123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776 |
- #
- # Copyright 2021 Jeroen van Rijn <[email protected]>.
- # Made available under Odin's BSD-3 license.
- #
- # A BigInt implementation in Odin.
- # For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
- # The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
- #
- from ctypes import *
- from random import *
- import math
- import os
- import platform
- import time
- import gc
- from enum import Enum
- import argparse
- parser = argparse.ArgumentParser(
- description = "Odin core:math/big test suite",
- epilog = "By default we run regression and random tests with preset parameters.",
- formatter_class = argparse.ArgumentDefaultsHelpFormatter,
- )
- #
- # Normally, we report the number of passes and fails. With this option set, we exit at first fail.
- #
- parser.add_argument(
- "-exit-on-fail",
- help = "Exit when a test fails",
- action = "store_true",
- )
- #
- # We skip randomized tests altogether if this is set.
- #
- no_random = parser.add_mutually_exclusive_group()
- no_random.add_argument(
- "-no-random",
- help = "No random tests",
- action = "store_true",
- )
- #
- # Normally we run a given number of cycles on each test.
- # Timed tests budget 1 second per 20_000 bits instead.
- #
- # For timed tests we budget a second per `n` bits and iterate until we hit that time.
- #
- timed_or_fast = no_random.add_mutually_exclusive_group()
- timed_or_fast.add_argument(
- "-timed",
- type = bool,
- default = False,
- help = "Timed tests instead of a preset number of iterations.",
- )
- parser.add_argument(
- "-timed-bits",
- type = int,
- metavar = "BITS",
- default = 20_000,
- help = "Timed tests. Every `BITS` worth of input is given a second of running time.",
- )
- #
- # For normal tests (non-timed), `-fast-tests` cuts down on the number of iterations.
- #
- timed_or_fast.add_argument(
- "-fast-tests",
- help = "Cut down on the number of iterations of each test",
- action = "store_true",
- )
- args = parser.parse_args()
- EXIT_ON_FAIL = args.exit_on_fail
- #
- # How many iterations of each random test do we want to run?
- #
- BITS_AND_ITERATIONS = [
- ( 120, 10_000),
- ( 1_200, 1_000),
- ( 4_096, 100),
- (12_000, 10),
- ]
- if args.fast_tests:
- for k in range(len(BITS_AND_ITERATIONS)):
- b, i = BITS_AND_ITERATIONS[k]
- BITS_AND_ITERATIONS[k] = (b, i // 10 if i >= 100 else 5)
- if args.no_random:
- BITS_AND_ITERATIONS = []
- #
- # Where is the DLL? If missing, build using: `odin build . -build-mode:shared`
- #
- if platform.system() == "Windows":
- LIB_PATH = os.getcwd() + os.sep + "math_big_test_library.dll"
- elif platform.system() == "Linux":
- LIB_PATH = os.getcwd() + os.sep + "math_big_test_library.so"
- elif platform.system() == "Darwin":
- LIB_PATH = os.getcwd() + os.sep + "math_big_test_library.dylib"
- else:
- print("Platform is unsupported.")
- exit(1)
- TOTAL_TIME = 0
- UNTIL_TIME = 0
- UNTIL_ITERS = 0
- def we_iterate():
- if args.timed:
- return TOTAL_TIME < UNTIL_TIME
- else:
- global UNTIL_ITERS
- UNTIL_ITERS -= 1
- return UNTIL_ITERS != -1
- #
- # Error enum values
- #
- class Error(Enum):
- Okay = 0
- Out_Of_Memory = 1
- Invalid_Pointer = 2
- Invalid_Argument = 3
- Unknown_Error = 4
- Assignment_To_Immutable = 10
- Max_Iterations_Reached = 11
- Buffer_Overflow = 12
- Integer_Overflow = 13
- Integer_Underflow = 14
- Division_by_Zero = 30
- Math_Domain_Error = 31
- Cannot_Open_File = 50
- Cannot_Read_File = 51
- Cannot_Write_File = 52
- Unimplemented = 127
- #
- # Disable garbage collection
- #
- gc.disable()
- #
- # Set up exported procedures
- #
- try:
- l = cdll.LoadLibrary(LIB_PATH)
- except:
- print("Couldn't find or load " + LIB_PATH + ".")
