailing_zeros
  24. count_leading_zeros :: intrinsics.count_leading_zeros
  25. reverse_bits :: intrinsics.reverse_bits
  26. byte_swap :: intrinsics.byte_swap
  27. overflowing_add :: intrinsics.overflow_add
  28. overflowing_sub :: intrinsics.overflow_sub
  29. overflowing_mul :: intrinsics.overflow_mul
  30. log2 :: proc(x: $T) -> T where intrinsics.type_is_integer(T), intrinsics.type_is_unsigned(T) {
  31. return (8*size_of(T)-1) - count_leading_zeros(x)
  32. }
  33. rotate_left8 :: proc(x: u8, k: int) -> u8 {
  34. n :: 8
  35. s := uint(k) & (n-1)
  36. return x <<s | x>>(n-s)
  37. }
  38. rotate_left16 :: proc(x: u16, k: int) -> u16 {
  39. n :: 16
  40. s := uint(k) & (n-1)
  41. return x <<s | x>>(n-s)
  42. }
  43. rotate_left32 :: proc(x: u32, k: int) -> u32 {
  44. n :: 32
  45. s := uint(k) & (n-1)
  46. return x <<s | x>>(n-s)
  47. }
  48. rotate_left64 :: proc(x: u64, k: int) -> u64 {
  49. n :: 64
  50. s := uint(k) & (n-1)
  51. return x <<s | x>>(n-s)
  52. }
  53. rotate_left :: proc(x: uint, k: int) -> uint {
  54. n :: 8*size_of(uint)
  55. s := uint(k) & (n-1)
  56. return x <<s | x>>(n-s)
  57. }
  58. from_be_u8 :: proc(i: u8) -> u8 { return i }
  59. from_be_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
  60. from_be_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
  61. from_be_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
  62. from_be_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
  63. from_le_u8 :: proc(i: u8) -> u8 { return i }
  64. from_le_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
  65. from_le_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
  66. from_le_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
  67. from_le_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
  68. to_be_u8 :: proc(i: u8) -> u8 { return i }
  69. to_be_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
  70. to_be_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
  71. to_be_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
  72. to_be_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
  73. to_le_u8 :: proc(i: u8) -> u8 { return i }
  74. to_le_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
  75. to_le_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
  76. to_le_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
  77. to_le_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
  78. len_u8 :: proc(x: u8) -> int {
  79. return int(len_u8_table[x])
  80. }
  81. len_u16 :: proc(x: u16) -> (n: int) {
  82. x := x
  83. if x >= 1<<8 {
  84. x >>= 8
  85. n = 8
  86. }
  87. return n + int(len_u8_table[x])
  88. }
  89. len_u32 :: proc(x: u32) -> (n: int) {
  90. x := x
  91. if x >= 1<<16 {
  92. x >>= 16
  93. n = 16
  94. }
  95. if x >= 1<<8 {
  96. x >>= 8
  97. n += 8
  98. }
  99. return n + int(len_u8_table[x])
  100. }
  101. len_u64 :: proc(x: u64) -> (n: int) {
  102. x := x
  103. if x >= 1<<32 {
  104. x >>= 32
  105. n = 32
  106. }
  107. if x >= 1<<16 {
  108. x >>= 16
  109. n += 16
  110. }
  111. if x >= 1<<8 {
  112. x >>= 8
  113. n += 8
  114. }
  115. return n + int(len_u8_table[x])
  116. }
  117. len_uint :: proc(x: uint) -> (n: int) {
  118. when size_of(uint) == size_of(u64) {
  119. return len_u64(u64(x))
  120. } else {
  121. return len_u32(u32(x))
  122. }
  123. }
