123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570 |
- import "core:fmt.odin"
- import "core:strconv.odin"
- import "core:mem.odin"
- import "core:bits.odin"
- import "core:hash.odin"
- import "core:math.odin"
- import "core:os.odin"
- import "core:raw.odin"
- import "core:sort.odin"
- import "core:strings.odin"
- import "core:types.odin"
- import "core:utf16.odin"
- import "core:utf8.odin"
- when ODIN_OS == "windows" {
- import "core:atomics.odin"
- import "core:opengl.odin"
- import "core:thread.odin"
- import win32 "core:sys/windows.odin"
- }
- general_stuff :: proc() {
- { // `do` for inline statmes rather than block
- foo :: proc() do fmt.println("Foo!");
- if false do foo();
- for false do foo();
- when false do foo();
- if false do foo();
- else do foo();
- }
- { // Removal of `++` and `--` (again)
- x: int;
- x += 1;
- x -= 1;
- }
- { // Casting syntaxes
- i := i32(137);
- ptr := &i;
- fp1 := (^f32)(ptr);
- // ^f32(ptr) == ^(f32(ptr))
- fp2 := cast(^f32)ptr;
- f1 := (^f32)(ptr)^;
- f2 := (cast(^f32)ptr)^;
- // Questions: Should there be two ways to do it?
- }
- /*
- * Remove *_val_of built-in procedures
- * size_of, align_of, offset_of
- * type_of, type_info_of
- */
- { // `expand_to_tuple` built-in procedure
- Foo :: struct {
- x: int,
- b: bool,
- }
- f := Foo{137, true};
- x, b := expand_to_tuple(f);
- fmt.println(f);
- fmt.println(x, b);
- fmt.println(expand_to_tuple(f));
- }
- {
- // .. half-closed range
- // .. open range
- for in 0..2 {} // 0, 1
- for in 0..2 {} // 0, 1, 2
- }
- }
- default_struct_values :: proc() {
- {
- Vector3 :: struct {
- x: f32,
- y: f32,
- z: f32,
- }
- v: Vector3;
- fmt.println(v);
- }
- {
- // Default values must be constants
- Vector3 :: struct {
- x: f32 = 1,
- y: f32 = 4,
- z: f32 = 9,
- }
- v: Vector3;
- fmt.println(v);
- v = Vector3{};
- fmt.println(v);
- // Uses the same semantics as a default values in a procedure
- v = Vector3{137};
- fmt.println(v);
- v = Vector3{z = 137};
- fmt.println(v);
- }
- {
- Vector3 :: struct {
- x := 1.0,
- y := 4.0,
- z := 9.0,
- }
- stack_default: Vector3;
- stack_literal := Vector3{};
- heap_one := new(Vector3); defer free(heap_one);
- heap_two := new_clone(Vector3{}); defer free(heap_two);
- fmt.println("stack_default - ", stack_default);
- fmt.println("stack_literal - ", stack_literal);
- fmt.println("heap_one - ", heap_one^);
- fmt.println("heap_two - ", heap_two^);
- N :: 4;
- stack_array: [N]Vector3;
- heap_array := new([N]Vector3); defer free(heap_array);
- heap_slice := make([]Vector3, N); defer free(heap_slice);
- fmt.println("stack_array[1] - ", stack_array[1]);
- fmt.println("heap_array[1] - ", heap_array[1]);
- fmt.println("heap_slice[1] - ", heap_slice[1]);
- }
- }
- union_type :: proc() {
- {
- val: union{int, bool};
- val = 137;
- if i, ok := val.(int); ok {
- fmt.println(i);
- }
- val = true;
- fmt.println(val);
- val = nil;
- switch v in val {
- case int: fmt.println("int", v);
- case bool: fmt.println("bool", v);
- case: fmt.println("nil");
- }
- }
- {
- // There is a duality between `any` and `union`
- // An `any` has a pointer to the data and allows for any type (open)
- // A `union` has as binary blob to store the data and allows only certain types (closed)
- // The following code is with `any` but has the same syntax
- val: any;
- val = 137;
- if i, ok := val.(int); ok {
- fmt.println(i);
- }
- val = true;
- fmt.println(val);
- val = nil;
- switch v in val {
- case int: fmt.println("int", v);
- case bool: fmt.println("bool", v);
- case: fmt.println("nil");
- }
- }
- Vector3 :: struct {x, y, z: f32};
- Quaternion :: struct {x, y, z: f32, w: f32 = 1};
- // More realistic examples
- {
- // NOTE(bill): For the above basic examples, you may not have any
- // particular use for it. However, my main use for them is not for these
- // simple cases. My main use is for hierarchical types. Many prefer
- // subtyping, embedding the base data into the derived types. Below is
- // an example of this for a basic game Entity.