- exit(1)
- def load(export_name, args, res):
- export_name.argtypes = args
- export_name.restype = res
- return export_name
- #
- # Result values will be passed in a struct { res: cstring, err: Error }
- #
- class Res(Structure):
- _fields_ = [("res", c_char_p), ("err", c_uint64)]
- initialize_constants = load(l.test_initialize_constants, [], c_uint64)
- NAILS = initialize_constants()
- LEG_BITS = 64 - NAILS
- print("LEG BITS: ", LEG_BITS)
- error_string = load(l.test_error_string, [c_byte], c_char_p)
- add = load(l.test_add, [c_char_p, c_char_p ], Res)
- sub = load(l.test_sub, [c_char_p, c_char_p ], Res)
- mul = load(l.test_mul, [c_char_p, c_char_p ], Res)
- sqr = load(l.test_sqr, [c_char_p ], Res)
- div = load(l.test_div, [c_char_p, c_char_p ], Res)
- # Powers and such
- int_log = load(l.test_log, [c_char_p, c_longlong], Res)
- int_pow = load(l.test_pow, [c_char_p, c_longlong], Res)
- int_sqrt = load(l.test_sqrt, [c_char_p ], Res)
- int_root_n = load(l.test_root_n, [c_char_p, c_longlong], Res)
- # Logical operations
- int_shl_leg = load(l.test_shl_leg, [c_char_p, c_longlong], Res)
- int_shr_leg = load(l.test_shr_leg, [c_char_p, c_longlong], Res)
- int_shl = load(l.test_shl, [c_char_p, c_longlong], Res)
- int_shr = load(l.test_shr, [c_char_p, c_longlong], Res)
- int_shr_signed = load(l.test_shr_signed, [c_char_p, c_longlong], Res)
- int_factorial = load(l.test_factorial, [c_uint64 ], Res)
- int_gcd = load(l.test_gcd, [c_char_p, c_char_p ], Res)
- int_lcm = load(l.test_lcm, [c_char_p, c_char_p ], Res)
- is_square = load(l.test_is_square, [c_char_p ], Res)
- def test(test_name: "", res: Res, param=[], expected_error = Error.Okay, expected_result = "", radix=16):
- passed = True
- r = None
- err = Error(res.err)
- if err != expected_error:
- error_loc = res.res.decode('utf-8')
- error = "{}: {} in '{}'".format(test_name, err, error_loc)
- if len(param):
- error += " with params {}".format(param)
- print(error, flush=True)
- passed = False
- elif err == Error.Okay:
- r = None
- try:
- r = res.res.decode('utf-8')
- r = int(res.res, radix)
- except:
- pass
- if r != expected_result:
- error = "{}: Result was '{}', expected '{}'".format(test_name, r, expected_result)
- if len(param):
- error += " with params {}".format(param)
- print(error, flush=True)
- passed = False
- if EXIT_ON_FAIL and not passed: exit(res.err)
- return passed
- def arg_to_odin(a):
- if a >= 0:
- s = hex(a)[2:]
- else:
- s = '-' + hex(a)[3:]
- return s.encode('utf-8')
- def big_integer_sqrt(src):
- # The Python version on Github's CI doesn't offer math.isqrt.
- # We implement our own
- count = src.bit_length()
- a, b = count >> 1, count & 1
- x = 1 << (a + b)
- while True:
- # y = (x + n // x) // 2
- t1 = src // x
- t2 = t1 + x
- y = t2 >> 1
- if y >= x:
- return x
- x, y = y, x
- def big_integer_lcm(a, b):
- # Computes least common multiple as `|a*b|/gcd(a,b)`
- # Divide the smallest by the GCD.
- if a == 0 or b == 0:
- return 0
- if abs(a) < abs(b):
- # Store quotient in `t2` such that `t2 * b` is the LCM.
- lcm = a // math.gcd(a, b)
- return abs(b * lcm)
- else:
- # Store quotient in `t2` such that `t2 * a` is the LCM.
- lcm = b // math.gcd(a, b)
- return abs(a * lcm)
- def test_add(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), arg_to_odin(b)]
- res = add(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = a + b
- return test("test_add", res, [a, b], expected_error, expected_result)
- def test_sub(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), arg_to_odin(b)]
- res = sub(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = a - b
- return test("test_sub", res, [a, b], expected_error, expected_result)
- def test_mul(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), arg_to_odin(b)]
- try:
- res = mul(*args)
- except OSError as e:
- print("{} while trying to multiply {} x {}.".format(e, a, b))
- if EXIT_ON_FAIL: exit(3)
- return False
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = a * b
- return test("test_mul", res, [a, b], expected_error, expected_result)
- def test_sqr(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a)]
- try:
- res = sqr(*args)
- except OSError as e:
- print("{} while trying to square {}.".format(e, a))
- if EXIT_ON_FAIL: exit(3)
- return False
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = a * a
- return test("test_sqr", res, [a], expected_error, expected_result)
- def test_div(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), arg_to_odin(b)]
- try:
- res = div(*args)
- except OSError as e:
- print("{} while trying divide to {} / {}.".format(e, a, b))
- if EXIT_ON_FAIL: exit(3)
- return False
- expected_result = None
- if expected_error == Error.Okay:
- #
- # We don't round the division results, so if one component is negative, we're off by one.
