heap_windows.odin 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107
  1. //+private
  2. package os2
  3. import "core:runtime"
  4. import "core:mem"
  5. import win32 "core:sys/windows"
  6. heap_alloc :: proc(size: int) -> rawptr {
  7. return win32.HeapAlloc(win32.GetProcessHeap(), win32.HEAP_ZERO_MEMORY, uint(size))
  8. }
  9. heap_resize :: proc(ptr: rawptr, new_size: int) -> rawptr {
  10. if new_size == 0 {
  11. heap_free(ptr)
  12. return nil
  13. }
  14. if ptr == nil {
  15. return heap_alloc(new_size)
  16. }
  17. return win32.HeapReAlloc(win32.GetProcessHeap(), win32.HEAP_ZERO_MEMORY, ptr, uint(new_size))
  18. }
  19. heap_free :: proc(ptr: rawptr) {
  20. if ptr == nil {
  21. return
  22. }
  23. win32.HeapFree(win32.GetProcessHeap(), 0, ptr)
  24. }
  25. _heap_allocator_proc :: proc(allocator_data: rawptr, mode: mem.Allocator_Mode,
  26. size, alignment: int,
  27. old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, mem.Allocator_Error) {
  28. //
  29. // NOTE(tetra, 2020-01-14): The heap doesn't respect alignment.
  30. // Instead, we overallocate by `alignment + size_of(rawptr) - 1`, and insert
  31. // padding. We also store the original pointer returned by heap_alloc right before
  32. // the pointer we return to the user.
  33. //
  34. aligned_alloc :: proc(size, alignment: int, old_ptr: rawptr = nil) -> ([]byte, mem.Allocator_Error) {
  35. a := max(alignment, align_of(rawptr))
  36. space := size + a - 1
  37. allocated_mem: rawptr
  38. if old_ptr != nil {
  39. original_old_ptr := mem.ptr_offset((^rawptr)(old_ptr), -1)^
  40. allocated_mem = heap_resize(original_old_ptr, space+size_of(rawptr))
  41. } else {
  42. allocated_mem = heap_alloc(space+size_of(rawptr))
  43. }
  44. aligned_mem := rawptr(mem.ptr_offset((^u8)(allocated_mem), size_of(rawptr)))
  45. ptr := uintptr(aligned_mem)
  46. aligned_ptr := (ptr - 1 + uintptr(a)) & -uintptr(a)
  47. diff := int(aligned_ptr - ptr)
  48. if (size + diff) > space {
  49. return nil, .Out_Of_Memory
  50. }
  51. aligned_mem = rawptr(aligned_ptr)
  52. mem.ptr_offset((^rawptr)(aligned_mem), -1)^ = allocated_mem
  53. return mem.byte_slice(aligned_mem, size), nil
  54. }
  55. aligned_free :: proc(p: rawptr) {
  56. if p != nil {
  57. heap_free(mem.ptr_offset((^rawptr)(p), -1)^)
  58. }
  59. }
  60. aligned_resize :: proc(p: rawptr, old_size: int, new_size: int, new_alignment: int) -> ([]byte, mem.Allocator_Error) {
  61. if p == nil {
  62. return nil, nil
  63. }
  64. return aligned_alloc(new_size, new_alignment, p)
  65. }
  66. switch mode {
  67. case .Alloc:
  68. return aligned_alloc(size, alignment)
  69. case .Free:
  70. aligned_free(old_memory)
  71. case .Free_All:
  72. return nil, .Mode_Not_Implemented
  73. case .Resize:
  74. if old_memory == nil {
  75. return aligned_alloc(size, alignment)
  76. }
  77. return aligned_resize(old_memory, old_size, size, alignment)
  78. case .Query_Features:
  79. set := (^mem.Allocator_Mode_Set)(old_memory)
  80. if set != nil {
  81. set^ = {.Alloc, .Free, .Resize, .Query_Features}
  82. }
  83. return nil, nil
  84. case .Query_Info:
  85. return nil, nil
  86. }
  87. return nil, nil
  88. }