- Entity :: struct {
- id: u64,
- name: string,
- position: Vector3,
- orientation: Quaternion,
- derived: any,
- }
- Frog :: struct {
- using entity: Entity,
- jump_height: f32,
- }
- Monster :: struct {
- using entity: Entity,
- is_robot: bool,
- is_zombie: bool,
- }
- // See `parametric_polymorphism` procedure for details
- new_entity :: proc(T: type) -> ^Entity {
- t := new(T);
- t.derived = t^;
- return t;
- }
- entity := new_entity(Monster);
- switch e in entity.derived {
- case Frog:
- fmt.println("Ribbit");
- case Monster:
- if e.is_robot do fmt.println("Robotic");
- if e.is_zombie do fmt.println("Grrrr!");
- }
- }
- {
- // NOTE(bill): A union can be used to achieve something similar. Instead
- // of embedding the base data into the derived types, the derived data
- // in embedded into the base type. Below is the same example of the
- // basic game Entity but using an union.
- Entity :: struct {
- id: u64,
- name: string,
- position: Vector3,
- orientation: Quaternion,
- derived: union {Frog, Monster},
- }
- Frog :: struct {
- using entity: ^Entity,
- jump_height: f32,
- }
- Monster :: struct {
- using entity: ^Entity,
- is_robot: bool,
- is_zombie: bool,
- }
- // See `parametric_polymorphism` procedure for details
- new_entity :: proc(T: type) -> ^Entity {
- t := new(Entity);
- t.derived = T{entity = t};
- return t;
- }
- entity := new_entity(Monster);
- switch e in entity.derived {
- case Frog:
- fmt.println("Ribbit");
- case Monster:
- if e.is_robot do fmt.println("Robotic");
- if e.is_zombie do fmt.println("Grrrr!");
- }
- // NOTE(bill): As you can see, the usage code has not changed, only its
- // memory layout. Both approaches have their own advantages but they can
- // be used together to achieve different results. The subtyping approach
- // can allow for a greater control of the memory layout and memory
- // allocation, e.g. storing the derivatives together. However, this is
- // also its disadvantage. You must either preallocate arrays for each
- // derivative separation (which can be easily missed) or preallocate a
- // bunch of "raw" memory; determining the maximum size of the derived
- // types would require the aid of metaprogramming. Unions solve this
- // particular problem as the data is stored with the base data.
- // Therefore, it is possible to preallocate, e.g. [100]Entity.
- // It should be noted that the union approach can have the same memory
- // layout as the any and with the same type restrictions by using a
- // pointer type for the derivatives.
- /*
- Entity :: struct {
- ..
- derived: union{^Frog, ^Monster};
- }
- Frog :: struct {
- using entity: Entity;
- ..
- }
- Monster :: struct {
- using entity: Entity;
- ..
- }
- new_entity :: proc(T: type) -> ^Entity {
- t := new(T);
- t.derived = t;
- return t;
- }
- */
- }
- }
- parametric_polymorphism :: proc() {
- print_value :: proc(value: $T) {
- fmt.printf("print_value: %T %v\n", value, value);
- }
- v1: int = 1;
- v2: f32 = 2.1;
- v3: f64 = 3.14;
- v4: string = "message";
- print_value(v1);
- print_value(v2);
- print_value(v3);
- print_value(v4);
- fmt.println();
- add :: proc(p, q: $T) -> T {
- x: T = p + q;
- return x;
- }
- a := add(3, 4);
- fmt.printf("a: %T = %v\n", a, a);
- b := add(3.2, 4.3);
- fmt.printf("b: %T = %v\n", b, b);
- // This is how `new` is implemented
- alloc_type :: proc(T: type) -> ^T {
- t := cast(^T)alloc(size_of(T), align_of(T));
- t^ = T{}; // Use default initialization value
- return t;
- }
- copy_slice :: proc(dst, src: []$T) -> int {
- n := min(len(dst), len(src));
- if n > 0 {
- mem.copy(&dst[0], &src[0], n*size_of(T));
- }
- return n;
- }
- double_params :: proc(a: $A, b: $B) -> A {
- return a + A(b);
- }
- fmt.println(double_params(12, 1.345));
- { // Polymorphic Types and Type Specialization
- Table_Slot :: struct(Key, Value: type) {
- occupied: bool,
- hash: u32,
- key: Key,
- value: Value,
- }
- TABLE_SIZE_MIN :: 32;
- Table :: struct(Key, Value: type) {
- count: int,
- allocator: Allocator,
- slots: []Table_Slot(Key, Value),
- }
- // Only allow types that are specializations of a (polymorphic) slice
- make_slice :: proc(T: type/[]$E, len: int) -> T {
- return make(T, len);
- }
- // Only allow types that are specializations of `Table`
- allocate :: proc(table: ^$T/Table, capacity: int) {
- c := context;