- #
- if a < 0 and b > 0:
- expected_result = int(-(abs(a) // b))
- elif b < 0 and a > 0:
- expected_result = int(-(a // abs((b))))
- else:
- expected_result = a // b if b != 0 else None
- return test("test_div", res, [a, b], expected_error, expected_result)
- def test_log(a = 0, base = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), base]
- res = int_log(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = int(math.log(a, base))
- return test("test_log", res, [a, base], expected_error, expected_result)
- def test_pow(base = 0, power = 0, expected_error = Error.Okay):
- args = [arg_to_odin(base), power]
- res = int_pow(*args)
- expected_result = None
- if expected_error == Error.Okay:
- if power < 0:
- expected_result = 0
- else:
- # NOTE(Jeroen): Don't use `math.pow`, it's a floating point approximation.
- # Use built-in `pow` or `a**b` instead.
- expected_result = pow(base, power)
- return test("test_pow", res, [base, power], expected_error, expected_result)
- def test_sqrt(number = 0, expected_error = Error.Okay):
- args = [arg_to_odin(number)]
- try:
- res = int_sqrt(*args)
- except OSError as e:
- print("{} while trying to sqrt {}.".format(e, number))
- if EXIT_ON_FAIL: exit(3)
- return False
- expected_result = None
- if expected_error == Error.Okay:
- if number < 0:
- expected_result = 0
- else:
- expected_result = big_integer_sqrt(number)
- return test("test_sqrt", res, [number], expected_error, expected_result)
- def root_n(number, root):
- u, s = number, number + 1
- while u < s:
- s = u
- t = (root-1) * s + number // pow(s, root - 1)
- u = t // root
- return s
- def test_root_n(number = 0, root = 0, expected_error = Error.Okay):
- args = [arg_to_odin(number), root]
- res = int_root_n(*args)
- expected_result = None
- if expected_error == Error.Okay:
- if number < 0:
- expected_result = 0
- else:
- expected_result = root_n(number, root)
- return test("test_root_n", res, [number, root], expected_error, expected_result)
- def test_shl_leg(a = 0, digits = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), digits]
- res = int_shl_leg(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = a << (digits * LEG_BITS)
- return test("test_shl_leg", res, [a, digits], expected_error, expected_result)
- def test_shr_leg(a = 0, digits = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), digits]
- res = int_shr_leg(*args)
- expected_result = None
- if expected_error == Error.Okay:
- if a < 0:
- # Don't pass negative numbers. We have a shr_signed.
- return False
- else:
- expected_result = a >> (digits * LEG_BITS)
-
- return test("test_shr_leg", res, [a, digits], expected_error, expected_result)
- def test_shl(a = 0, bits = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), bits]
- res = int_shl(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = a << bits
- return test("test_shl", res, [a, bits], expected_error, expected_result)
- def test_shr(a = 0, bits = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), bits]
- res = int_shr(*args)
- expected_result = None
- if expected_error == Error.Okay:
- if a < 0:
- # Don't pass negative numbers. We have a shr_signed.
- return False
- else:
- expected_result = a >> bits
-
- return test("test_shr", res, [a, bits], expected_error, expected_result)
- def test_shr_signed(a = 0, bits = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), bits]
- res = int_shr_signed(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = a >> bits
-
- return test("test_shr_signed", res, [a, bits], expected_error, expected_result)
- def test_factorial(number = 0, expected_error = Error.Okay):
- args = [number]
- try:
- res = int_factorial(*args)
- except OSError as e:
- print("{} while trying to factorial {}.".format(e, number))
- if EXIT_ON_FAIL: exit(3)
- return False
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = math.factorial(number)
-
- return test("test_factorial", res, [number], expected_error, expected_result)
- def test_gcd(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), arg_to_odin(b)]
- res = int_gcd(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = math.gcd(a, b)
-
- return test("test_gcd", res, [a, b], expected_error, expected_result)
- def test_lcm(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), arg_to_odin(b)]
- res = int_lcm(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = big_integer_lcm(a, b)
-
- return test("test_lcm", res, [a, b], expected_error, expected_result)
- def test_is_square(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a)]
- res = is_square(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = str(big_integer_sqrt(a) ** 2 == a) if a > 0 else "False"
-
- return test("test_is_square", res, [a], expected_error, expected_result)
- # TODO(Jeroen): Make sure tests cover edge cases, fast paths, and so on.
