general.odin 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. package linalg
  2. import "core:math"
  3. import "core:builtin"
  4. import "core:intrinsics"
  5. // Generic
  6. TAU :: 6.28318530717958647692528676655900576
  7. PI :: 3.14159265358979323846264338327950288
  8. E :: 2.71828182845904523536
  9. τ :: TAU
  10. π :: PI
  11. e :: E
  12. SQRT_TWO :: 1.41421356237309504880168872420969808
  13. SQRT_THREE :: 1.73205080756887729352744634150587236
  14. SQRT_FIVE :: 2.23606797749978969640917366873127623
  15. LN2 :: 0.693147180559945309417232121458176568
  16. LN10 :: 2.30258509299404568401799145468436421
  17. MAX_F64_PRECISION :: 16 // Maximum number of meaningful digits after the decimal point for 'f64'
  18. MAX_F32_PRECISION :: 8 // Maximum number of meaningful digits after the decimal point for 'f32'
  19. RAD_PER_DEG :: TAU/360.0
  20. DEG_PER_RAD :: 360.0/TAU
  21. @private IS_NUMERIC :: intrinsics.type_is_numeric
  22. @private IS_QUATERNION :: intrinsics.type_is_quaternion
  23. @private IS_ARRAY :: intrinsics.type_is_array
  24. @private IS_FLOAT :: intrinsics.type_is_float
  25. @private BASE_TYPE :: intrinsics.type_base_type
  26. @private ELEM_TYPE :: intrinsics.type_elem_type
  27. scalar_dot :: proc(a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
  28. return a * b
  29. }
  30. vector_dot :: proc(a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) #no_bounds_check {
  31. for i in 0..<N {
  32. c += a[i] * b[i]
  33. }
  34. return
  35. }
  36. quaternion64_dot :: proc(a, b: $T/quaternion64) -> (c: f16) {
  37. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
  38. }
  39. quaternion128_dot :: proc(a, b: $T/quaternion128) -> (c: f32) {
  40. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
  41. }
  42. quaternion256_dot :: proc(a, b: $T/quaternion256) -> (c: f64) {
  43. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
  44. }
  45. dot :: proc{scalar_dot, vector_dot, quaternion64_dot, quaternion128_dot, quaternion256_dot}
  46. inner_product :: dot
  47. outer_product :: builtin.outer_product
  48. quaternion_inverse :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  49. return conj(q) * quaternion(1.0/dot(q, q), 0, 0, 0)
  50. }
  51. scalar_cross :: proc(a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
  52. return a * b
  53. }
  54. vector_cross2 :: proc(a, b: $T/[2]$E) -> E where IS_NUMERIC(E) {
  55. return a[0]*b[1] - b[0]*a[1]
  56. }
  57. vector_cross3 :: proc(a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) {
  58. c[0] = a[1]*b[2] - b[1]*a[2]
  59. c[1] = a[2]*b[0] - b[2]*a[0]
  60. c[2] = a[0]*b[1] - b[0]*a[1]
  61. return
  62. }
  63. quaternion_cross :: proc(q1, q2: $Q) -> (q3: Q) where IS_QUATERNION(Q) {
  64. q3.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y
  65. q3.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z
  66. q3.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x
  67. q3.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z
  68. return
  69. }
  70. vector_cross :: proc{scalar_cross, vector_cross2, vector_cross3}
  71. cross :: proc{scalar_cross, vector_cross2, vector_cross3, quaternion_cross}
  72. vector_normalize :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  73. return v / length(v)
  74. }
  75. quaternion_normalize :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  76. return q/abs(q)
  77. }