- if table.allocator.procedure != nil do c.allocator = table.allocator;
- push_context c {
- table.slots = make_slice(type_of(table.slots), max(capacity, TABLE_SIZE_MIN));
- }
- }
- expand :: proc(table: ^$T/Table) {
- c := context;
- if table.allocator.procedure != nil do c.allocator = table.allocator;
- push_context c {
- old_slots := table.slots;
- cap := max(2*cap(table.slots), TABLE_SIZE_MIN);
- allocate(table, cap);
- for s in old_slots do if s.occupied {
- put(table, s.key, s.value);
- }
- free(old_slots);
- }
- }
- // Polymorphic determination of a polymorphic struct
- // put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) {
- put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) {
- hash := get_hash(key); // Ad-hoc method which would fail in a different scope
- index := find_index(table, key, hash);
- if index < 0 {
- if f64(table.count) >= 0.75*f64(cap(table.slots)) {
- expand(table);
- }
- assert(table.count <= cap(table.slots));
- hash := get_hash(key);
- index = int(hash % u32(cap(table.slots)));
- for table.slots[index].occupied {
- if index += 1; index >= cap(table.slots) {
- index = 0;
- }
- }
- table.count += 1;
- }
- slot := &table.slots[index];
- slot.occupied = true;
- slot.hash = hash;
- slot.key = key;
- slot.value = value;
- }
- // find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) {
- find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) {
- hash := get_hash(key);
- index := find_index(table, key, hash);
- if index < 0 {
- return Value{}, false;
- }
- return table.slots[index].value, true;
- }
- find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int {
- if cap(table.slots) <= 0 do return -1;
- index := int(hash % u32(cap(table.slots)));
- for table.slots[index].occupied {
- if table.slots[index].hash == hash {
- if table.slots[index].key == key {
- return index;
- }
- }
- if index += 1; index >= cap(table.slots) {
- index = 0;
- }
- }
- return -1;
- }
- get_hash :: proc(s: string) -> u32 { // fnv32a
- h: u32 = 0x811c9dc5;
- for i in 0..len(s) {
- h = (h ~ u32(s[i])) * 0x01000193;
- }
- return h;
- }
- table: Table(string, int);
- for i in 0..36 do put(&table, "Hellope", i);
- for i in 0..42 do put(&table, "World!", i);
- found, _ := find(&table, "Hellope");
- fmt.printf("`found` is %v\n", found);
- found, _ = find(&table, "World!");
- fmt.printf("`found` is %v\n", found);
- // I would not personally design a hash table like this in production
- // but this is a nice basic example
- // A better approach would either use a `u64` or equivalent for the key
- // and let the user specify the hashing function or make the user store
- // the hashing procedure with the table
- }
- }
- prefix_table := [?]string{
- "White",
- "Red",
- "Green",
- "Blue",
- "Octarine",
- "Black",
- };
- threading_example :: proc() {
- when ODIN_OS == "windows" {
- unordered_remove :: proc(array: ^[]$T, index: int, loc := #caller_location) {
- __bounds_check_error_loc(loc, index, len(array));
- array[index] = array[len(array)-1];
- pop(array);
- }
- ordered_remove :: proc(array: ^[]$T, index: int, loc := #caller_location) {
- __bounds_check_error_loc(loc, index, len(array));
- copy(array[index..], array[index+1..]);
- pop(array);
- }
- worker_proc :: proc(t: ^thread.Thread) -> int {
- for iteration in 1..5 {
- fmt.printf("Thread %d is on iteration %d\n", t.user_index, iteration);
- fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration);
- // win32.sleep(1);
- }
- return 0;
- }
- threads := make([]^thread.Thread, 0, len(prefix_table));
- defer free(threads);
- for i in 0..len(prefix_table) {
- if t := thread.create(worker_proc); t != nil {
- t.init_context = context;
- t.use_init_context = true;
- t.user_index = len(threads);
- append(&threads, t);
- thread.start(t);
- }
- }
- for len(threads) > 0 {
- for i := 0; i < len(threads); /**/ {
- if t := threads[i]; thread.is_done(t) {
- fmt.printf("Thread %d is done\n", t.user_index);
- thread.destroy(t);
- ordered_remove(&threads, i);
- } else {
- i += 1;
- }
- }
- }
- }
- }
- main :: proc() {
- when false {
- fmt.println("\n# general_stuff"); general_stuff();
- fmt.println("\n# default_struct_values"); default_struct_values();
- fmt.println("\n# union_type"); union_type();
- fmt.println("\n# parametric_polymorphism"); parametric_polymorphism();
- fmt.println("\n# threading_example"); threading_example();
- }
- }
|