- #
- # The last two arguments in tests are the expected error and expected result.
- #
- # The expected error defaults to None.
- # By default the Odin implementation will be tested against the Python one.
- # You can override that by supplying an expected result as the last argument instead.
- TESTS = {
- test_add: [
- [ 1234, 5432],
- ],
- test_sub: [
- [ 1234, 5432],
- ],
- test_mul: [
- [ 1234, 5432],
- [ 0xd3b4e926aaba3040e1c12b5ea553b5, 0x1a821e41257ed9281bee5bc7789ea7 ],
- [ 1 << 21_105, 1 << 21_501 ],
- [
- 173004933678092711595681968608438676197664938049685629580473369038276067962252149849992137878499957004027167192528224484422792651325494750576045326575192523336303001671022352945361111415009621435887687154421568093235309739789712262198437509247413339305329497725569854838050177916573285176333823036357809376376943910260917175826874681608696011310688249945838730766954221195270491215735657686196197276859390555442097852858099538655435952022373382168804035693259946090364200459398925822409006620020581154544932834287498500493698903815194968031524898191572004112487639615367525474654486686702814920335097674444543522512652079806417137634398429663483880342291830129825498498266559990237937370546883578196978980740085725633735638339396194856748820486678256166151654274189472152526337659649593450641533067118593429068213979694143941138460490166499537827371056997450571675288614527333833389183236670004876202325474156930725159975823723377378142909191805151879968682441708428808365144816539538003938101536036377397167312131249840525093160096636827188896948609087411177646634330696412864701655550914720295992852549509128531377840035494550154760612260817404942645828390665460501727276278939486253063145637867588599661852098846639168829579853325380976531641088281099169083706523900752046676600412743168902225391991113540794792663807700542665104853501317581055952425547235489720209822160202334365130769309259459536091633357471279331156609674023250517423592679667076262586704279365513023852198502520449455143108696482539320574251585287452328848503405547872536288968807039383427804216453780376385105591433123917812238083510876697607703414344156760229124307798668772500003950977613426925594836567946200550628674963535569296767800013740376929401629707406015975995831733383818310296157724735308039189938092543701923236188365802146800862672634099863375801869300779142093358816982181010104945819832550001771695168169680801289329726192927681542189728996443394227068811958343521648576614426009056076544129487725821255054033710251876249912907488823432296322937857856798881671582230101070940307539378998977067552777185413291207231526060090979247403347566537048882205501357270333142136625025385796130133023886483084445829260500591432537561824973303162353693462453685234361651566105368117395526963873711694723894824954862981982799884695945074972536980498627192774958204598029928991777698867789510409474596245251249168095604577282355540403000316293774044384586746974690440802522389578280788685523953798913242300637211960086820597313360484476956979114560801644403294619102020057653424339419391280109172272224151977752690650512476390021198293707261871516181856514568530692731519932281887686061219794123626078224317259804516115673425942206693200289351256141931098182585127299985894998333743689030236534466648141672024806131184517810473589270567586415987303198985381658678703339003467339930252704896900057159705650047179948561960768296116399660545868090051814230264090024434793745087039625876868640787717705881261004354982249593051334210130168537726795070902391312311818481048046928036356256488465383197020166743258560361561949049422469397299805302737523011870980192630003407905301896175873043733232525225135087120385628858101472951411956002814870218091511713339807936382910393052968504459236721625536719034418226279583189139676134537948655300361907729082737983492411849235299127845197021586098516135974048921897904877184863073456177234041396228296195180483962519204352654110085913576966438935353965363038761678654332293642984322611477630386486151169508850675463807141318342507515741203334487811043679524863379331947870659078789402911489037387730864761248047513521404946496397896066890282729825706306870717649535554139697652969879144346177010713479829293966682425086590668663669829819712127520861739979889390966316989099653644358241504753616553617595122893909537026229754073954703051725596695254725770214596794901207220102851130185271879436431942024462144689232905355324614814411208134936162444277177238875590731696443847885921827590973723352594903631757103399576610592766078913138825157122