  78. normalize :: proc{vector_normalize, quaternion_normalize}
  79. vector_normalize0 :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  80. m := length(v)
  81. return 0 if m == 0 else v/m
  82. }
  83. quaternion_normalize0 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  84. m := abs(q)
  85. return 0 if m == 0 else q/m
  86. }
  87. normalize0 :: proc{vector_normalize0, quaternion_normalize0}
  88. vector_length :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
  89. return math.sqrt(dot(v, v))
  90. }
  91. vector_length2 :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
  92. return dot(v, v)
  93. }
  94. quaternion_length :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  95. return abs(q)
  96. }
  97. quaternion_length2 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  98. return dot(q, q)
  99. }
  100. scalar_triple_product :: proc(a, b, c: $T/[$N]$E) -> E where IS_NUMERIC(E) {
  101. // a . (b x c)
  102. // b . (c x a)
  103. // c . (a x b)
  104. return dot(a, cross(b, c))
  105. }
  106. vector_triple_product :: proc(a, b, c: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  107. // a x (b x c)
  108. // (a . c)b - (a . b)c
  109. return cross(a, cross(b, c))
  110. }
  111. length :: proc{vector_length, quaternion_length}
  112. length2 :: proc{vector_length2, quaternion_length2}
  113. projection :: proc(x, normal: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  114. return dot(x, normal) / dot(normal, normal) * normal
  115. }
  116. identity :: proc($T: typeid/[$N][N]$E) -> (m: T) #no_bounds_check {
  117. for i in 0..<N {
  118. m[i][i] = E(1)
  119. }
  120. return m
  121. }
  122. trace :: builtin.matrix_trace
  123. transpose :: builtin.transpose
  124. matrix_mul :: proc(a, b: $M/matrix[$N, N]$E) -> (c: M)
  125. where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
  126. return a * b
  127. }
  128. matrix_comp_mul :: proc(a, b: $M/matrix[$I, $J]$E) -> (c: M)
  129. where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
  130. return hadamard_product(a, b)
  131. }
  132. matrix_mul_differ :: proc(a: $A/matrix[$I, $J]$E, b: $B/matrix[J, $K]E) -> (c: matrix[I, K]E)
  133. where !IS_ARRAY(E), IS_NUMERIC(E), I != K #no_bounds_check {
  134. return a * b
  135. }
  136. matrix_mul_vector :: proc(a: $A/matrix[$I, $J]$E, b: $B/[J]E) -> (c: B)
  137. where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
  138. return a * b
  139. }
  140. quaternion_mul_quaternion :: proc(q1, q2: $Q) -> Q where IS_QUATERNION(Q) {
  141. return q1 * q2
  142. }
  143. quaternion64_mul_vector3 :: proc(q: $Q/quaternion64, v: $V/[3]$F/f16) -> V {
  144. Raw_Quaternion :: struct {xyz: [3]f16, r: f16}
  145. q := transmute(Raw_Quaternion)q
  146. v := transmute([3]f16)v
  147. t := cross(2*q.xyz, v)
  148. return V(v + q.r*t + cross(q.xyz, t))
  149. }
  150. quaternion128_mul_vector3 :: proc(q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
  151. Raw_Quaternion :: struct {xyz: [3]f32, r: f32}
  152. q := transmute(Raw_Quaternion)q
  153. v := transmute([3]f32)v
  154. t := cross(2*q.xyz, v)
  155. return V(v + q.r*t + cross(q.xyz, t))
  156. }
  157. quaternion256_mul_vector3 :: proc(q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
  158. Raw_Quaternion :: struct {xyz: [3]f64, r: f64}
  159. q := transmute(Raw_Quaternion)q
  160. v := transmute([3]f64)v
  161. t := cross(2*q.xyz, v)
  162. return V(v + q.r*t + cross(q.xyz, t))