  124. // returns the minimum number of bits required to represent x
  125. len :: proc{len_u8, len_u16, len_u32, len_u64, len_uint}
  126. add_u32 :: proc(x, y, carry: u32) -> (sum, carry_out: u32) {
  127. yc := y + carry
  128. sum = x + yc
  129. if sum < x || yc < y {
  130. carry_out = 1
  131. }
  132. return
  133. }
  134. add_u64 :: proc(x, y, carry: u64) -> (sum, carry_out: u64) {
  135. yc := y + carry
  136. sum = x + yc
  137. if sum < x || yc < y {
  138. carry_out = 1
  139. }
  140. return
  141. }
  142. add_uint :: proc(x, y, carry: uint) -> (sum, carry_out: uint) {
  143. yc := y + carry
  144. sum = x + yc
  145. if sum < x || yc < y {
  146. carry_out = 1
  147. }
  148. return
  149. }
  150. add :: proc{add_u32, add_u64, add_uint}
  151. sub_u32 :: proc(x, y, borrow: u32) -> (diff, borrow_out: u32) {
  152. yb := y + borrow
  153. diff = x - yb
  154. if diff > x || yb < y {
  155. borrow_out = 1
  156. }
  157. return
  158. }
  159. sub_u64 :: proc(x, y, borrow: u64) -> (diff, borrow_out: u64) {
  160. yb := y + borrow
  161. diff = x - yb
  162. if diff > x || yb < y {
  163. borrow_out = 1
  164. }
  165. return
  166. }
  167. sub_uint :: proc(x, y, borrow: uint) -> (diff, borrow_out: uint) {
  168. yb := y + borrow
  169. diff = x - yb
  170. if diff > x || yb < y {
  171. borrow_out = 1
  172. }
  173. return
  174. }
  175. sub :: proc{sub_u32, sub_u64, sub_uint}
  176. mul_u32 :: proc(x, y: u32) -> (hi, lo: u32) {
  177. z := u64(x) * u64(y)
  178. hi, lo = u32(z>>32), u32(z)
  179. return
  180. }
  181. mul_u64 :: proc(x, y: u64) -> (hi, lo: u64) {
  182. mask :: 1<<32 - 1
  183. x0, x1 := x & mask, x >> 32
  184. y0, y1 := y & mask, y >> 32
  185. w0 := x0 * y0
  186. t := x1*y0 + w0>>32
  187. w1, w2 := t & mask, t >> 32
  188. w1 += x0 * y1
  189. hi = x1*y1 + w2 + w1>>32
  190. lo = x * y
  191. return
  192. }
  193. mul_uint :: proc(x, y: uint) -> (hi, lo: uint) {
  194. when size_of(uint) == size_of(u32) {
  195. a, b := mul_u32(u32(x), u32(y))
  196. } else {
  197. #assert(size_of(uint) == size_of(u64))
  198. a, b := mul_u64(u64(x), u64(y))
  199. }
  200. return uint(a), uint(b)
  201. }
  202. mul :: proc{mul_u32, mul_u64, mul_uint}
  203. div_u32 :: proc(hi, lo, y: u32) -> (quo, rem: u32) {
  204. assert(y != 0 && y <= hi)
  205. z := u64(hi)<<32 | u64(lo)
  206. quo, rem = u32(z/u64(y)), u32(z%u64(y))
  207. return
  208. }
  209. div_u64 :: proc(hi, lo, y: u64) -> (quo, rem: u64) {
  210. y := y
  211. two32 :: 1 << 32
  212. mask32 :: two32 - 1
  213. if y == 0 {
  214. panic("divide error")
  215. }
  216. if y <= hi {
  217. panic("overflow error")
  218. }
  219. s := uint(count_leading_zeros(y))
  220. y <<= s
  221. yn1 := y >> 32
  222. yn0 := y & mask32
  223. un32 := hi<<s | lo>>(64-s)
  224. un10 := lo << s
  225. un1 := un10 >> 32
  226. un0 := un10 & mask32
  227. q1 := un32 / yn1
  228. rhat := un32 - q1*yn1
  229. for q1 >= two32 || q1*yn0 > two32*rhat+un1 {
  230. q1 -= 1
  231. rhat += yn1
  232. if rhat >= two32 {
  233. break
  234. }
  235. }
  236. un21 := un32*two32 + un1 - q1*y
  237. q0 := un21 / yn1
  238. rhat = un21 - q0*yn1
  239. for q0 >= two32 || q0*yn0 > two32*rhat+un0 {
  240. q0 -= 1
  241. rhat += yn1
  242. if rhat >= two32 {
  243. break
  244. }
  245. }
  246. return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s
  247. }
