mem.odin 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304
  1. package mem
  2. import "core:runtime"
  3. import "core:intrinsics"
  4. set :: proc "contextless" (data: rawptr, value: byte, len: int) -> rawptr {
  5. return runtime.memset(data, i32(value), len)
  6. }
  7. zero :: proc "contextless" (data: rawptr, len: int) -> rawptr {
  8. intrinsics.mem_zero(data, len)
  9. return data
  10. }
  11. zero_item :: proc "contextless" (item: $P/^$T) {
  12. intrinsics.mem_zero(item, size_of(T))
  13. }
  14. zero_slice :: proc "contextless" (data: $T/[]$E) {
  15. zero(raw_data(data), size_of(E)*len(data))
  16. }
  17. copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
  18. intrinsics.mem_copy(dst, src, len)
  19. return dst
  20. }
  21. copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
  22. intrinsics.mem_copy_non_overlapping(dst, src, len)
  23. return dst
  24. }
  25. compare :: proc "contextless" (a, b: []byte) -> int {
  26. res := compare_byte_ptrs(raw_data(a), raw_data(b), min(len(a), len(b)))
  27. if res == 0 && len(a) != len(b) {
  28. return len(a) <= len(b) ? -1 : +1
  29. } else if len(a) == 0 && len(b) == 0 {
  30. return 0
  31. }
  32. return res
  33. }
  34. compare_byte_ptrs :: proc "contextless" (a, b: ^byte, n: int) -> int #no_bounds_check {
  35. switch {
  36. case a == b:
  37. return 0
  38. case a == nil:
  39. return -1
  40. case b == nil:
  41. return -1
  42. case n == 0:
  43. return 0
  44. }
  45. x := slice_ptr(a, n)
  46. y := slice_ptr(b, n)
  47. SU :: size_of(uintptr)
  48. fast := n/SU + 1
  49. offset := (fast-1)*SU
  50. curr_block := 0
  51. if n < SU {
  52. fast = 0
  53. }
  54. la := slice_ptr((^uintptr)(a), fast)
  55. lb := slice_ptr((^uintptr)(b), fast)
  56. for /**/; curr_block < fast; curr_block += 1 {
  57. if la[curr_block] ~ lb[curr_block] != 0 {
  58. for pos := curr_block*SU; pos < n; pos += 1 {
  59. if x[pos] ~ y[pos] != 0 {
  60. return (int(x[pos]) - int(y[pos])) < 0 ? -1 : +1
  61. }
  62. }
  63. }
  64. }
  65. for /**/; offset < n; offset += 1 {
  66. if x[offset] ~ y[offset] != 0 {
  67. return (int(x[offset]) - int(y[offset])) < 0 ? -1 : +1
  68. }
  69. }
  70. return 0
  71. }
  72. check_zero :: proc(data: []byte) -> bool {
  73. return check_zero_ptr(raw_data(data), len(data))
  74. }
  75. check_zero_ptr :: proc(ptr: rawptr, len: int) -> bool {
  76. switch {
  77. case len <= 0:
  78. return true
  79. case ptr == nil:
  80. return true
  81. }
  82. start := uintptr(ptr)
  83. start_aligned := align_forward_uintptr(start, align_of(uintptr))
  84. end := start + uintptr(len)
  85. end_aligned := align_backward_uintptr(end, align_of(uintptr))
  86. for b in start..<start_aligned {
  87. if (^byte)(b)^ != 0 {
  88. return false
  89. }
  90. }
  91. for b := start_aligned; b < end_aligned; b += size_of(uintptr) {
  92. if (^uintptr)(b)^ != 0 {
  93. return false
  94. }
  95. }
  96. for b in end_aligned..<end {
  97. if (^byte)(b)^ != 0 {
  98. return false
  99. }
  100. }
  101. return true
  102. }
  103. simple_equal :: proc "contextless" (a, b: $T) -> bool where intrinsics.type_is_simple_compare(T) {
  104. a, b := a, b
  105. return compare_byte_ptrs((^byte)(&a), (^byte)(&b), size_of(T)) == 0
  106. }
  107. compare_ptrs :: proc "contextless" (a, b: rawptr, n: int) -> int {
  108. return compare_byte_ptrs((^byte)(a), (^byte)(b), n)
  109. }
  110. ptr_offset :: proc "contextless" (ptr: $P/^$T, n: int) -> P {
  111. new := int(uintptr(ptr)) + size_of(T)*n
  112. return P(uintptr(new))
  113. }
  114. ptr_sub :: proc "contextless" (a, b: $P/^$T) -> int {
  115. return (int(uintptr(a)) - int(uintptr(b)))/size_of(T)
  116. }
  117. slice_ptr :: proc "contextless" (ptr: ^$T, len: int) -> []T {
  118. return ([^]T)(ptr)[:len]
  119. }
  120. byte_slice :: #force_inline proc "contextless" (data: rawptr, len: int) -> []byte {
  121. return ([^]u8)(data)[:max(len, 0)]
  122. }
  123. slice_to_bytes :: proc "contextless" (slice: $E/[]$T) -> []byte {
  124. s := transmute(Raw_Slice)slice
  125. s.len *= size_of(T)
  126. return transmute([]byte)s
  127. }
  128. slice_data_cast :: proc "contextless" ($T: typeid/[]$A, slice: $S/[]$B) -> T {
  129. when size_of(A) == 0 || size_of(B) == 0 {
  130. return nil
  131. } else {
  132. s := transmute(Raw_Slice)slice
