mem.odin 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307
  1. package mem
  2. import "core:runtime"
  3. import "core:intrinsics"
  4. Byte :: 1
  5. Kilobyte :: 1024 * Byte
  6. Megabyte :: 1024 * Kilobyte
  7. Gigabyte :: 1024 * Megabyte
  8. Terabyte :: 1024 * Gigabyte
  9. set :: proc "contextless" (data: rawptr, value: byte, len: int) -> rawptr {
  10. return runtime.memset(data, i32(value), len)
  11. }
  12. zero :: proc "contextless" (data: rawptr, len: int) -> rawptr {
  13. intrinsics.mem_zero(data, len)
  14. return data
  15. }
  16. zero_explicit :: proc "contextless" (data: rawptr, len: int) -> rawptr {
  17. // This routine tries to avoid the compiler optimizing away the call,
  18. // so that it is always executed. It is intended to provided
  19. // equivalent semantics to those provided by the C11 Annex K 3.7.4.1
  20. // memset_s call.
  21. intrinsics.mem_zero_volatile(data, len) // Use the volatile mem_zero
  22. intrinsics.atomic_thread_fence(.Seq_Cst) // Prevent reordering
  23. return data
  24. }
  25. zero_item :: proc "contextless" (item: $P/^$T) {
  26. intrinsics.mem_zero(item, size_of(T))
  27. }
  28. zero_slice :: proc "contextless" (data: $T/[]$E) {
  29. zero(raw_data(data), size_of(E)*len(data))
  30. }
  31. copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
  32. intrinsics.mem_copy(dst, src, len)
  33. return dst
  34. }
  35. copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
  36. intrinsics.mem_copy_non_overlapping(dst, src, len)
  37. return dst
  38. }
  39. compare :: proc "contextless" (a, b: []byte) -> int {
  40. res := compare_byte_ptrs(raw_data(a), raw_data(b), min(len(a), len(b)))
  41. if res == 0 && len(a) != len(b) {
  42. return len(a) <= len(b) ? -1 : +1
  43. } else if len(a) == 0 && len(b) == 0 {
  44. return 0
  45. }
  46. return res
  47. }
  48. compare_byte_ptrs :: proc "contextless" (a, b: ^byte, n: int) -> int #no_bounds_check {
  49. switch {
  50. case a == b:
  51. return 0
  52. case a == nil:
  53. return -1
  54. case b == nil:
  55. return -1
  56. case n == 0:
  57. return 0
  58. }
  59. x := slice_ptr(a, n)
  60. y := slice_ptr(b, n)
  61. SU :: size_of(uintptr)
  62. fast := n/SU + 1
  63. offset := (fast-1)*SU
  64. curr_block := 0
  65. if n < SU {
  66. fast = 0
  67. }
  68. la := slice_ptr((^uintptr)(a), fast)
  69. lb := slice_ptr((^uintptr)(b), fast)
  70. for /**/; curr_block < fast; curr_block += 1 {
  71. if la[curr_block] ~ lb[curr_block] != 0 {
  72. for pos := curr_block*SU; pos < n; pos += 1 {
  73. if x[pos] ~ y[pos] != 0 {
  74. return (int(x[pos]) - int(y[pos])) < 0 ? -1 : +1
  75. }
  76. }
  77. }
  78. }
  79. for /**/; offset < n; offset += 1 {
  80. if x[offset] ~ y[offset] != 0 {
  81. return (int(x[offset]) - int(y[offset])) < 0 ? -1 : +1
  82. }
  83. }
  84. return 0
  85. }
  86. check_zero :: proc(data: []byte) -> bool {
  87. return check_zero_ptr(raw_data(data), len(data))
  88. }
  89. check_zero_ptr :: proc(ptr: rawptr, len: int) -> bool {
  90. switch {
  91. case len <= 0:
  92. return true
  93. case ptr == nil:
  94. return true
  95. }
  96. start := uintptr(ptr)
  97. start_aligned := align_forward_uintptr(start, align_of(uintptr))
  98. end := start + uintptr(len)
  99. end_aligned := align_backward_uintptr(end, align_of(uintptr))
  100. for b in start..<start_aligned {
  101. if (^byte)(b)^ != 0 {
  102. return false
  103. }
  104. }
  105. for b := start_aligned; b < end_aligned; b += size_of(uintptr) {
  106. if (^uintptr)(b)^ != 0 {
  107. return false
  108. }
  109. }
  110. for b in end_aligned..<end {
  111. if (^byte)(b)^ != 0 {
  112. return false
  113. }
  114. }
  115. return true
  116. }
  117. simple_equal :: proc "contextless" (a, b: $T) -> bool where intrinsics.type_is_simple_compare(T) {
  118. a, b := a, b
  119. return compare_byte_ptrs((^byte)(&a), (^byte)(&b), size_of(T)) == 0
  120. }
  121. compare_ptrs :: proc "contextless" (a, b: rawptr, n: int) -> int {
  122. return compare_byte_ptrs((^byte)(a), (^byte)(b), n)
  123. }
  124. ptr_offset :: intrinsics.ptr_offset
  125. ptr_sub :: intrinsics.ptr_sub
  126. slice_ptr :: proc "contextless" (ptr: ^$T, len: int) -> []T {
  127. return ([^]T)(ptr)[:len]
  128. }
  129. byte_slice :: #force_inline proc "contextless" (data: rawptr, len: int) -> []byte {
  130. return ([^]u8)(data)[:max(len, 0)]
  131. }