  248. div_uint :: proc(hi, lo, y: uint) -> (quo, rem: uint) {
  249. when size_of(uint) == size_of(u32) {
  250. a, b := div_u32(u32(hi), u32(lo), u32(y))
  251. } else {
  252. #assert(size_of(uint) == size_of(u64))
  253. a, b := div_u64(u64(hi), u64(lo), u64(y))
  254. }
  255. return uint(a), uint(b)
  256. }
  257. div :: proc{div_u32, div_u64, div_uint}
  258. is_power_of_two_u8 :: proc(i: u8) -> bool { return i > 0 && (i & (i-1)) == 0 }
  259. is_power_of_two_i8 :: proc(i: i8) -> bool { return i > 0 && (i & (i-1)) == 0 }
  260. is_power_of_two_u16 :: proc(i: u16) -> bool { return i > 0 && (i & (i-1)) == 0 }
  261. is_power_of_two_i16 :: proc(i: i16) -> bool { return i > 0 && (i & (i-1)) == 0 }
  262. is_power_of_two_u32 :: proc(i: u32) -> bool { return i > 0 && (i & (i-1)) == 0 }
  263. is_power_of_two_i32 :: proc(i: i32) -> bool { return i > 0 && (i & (i-1)) == 0 }
  264. is_power_of_two_u64 :: proc(i: u64) -> bool { return i > 0 && (i & (i-1)) == 0 }
  265. is_power_of_two_i64 :: proc(i: i64) -> bool { return i > 0 && (i & (i-1)) == 0 }
  266. is_power_of_two_uint :: proc(i: uint) -> bool { return i > 0 && (i & (i-1)) == 0 }
  267. is_power_of_two_int :: proc(i: int) -> bool { return i > 0 && (i & (i-1)) == 0 }
  268. is_power_of_two :: proc{
  269. is_power_of_two_u8, is_power_of_two_i8,
  270. is_power_of_two_u16, is_power_of_two_i16,
  271. is_power_of_two_u32, is_power_of_two_i32,
  272. is_power_of_two_u64, is_power_of_two_i64,
  273. is_power_of_two_uint, is_power_of_two_int,
  274. }
  275. @private
  276. len_u8_table := [256]u8{
  277. 0 = 0,
  278. 1 = 1,
  279. 2..<4 = 2,
  280. 4..<8 = 3,
  281. 8..<16 = 4,
  282. 16..<32 = 5,
  283. 32..<64 = 6,
  284. 64..<128 = 7,
  285. 128..<256 = 8,
  286. }
  287. bitfield_extract_u8 :: proc(value: u8, offset, bits: uint) -> u8 { return (value >> offset) & u8(1<<bits - 1) }
  288. bitfield_extract_u16 :: proc(value: u16, offset, bits: uint) -> u16 { return (value >> offset) & u16(1<<bits - 1) }
  289. bitfield_extract_u32 :: proc(value: u32, offset, bits: uint) -> u32 { return (value >> offset) & u32(1<<bits - 1) }
  290. bitfield_extract_u64 :: proc(value: u64, offset, bits: uint) -> u64 { return (value >> offset) & u64(1<<bits - 1) }
  291. bitfield_extract_u128 :: proc(value: u128, offset, bits: uint) -> u128 { return (value >> offset) & u128(1<<bits - 1) }
  292. bitfield_extract_uint :: proc(value: uint, offset, bits: uint) -> uint { return (value >> offset) & uint(1<<bits - 1) }
  293. bitfield_extract_i8 :: proc(value: i8, offset, bits: uint) -> i8 {
  294. v := (u8(value) >> offset) & u8(1<<bits - 1)
  295. m := u8(1<<(bits-1))
  296. r := (v~m) - m
  297. return i8(r)
  298. }
  299. bitfield_extract_i16 :: proc(value: i16, offset, bits: uint) -> i16 {
  300. v := (u16(value) >> offset) & u16(1<<bits - 1)
  301. m := u16(1<<(bits-1))
  302. r := (v~m) - m
  303. return i16(r)
  304. }
  305. bitfield_extract_i32 :: proc(value: i32, offset, bits: uint) -> i32 {
  306. v := (u32(value) >> offset) & u32(1<<bits - 1)
  307. m := u32(1<<(bits-1))
  308. r := (v~m) - m
  309. return i32(r)
  310. }
  311. bitfield_extract_i64 :: proc(value: i64, offset, bits: uint) -> i64 {
  312. v := (u64(value) >> offset) & u64(1<<bits - 1)
  313. m := u64(1<<(bits-1))
  314. r := (v~m) - m
  315. return i64(r)
  316. }