  133. s.len = (len(slice) * size_of(B)) / size_of(A)
  134. return transmute(T)s
  135. }
  136. }
  137. slice_to_components :: proc "contextless" (slice: $E/[]$T) -> (data: ^T, len: int) {
  138. s := transmute(Raw_Slice)slice
  139. return s.data, s.len
  140. }
  141. buffer_from_slice :: proc "contextless" (backing: $T/[]$E) -> [dynamic]E {
  142. return transmute([dynamic]E)Raw_Dynamic_Array{
  143. data = raw_data(backing),
  144. len = 0,
  145. cap = len(backing),
  146. allocator = Allocator{
  147. procedure = nil_allocator_proc,
  148. data = nil,
  149. },
  150. }
  151. }
  152. ptr_to_bytes :: proc "contextless" (ptr: ^$T, len := 1) -> []byte {
  153. assert(len >= 0)
  154. return transmute([]byte)Raw_Slice{ptr, len*size_of(T)}
  155. }
  156. any_to_bytes :: proc "contextless" (val: any) -> []byte {
  157. ti := type_info_of(val.id)
  158. size := ti != nil ? ti.size : 0
  159. return transmute([]byte)Raw_Slice{val.data, size}
  160. }
  161. kilobytes :: proc "contextless" (x: int) -> int { return (x) * 1024 }
  162. megabytes :: proc "contextless" (x: int) -> int { return kilobytes(x) * 1024 }
  163. gigabytes :: proc "contextless" (x: int) -> int { return megabytes(x) * 1024 }
  164. terabytes :: proc "contextless" (x: int) -> int { return gigabytes(x) * 1024 }
  165. is_power_of_two :: proc "contextless" (x: uintptr) -> bool {
  166. if x <= 0 {
  167. return false
  168. }
  169. return (x & (x-1)) == 0
  170. }
  171. align_forward :: proc(ptr: rawptr, align: uintptr) -> rawptr {
  172. return rawptr(align_forward_uintptr(uintptr(ptr), align))
  173. }
  174. align_forward_uintptr :: proc(ptr, align: uintptr) -> uintptr {
  175. assert(is_power_of_two(align))
  176. p := ptr
  177. modulo := p & (align-1)
  178. if modulo != 0 {
  179. p += align - modulo
  180. }
  181. return p
  182. }
  183. align_forward_int :: proc(ptr, align: int) -> int {
  184. return int(align_forward_uintptr(uintptr(ptr), uintptr(align)))
  185. }
  186. align_forward_uint :: proc(ptr, align: uint) -> uint {
  187. return uint(align_forward_uintptr(uintptr(ptr), uintptr(align)))
  188. }
  189. align_backward :: proc(ptr: rawptr, align: uintptr) -> rawptr {
  190. return rawptr(align_backward_uintptr(uintptr(ptr), align))
  191. }
  192. align_backward_uintptr :: proc(ptr, align: uintptr) -> uintptr {
  193. return align_forward_uintptr(ptr - align + 1, align)
  194. }
  195. align_backward_int :: proc(ptr, align: int) -> int {
  196. return int(align_backward_uintptr(uintptr(ptr), uintptr(align)))
  197. }
  198. align_backward_uint :: proc(ptr, align: uint) -> uint {
  199. return uint(align_backward_uintptr(uintptr(ptr), uintptr(align)))
  200. }
  201. context_from_allocator :: proc(a: Allocator) -> type_of(context) {
  202. context.allocator = a
  203. return context
  204. }
  205. reinterpret_copy :: proc "contextless" ($T: typeid, ptr: rawptr) -> (value: T) {
  206. copy(&value, ptr, size_of(T))
  207. return
  208. }
  209. Fixed_Byte_Buffer :: distinct [dynamic]byte
  210. make_fixed_byte_buffer :: proc "contextless" (backing: []byte) -> Fixed_Byte_Buffer {
  211. s := transmute(Raw_Slice)backing
  212. d: Raw_Dynamic_Array
  213. d.data = s.data
  214. d.len = 0
  215. d.cap = s.len
  216. d.allocator = Allocator{
  217. procedure = nil_allocator_proc,
  218. data = nil,
  219. }
  220. return transmute(Fixed_Byte_Buffer)d
  221. }
  222. align_formula :: proc "contextless" (size, align: int) -> int {
  223. result := size + align-1
  224. return result - result%align
  225. }
  226. calc_padding_with_header :: proc "contextless" (ptr: uintptr, align: uintptr, header_size: int) -> int {
  227. p, a := ptr, align
  228. modulo := p & (a-1)
  229. padding := uintptr(0)
  230. if modulo != 0 {
  231. padding = a - modulo
  232. }
  233. needed_space := uintptr(header_size)
  234. if padding < needed_space {
  235. needed_space -= padding
  236. if needed_space & (a-1) > 0 {
  237. padding += align * (1+(needed_space/align))
  238. } else {
  239. padding += align * (needed_space/align)
  240. }
  241. }
  242. return int(padding)
  243. }
  244. clone_slice :: proc(slice: $T/[]$E, allocator := context.allocator, loc := #caller_location) -> (new_slice: T) {
  245. new_slice, _ = make(T, len(slice), allocator, loc)
  246. runtime.copy(new_slice, slice)
  247. return new_slice
  248. }