785455397427939970849605195638086338459362096895997148552923064905388148403174518142665517867684801775305240761117259864499401505591524646035468884862442287685783534173584216134602254020470252226715845860298485982659996154502226029631627661417805366381349640830179450372516309926381629324035330926202572812300868943350565866328506252388063168169877192161255780247606176524063956158859526581729432323397025083784057519440746423422297908447407795803778583538166658268787752006794327854401708795863970512954260128505882428557272511660175157745401461506456269140668244395329095519068277285767326916642023949758136739378998482778435910601090690705863173042820325203851750762888654661290926733093369511466990991565889994765598596616981189226241742716670168541187753740468242883574347716326797978072508203439305663660888155247641110202645907846530051669433827791654309050289582791709222786017090016946725717367407404046842131919647349198017831706487325061475819628758434500209483186116806361607715172026386394966520253764583904093528570769944236436156364305603335814857278765438664438262342731252565609306490248486760047559160614817615776624501731032353136843210815012856040104848034550739587476521487143917356552305150335043981788222235277078996654082661880293228955275762675382106245639478656468434529208683376459252520443625975029868923130235180687230451510513567788065239837672153784845270614860800457870824353896067043857428179903232229796281205096031206964909619125091706917710921259525810646231789184098152911486418467467125052588578112013379561016311707156873180883310350125807259489482214646867530138601789035429089169566452732346460059489746130976353918437401434853111995893079354785728979722542287963930457948116425636200981713404337570563841972734427878596144295848173387452734040583840835814458252628248126861947119158769599635259777920115279528112423889008255213274318566878535642226885906636687807126929015970094415559086647671233235471865353716680903879881713826461781475629645884350519368611260867854577444879176887053568076613169798214595268853569595240890318102154466760965786272278413839097866010690990596039871050036876065754858890788129638718425677306250721022444685302309631901424401107405891314785542588430460724443042466862273012234254563377534784989375711721584550706027692032,
- 27921373056168038161257363712029738425883469078710601930545962210544316372483465257896797850023481327274033810503043334035215874819993724587326836320749466553772269405862923195362824332887851405213533433081208077156850648821375930352989166783200833746615959106127755671557019089964388317139498837845502815699228224576224832082010692514229182534082681124312513588088460719847011662533322825168476247349637810548383203683788060854075780036705184536653420460018898323931191179813417633106229797607551549089026756638561795791707955494700054097641970714383000674899021750893302230644329497266339848911912171769235723440313194551652213901008256355889302387122112229006307559169315600942861958053017566728562253629002443850692334093148048005559610551121569158961794952095315210914353826025959066814535892039604093309786815342207016366272954482114925150885518563022063368206889248765418628524333157795784017392551438673161938072258257150883329120797624519879153149913280879378693068701852318396001627324681045815861522360007508243109952378642933430762868134726919084609821795490362157999016116064231034860639681441806435957537781045208562955713722103156767070718592688233144071201419766753972173367317507959950852320315507306016060444592155708893619839649184725346685260069511235840139246081015702346048774483210928885566032379712442026511097124621617457735476863128849586131720300576998529551409490562338285216488100148921640151321534350115714453812413337804225371235554224356096298621201743011245230555215764853803543016714701416612120135738613518840557707629149064958859492225609997288249516884401079342273741541186798177437118085288099547388493592900012094967231746552401413599245524633300588813714064766002830979707229930540022588341901036417799649742533569314603600481627728046014460223994310150793171127674615782367612880131607895396414724397621811552220542148980904127280622955717313779398680717189852828686708843557572244315079273457323723041632800998667368727218921046369617181011435686023454689440463983820722252718343013045726108154912390300992917678826287705538156556621758381877110997187922902095265140917070240889656250342587076337793732433462686483290111539332867700431044178095521248081021368966759940895472785930040730153629684635995965788085543085208194776007093991688316