  132. slice_to_bytes :: proc "contextless" (slice: $E/[]$T) -> []byte {
  133. s := transmute(Raw_Slice)slice
  134. s.len *= size_of(T)
  135. return transmute([]byte)s
  136. }
  137. slice_data_cast :: proc "contextless" ($T: typeid/[]$A, slice: $S/[]$B) -> T {
  138. when size_of(A) == 0 || size_of(B) == 0 {
  139. return nil
  140. } else {
  141. s := transmute(Raw_Slice)slice
  142. s.len = (len(slice) * size_of(B)) / size_of(A)
  143. return transmute(T)s
  144. }
  145. }
  146. slice_to_components :: proc "contextless" (slice: $E/[]$T) -> (data: ^T, len: int) {
  147. s := transmute(Raw_Slice)slice
  148. return (^T)(s.data), s.len
  149. }
  150. buffer_from_slice :: proc "contextless" (backing: $T/[]$E) -> [dynamic]E {
  151. return transmute([dynamic]E)Raw_Dynamic_Array{
  152. data = raw_data(backing),
  153. len = 0,
  154. cap = len(backing),
  155. allocator = Allocator{
  156. procedure = nil_allocator_proc,
  157. data = nil,
  158. },
  159. }
  160. }
  161. ptr_to_bytes :: proc "contextless" (ptr: ^$T, len := 1) -> []byte {
  162. return transmute([]byte)Raw_Slice{ptr, len*size_of(T)}
  163. }
  164. any_to_bytes :: proc "contextless" (val: any) -> []byte {
  165. ti := type_info_of(val.id)
  166. size := ti != nil ? ti.size : 0
  167. return transmute([]byte)Raw_Slice{val.data, size}
  168. }
  169. is_power_of_two :: proc "contextless" (x: uintptr) -> bool {
  170. if x <= 0 {
  171. return false
  172. }
  173. return (x & (x-1)) == 0
  174. }
  175. align_forward :: proc(ptr: rawptr, align: uintptr) -> rawptr {
  176. return rawptr(align_forward_uintptr(uintptr(ptr), align))
  177. }
  178. align_forward_uintptr :: proc(ptr, align: uintptr) -> uintptr {
  179. assert(is_power_of_two(align))
  180. p := ptr
  181. modulo := p & (align-1)
  182. if modulo != 0 {
  183. p += align - modulo
  184. }
  185. return p
  186. }
  187. align_forward_int :: proc(ptr, align: int) -> int {
  188. return int(align_forward_uintptr(uintptr(ptr), uintptr(align)))
  189. }
  190. align_forward_uint :: proc(ptr, align: uint) -> uint {
  191. return uint(align_forward_uintptr(uintptr(ptr), uintptr(align)))
  192. }
  193. align_backward :: proc(ptr: rawptr, align: uintptr) -> rawptr {
  194. return rawptr(align_backward_uintptr(uintptr(ptr), align))
  195. }
  196. align_backward_uintptr :: proc(ptr, align: uintptr) -> uintptr {
  197. return align_forward_uintptr(ptr - align + 1, align)
  198. }
  199. align_backward_int :: proc(ptr, align: int) -> int {
  200. return int(align_backward_uintptr(uintptr(ptr), uintptr(align)))
  201. }
  202. align_backward_uint :: proc(ptr, align: uint) -> uint {
  203. return uint(align_backward_uintptr(uintptr(ptr), uintptr(align)))
  204. }
  205. context_from_allocator :: proc(a: Allocator) -> type_of(context) {
  206. context.allocator = a
  207. return context
  208. }
  209. reinterpret_copy :: proc "contextless" ($T: typeid, ptr: rawptr) -> (value: T) {
  210. copy(&value, ptr, size_of(T))
  211. return
  212. }
  213. Fixed_Byte_Buffer :: distinct [dynamic]byte
  214. make_fixed_byte_buffer :: proc "contextless" (backing: []byte) -> Fixed_Byte_Buffer {
  215. s := transmute(Raw_Slice)backing
  216. d: Raw_Dynamic_Array
  217. d.data = s.data
  218. d.len = 0
  219. d.cap = s.len
  220. d.allocator = Allocator{
  221. procedure = nil_allocator_proc,
  222. data = nil,
  223. }
  224. return transmute(Fixed_Byte_Buffer)d
  225. }
  226. align_formula :: proc "contextless" (size, align: int) -> int {
  227. result := size + align-1
  228. return result - result%align
  229. }
  230. calc_padding_with_header :: proc "contextless" (ptr: uintptr, align: uintptr, header_size: int) -> int {
  231. p, a := ptr, align
  232. modulo := p & (a-1)
  233. padding := uintptr(0)
  234. if modulo != 0 {
  235. padding = a - modulo
  236. }
  237. needed_space := uintptr(header_size)
  238. if padding < needed_space {
  239. needed_space -= padding
  240. if needed_space & (a-1) > 0 {
  241. padding += align * (1+(needed_space/align))
  242. } else {
  243. padding += align * (needed_space/align)
  244. }
  245. }
  246. return int(padding)
  247. }
  248. clone_slice :: proc(slice: $T/[]$E, allocator := context.allocator, loc := #caller_location) -> (new_slice: T) {
  249. new_slice, _ = make(T, len(slice), allocator, loc)
  250. runtime.copy(new_slice, slice)
  251. return new_slice
  252. }