  317. bitfield_extract_i128 :: proc(value: i128, offset, bits: uint) -> i128 {
  318. v := (u128(value) >> offset) & u128(1<<bits - 1)
  319. m := u128(1<<(bits-1))
  320. r := (v~m) - m
  321. return i128(r)
  322. }
  323. bitfield_extract_int :: proc(value: int, offset, bits: uint) -> int {
  324. v := (uint(value) >> offset) & uint(1<<bits - 1)
  325. m := uint(1<<(bits-1))
  326. r := (v~m) - m
  327. return int(r)
  328. }
  329. bitfield_extract :: proc{
  330. bitfield_extract_u8,
  331. bitfield_extract_u16,
  332. bitfield_extract_u32,
  333. bitfield_extract_u64,
  334. bitfield_extract_u128,
  335. bitfield_extract_uint,
  336. bitfield_extract_i8,
  337. bitfield_extract_i16,
  338. bitfield_extract_i32,
  339. bitfield_extract_i64,
  340. bitfield_extract_i128,
  341. bitfield_extract_int,
  342. }
  343. bitfield_insert_u8 :: proc(base, insert: u8, offset, bits: uint) -> u8 {
  344. mask := u8(1<<bits - 1)
  345. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  346. }
  347. bitfield_insert_u16 :: proc(base, insert: u16, offset, bits: uint) -> u16 {
  348. mask := u16(1<<bits - 1)
  349. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  350. }
  351. bitfield_insert_u32 :: proc(base, insert: u32, offset, bits: uint) -> u32 {
  352. mask := u32(1<<bits - 1)
  353. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  354. }
  355. bitfield_insert_u64 :: proc(base, insert: u64, offset, bits: uint) -> u64 {
  356. mask := u64(1<<bits - 1)
  357. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  358. }
  359. bitfield_insert_u128 :: proc(base, insert: u128, offset, bits: uint) -> u128 {
  360. mask := u128(1<<bits - 1)
  361. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  362. }
  363. bitfield_insert_uint :: proc(base, insert: uint, offset, bits: uint) -> uint {
  364. mask := uint(1<<bits - 1)
  365. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  366. }
  367. bitfield_insert_i8 :: proc(base, insert: i8, offset, bits: uint) -> i8 {
  368. mask := i8(1<<bits - 1)
  369. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  370. }
  371. bitfield_insert_i16 :: proc(base, insert: i16, offset, bits: uint) -> i16 {
  372. mask := i16(1<<bits - 1)
  373. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  374. }
  375. bitfield_insert_i32 :: proc(base, insert: i32, offset, bits: uint) -> i32 {
  376. mask := i32(1<<bits - 1)
  377. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  378. }
  379. bitfield_insert_i64 :: proc(base, insert: i64, offset, bits: uint) -> i64 {
  380. mask := i64(1<<bits - 1)
  381. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  382. }
  383. bitfield_insert_i128 :: proc(base, insert: i128, offset, bits: uint) -> i128 {
  384. mask := i128(1<<bits - 1)
  385. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  386. }
  387. bitfield_insert_int :: proc(base, insert: int, offset, bits: uint) -> int {
  388. mask := int(1<<bits - 1)
  389. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  390. }
  391. bitfield_insert :: proc{
  392. bitfield_insert_u8,
  393. bitfield_insert_u16,
  394. bitfield_insert_u32,
  395. bitfield_insert_u64,
  396. bitfield_insert_u128,
  397. bitfield_insert_uint,
  398. bitfield_insert_i8,
  399. bitfield_insert_i16,
  400. bitfield_insert_i32,
  401. bitfield_insert_i64,
  402. bitfield_insert_i128,
  403. bitfield_insert_int,
  404. }