742552338141659784385260564644783610783915703019597479512896823750877844542548758322212972052239012888385630605427035936855277508691449937276903894116061956462348195722494495672432544657400064829861415069347640839580936967350820269034590696679765474765160468903961916672270696236023987243935299572074869302371087278165987032523363724772714477346208742592577951283227941915447718054110253967647110209756879542998676114595263890839641099619474409784706275886498148665913033288931998613751613519583111929535476102752261935114458933224121324795776056432597367967005026776276762670411084627024982610652943026725110496912230298567784614134993889023729853254893543811138284001285160996437535564318062528241338453532027185407578241810084261507643858275906100222466448888360917092102502563981410513125139429289542814362352032125673290748931506233519795206784901394602073496408432914119355845669971921611206591398026467420563740223489661593842720925269702370179245643633444935353522942663811405494524391973367251708873816973768868670467493235943431916108424956497368257423161191304276994434754577135984784663467013822984203379501201099957586074307014285676723507079014080927933067729733620324679419782039849016981965321079742660611838438556389842201932201637058869179931697403014787176863501380615739484487415468573855359079212387368551692910628723440977929579930078782255702184840705464727654359256672319160541618101408889768244966379114134194579290092691830062053199840454186374987682037197782617554498504972123539223333197139111223340123431349005989161322706046448294549136345275636294040585686238109527559986400330781564511555132675600354845435740430195387843392918716292423250123841352049448829542813895534778791521891241856409599135740777633463825220674104706642419298985035183765602197431989429173915463411013465768550277612276157418128572127814622862912815904038151008662664231788968389993262883675073896148539523284673482644482548483650586168693376441889016946969955978380722594975748782506306008391421791306366225409928561739591390044573904256656957924246937531253036012624225677004090039680930516873227440444945938274357618114661440761649503158071532529359890361758900851579655708804155875515793218083554490058616347116332425676666301140415486423553320048153504238362373557855535779046905557828526263489747753395212155760397974082306317825624337661338876792738708674499286422559685173420182076306148908180037293202372013787170146701071605439119147392804755048236116840492061241352342396494262648613338171065533649263180829503174821400418274800779191254479284048946851570095174570247223581902756503786185677330697753498186730412069147629747609772838632317338351257920938494712870708108038934101858579447001128824612055853807631590752239142182960806895654726819917774980738692457659411911279127194423188770547312066019180523243169061317538583293927239186467763609863895766055561960747766546253694008644745054199737969293100912901784372603816131617671119155727053285875943648840248351161629947740946487434471715418378491879022464648862542696518000435077035228171974321300460080123902690324244967059745295054118693613269773067619624107387063059985176967572604219180317779786496083874303004124515445219452102075067471953429040119355742883891822452982864094025598028112115866711428585736838632820309749474510868162545829275146258077311244956467165215185174229175240810808694596057113599171098718605793050842043814323849939995836210279724499252205942768969083291862735219152587270457233948203020805477393844251381142530356605396377253291045107451365714635714156250079771050546004769806588881695574400621078157503613361567127625244561059281382952366547354082230802366776019129544180040782867889636785460187181683255211572956144897104392064626327350385247491880762073139154625615894769102398511621294884969897760564967615974545842772162201569120603067788742145776137782588656202210677005605640511483705690705376956476307810433238043720219619341572756300400535126782583804935228625157182123927165307735705469066125233392716412346136127486029948714957553659655924443537095499722362708631898523515388985062426376618128327856053637342559468074942610162506146919250102684545838473478543490121885655498752,
- ]
- ],
- test_sqr: [
- [ 5432],
- [ 0xd3b4e926aaba3040e1c12b5ea553b5 ],
- ],
- test_div: [
- [ 54321, 12345],
- [ 55431, 0, Error.Division_by_Zero],
- [ 12980742146337069150589594264770969721, 4611686018427387904 ],
- [ 831956404029821402159719858789932422, 243087903122332132 ],
- ],
- test_log: [
- [ 3192, 1, Error.Invalid_Argument],
- [ -1234, 2, Error.Math_Domain_Error],
- [ 0, 2, Error.Math_Domain_Error],
- [ 1024, 2],
- ],
- test_pow: [
- [ 0, -1, Error.Math_Domain_Error ], # Math
- [ 0, 0 ], # 1
- [ 0, 2 ], # 0
- [ 42, -1,], # 0
- [ 42, 1 ], # 1
- [ 42, 0 ], # 42
- [ 42, 2 ], # 42*42
- [ 1023423462055631945665902260039819522, 6],
- [ 2351415513563017480724958108064794964140712340951636081608226461329298597792428177392182921045756382154475969841516481766099091057155043079113409578271460350765774152509347176654430118446048617733844782454267084644777022821998489944144604889308377152515711394170267839394315842510152114743680838721625924309675796181595284284935359605488617487126635442626578631, 4],
- ],
- test_sqrt: [
- [ -1, Error.Invalid_Argument, ],
- [ 42, Error.Okay, ],
- [ 12345678901234567890, Error.Okay, ],
- [ 1298074214633706907132624082305024, Error.Okay, ],
- [ 686885735734829009541949746871140768343076607029752932751182108475420900392874228486622313727012705619148037570309621219533087263900443932890792804879473795673302686046941536636874184361869252299636701671980034458333859202703255467709267777184095435235980845369829397344182319113372092844648570818726316581751114346501124871729572474923695509057166373026411194094493240101036672016770945150422252961487398124677567028263059046193391737576836378376192651849283925197438927999526058932679219572030021792914065825542626400207956134072247020690107136531852625253942429167557531123651471221455967386267137846791963149859804549891438562641323068751514370656287452006867713758971418043865298618635213551059471668293725548570452377976322899027050925842868079489675596835389444833567439058609775325447891875359487104691935576723532407937236505941186660707032433807075470656782452889754501872408562496805517394619388777930253411467941214807849472083814447498068636264021405175653742244368865090604940094889189800007448083930490871954101880815781177612910234741529950538835837693870921008635195545246771593130784786737543736434086434015200264933536294884482218945403958647118802574342840790536176272341586020230110889699633073513016344826709214, Error.Okay, ],
- ],
- test_root_n: [
- [ 1298074214633706907132624082305024, 2, Error.Okay, ],
- ],
- test_shl_leg: [
- [ 3192, 1 ],
- [ 1298074214633706907132624082305024, 2 ],
- [ 1024, 3 ],
- ],
- test_shr_leg: [
- [ 3680125442705055547392, 1 ],
- [ 1725436586697640946858688965569256363112777243042596638790631055949824, 2 ],
- [ 219504133884436710204395031992179571, 2 ],
- ],
- test_shl: [
- [ 3192, 1 ],
- [ 1298074214633706907132624082305024, 2 ],
- [ 1024, 3 ],
- ],
- test_shr: [
- [ 3680125442705055547392, 1 ],
- [ 1725436586697640946858688965569256363112777243042596638790631055949824, 2 ],
- [ 219504133884436710204395031992179571, 2 ],
- ],
- test_shr_signed: [
- [ -611105530635358368578155082258244262, 12 ],
- [ -149195686190273039203651143129455, 12 ],
- [ 611105530635358368578155082258244262, 12 ],
- [ 149195686190273039203651143129455, 12 ],
- ],
- test_factorial: [
- [ 6_000 ], # Regular factorial, see cutoff in common.odin.
- [ 12_345 ], # Binary split factorial
- ],
- test_gcd: [
- [ 23, 25, ],
- [ 125, 25, ],
- [ 125, 0, ],
- [ 0, 0, ],
- [ 0, 125,],
- ],
- test_lcm: [
- [ 23, 25,],
- [ 125, 25, ],
- [ 125, 0, ],
- [ 0, 0, ],
- [ 0, 125,],
- ],
- test_is_square: [
- [ 12, ],
- [ 92232459121502451677697058974826760244863271517919321608054113675118660929276431348516553336313179167211015633639725554914519355444316239500734169769447134357534241879421978647995614218985202290368055757891124109355450669008628757662409138767505519391883751112010824030579849970582074544353971308266211776494228299586414907715854328360867232691292422194412634523666770452490676515117702116926803826546868467146319938818238521874072436856528051486567230096290549225463582766830777324099589751817442141036031904145041055454639783559905920619197290800070679733841430619962318433709503256637256772215111521321630777950145713049902839937043785039344243357384899099910837463164007565230287809026956254332260375327814271845678201, ]
- ],
- }
- if not args.fast_tests:
- TESTS[test_factorial].append(
- # This one on its own takes around 800ms, so we exclude it for FAST_TESTS
- [ 10_000 ],
- )
- total_passes = 0
- total_failures = 0
- #
- # test_shr_signed also tests shr, so we're not going to test shr randomly.
- #
- RANDOM_TESTS = [
- test_add, test_sub, test_mul, test_sqr,
- test_log, test_pow, test_sqrt, test_root_n,
- test_shl_leg, test_shr_leg, test_shl, test_shr_signed,
- test_gcd, test_lcm, test_is_square, test_div,
- ]
- SKIP_LARGE = [
- test_pow, test_root_n, # test_gcd,
- ]
- SKIP_LARGEST = []
- # Untimed warmup.
- for test_proc in TESTS:
- for t in TESTS[test_proc]:
- res = test_proc(*t)
- if __name__ == '__main__':
- print("\n---- math/big tests ----")
- print()
- max_name = 0
- for test_proc in TESTS:
- max_name = max(max_name, len(test_proc.__name__))
- fmt_string = "{name:>{max_name}}: {count_pass:7,} passes and {count_fail:7,} failures in {timing:9.3f} ms."
- fmt_string = fmt_string.replace("{max_name}", str(max_name))
- for test_proc in TESTS:
- count_pass = 0
- count_fail = 0
- TIMINGS = {}
- for t in TESTS[test_proc]:
- start = time.perf_counter()
- res = test_proc(*t)
- diff = time.perf_counter() - start
- TOTAL_TIME += diff
- if test_proc not in TIMINGS:
- TIMINGS[test_proc] = diff
- else:
- TIMINGS[test_proc] += diff
- if res:
- count_pass += 1
- total_passes += 1
- else:
- count_fail += 1
- total_failures += 1
- print(fmt_string.format(name=test_proc.__name__, count_pass=count_pass, count_fail=count_fail, timing=TIMINGS[test_proc] * 1_000))
- for BITS, ITERATIONS in BITS_AND_ITERATIONS:
- print()
- print("---- math/big with two random {bits:,} bit numbers ----".format(bits=BITS))
- print()
- #
- # We've already tested up to the 10th root.
- #
- TEST_ROOT_N_PARAMS = [2, 3, 4, 5, 6]
- for test_proc in RANDOM_TESTS:
- if BITS > 1_200 and test_proc in SKIP_LARGE: continue
- if BITS > 4_096 and test_proc in SKIP_LARGEST: continue
- count_pass = 0
- count_fail = 0
- TIMINGS = {}
- UNTIL_ITERS = ITERATIONS
- if test_proc == test_root_n and BITS == 1_200:
- UNTIL_ITERS /= 10
- UNTIL_TIME = TOTAL_TIME + BITS / args.timed_bits
- # We run each test for a second per 20k bits
- index = 0
- while we_iterate():
- a = randint(-(1 << BITS), 1 << BITS)
- b = randint(-(1 << BITS), 1 << BITS)
- if test_proc == test_div:
- # We've already tested division by zero above.
- bits = int(BITS * 0.6)
- b = randint(-(1 << bits), 1 << bits)
- if b == 0:
- b == 42
- elif test_proc == test_log:
- # We've already tested log's domain errors.
- a = randint(1, 1 << BITS)
- b = randint(2, 1 << 60)
- elif test_proc == test_pow:
- b = randint(1, 10)
- elif test_proc == test_sqrt:
- a = randint(1, 1 << BITS)
- b = Error.Okay
- elif test_proc == test_root_n:
- a = randint(1, 1 << BITS)
- b = TEST_ROOT_N_PARAMS[index]
- index = (index + 1) % len(TEST_ROOT_N_PARAMS)
- elif test_proc == test_shl_leg:
- b = randint(0, 10);
- elif test_proc == test_shr_leg:
- a = abs(a)
- b = randint(0, 10);
- elif test_proc == test_shl:
- b = randint(0, min(BITS, 120))
- elif test_proc == test_shr_signed:
- b = randint(0, min(BITS, 120))
- elif test_proc == test_is_square:
- a = randint(0, 1 << BITS)
- elif test_proc == test_lcm:
- smallest = min(a, b)
- biggest = max(a, b)
- # Randomly swap biggest and smallest
- if randint(1, 11) % 2 == 0:
- smallest, biggest = biggest, smallest
- a, b = smallest, biggest
- else:
- b = randint(0, 1 << BITS)
- res = None
- start = time.perf_counter()
- res = test_proc(a, b)
- diff = time.perf_counter() - start
- TOTAL_TIME += diff
- if test_proc not in TIMINGS:
- TIMINGS[test_proc] = diff
- else:
- TIMINGS[test_proc] += diff
- if res:
- count_pass += 1; total_passes += 1
- else:
- count_fail += 1; total_failures += 1
- print(fmt_string.format(name=test_proc.__name__, count_pass=count_pass, count_fail=count_fail, timing=TIMINGS[test_proc] * 1_000))
- print()
- print("---- THE END ----")
- print()
- print(fmt_string.format(name="total", count_pass=total_passes, count_fail=total_failures, timing=TOTAL_TIME * 1_000))
- if total_failures:
- exit(1)
|