  163. }
  164. quaternion_mul_vector3 :: proc{quaternion64_mul_vector3, quaternion128_mul_vector3, quaternion256_mul_vector3}
  165. mul :: proc{
  166. matrix_mul,
  167. matrix_mul_differ,
  168. matrix_mul_vector,
  169. quaternion64_mul_vector3,
  170. quaternion128_mul_vector3,
  171. quaternion256_mul_vector3,
  172. quaternion_mul_quaternion,
  173. }
  174. vector_to_ptr :: proc(v: ^$V/[$N]$E) -> ^E where IS_NUMERIC(E), N > 0 #no_bounds_check {
  175. return &v[0]
  176. }
  177. matrix_to_ptr :: proc(m: ^$A/matrix[$I, $J]$E) -> ^E where IS_NUMERIC(E), I > 0, J > 0 #no_bounds_check {
  178. return &m[0, 0]
  179. }
  180. to_ptr :: proc{vector_to_ptr, matrix_to_ptr}
  181. // Splines
  182. vector_slerp :: proc(x, y: $T/[$N]$E, a: E) -> T {
  183. cos_alpha := dot(x, y)
  184. alpha := math.acos(cos_alpha)
  185. sin_alpha := math.sin(alpha)
  186. t1 := math.sin((1 - a) * alpha) / sin_alpha
  187. t2 := math.sin(a * alpha) / sin_alpha
  188. return x * t1 + y * t2
  189. }
  190. catmull_rom :: proc(v1, v2, v3, v4: $T/[$N]$E, s: E) -> T {
  191. s2 := s*s
  192. s3 := s2*s
  193. f1 := -s3 + 2 * s2 - s
  194. f2 := 3 * s3 - 5 * s2 + 2
  195. f3 := -3 * s3 + 4 * s2 + s
  196. f4 := s3 - s2
  197. return (f1 * v1 + f2 * v2 + f3 * v3 + f4 * v4) * 0.5
  198. }
  199. hermite :: proc(v1, t1, v2, t2: $T/[$N]$E, s: E) -> T {
  200. s2 := s*s
  201. s3 := s2*s
  202. f1 := 2 * s3 - 3 * s2 + 1
  203. f2 := -2 * s3 + 3 * s2
  204. f3 := s3 - 2 * s2 + s
  205. f4 := s3 - s2
  206. return f1 * v1 + f2 * v2 + f3 * t1 + f4 * t2
  207. }
  208. cubic :: proc(v1, v2, v3, v4: $T/[$N]$E, s: E) -> T {
  209. return ((v1 * s + v2) * s + v3) * s + v4
  210. }
  211. array_cast :: proc(v: $A/[$N]$T, $Elem_Type: typeid) -> (w: [N]Elem_Type) #no_bounds_check {
  212. for i in 0..<N {
  213. w[i] = Elem_Type(v[i])
  214. }
  215. return
  216. }
  217. matrix_cast :: proc(v: $A/matrix[$M, $N]$T, $Elem_Type: typeid) -> (w: matrix[M, N]Elem_Type) #no_bounds_check {
  218. for j in 0..<N {
  219. for i in 0..<M {
  220. w[i, j] = Elem_Type(v[i, j])
  221. }
  222. }
  223. return
  224. }
  225. to_f32 :: #force_inline proc(v: $A/[$N]$T) -> [N]f32 { return array_cast(v, f32) }
  226. to_f64 :: #force_inline proc(v: $A/[$N]$T) -> [N]f64 { return array_cast(v, f64) }
  227. to_i8 :: #force_inline proc(v: $A/[$N]$T) -> [N]i8 { return array_cast(v, i8) }
  228. to_i16 :: #force_inline proc(v: $A/[$N]$T) -> [N]i16 { return array_cast(v, i16) }
  229. to_i32 :: #force_inline proc(v: $A/[$N]$T) -> [N]i32 { return array_cast(v, i32) }
  230. to_i64 :: #force_inline proc(v: $A/[$N]$T) -> [N]i64 { return array_cast(v, i64) }
  231. to_int :: #force_inline proc(v: $A/[$N]$T) -> [N]int { return array_cast(v, int) }
  232. to_u8 :: #force_inline proc(v: $A/[$N]$T) -> [N]u8 { return array_cast(v, u8) }
  233. to_u16 :: #force_inline proc(v: $A/[$N]$T) -> [N]u16 { return array_cast(v, u16) }
  234. to_u32 :: #force_inline proc(v: $A/[$N]$T) -> [N]u32 { return array_cast(v, u32) }
  235. to_u64 :: #force_inline proc(v: $A/[$N]$T) -> [N]u64 { return array_cast(v, u64) }
  236. to_uint :: #force_inline proc(v: $A/[$N]$T) -> [N]uint { return array_cast(v, uint) }
  237. to_complex32 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex32 { return array_cast(v, complex32) }
  238. to_complex64 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex64 { return array_cast(v, complex64) }
  239. to_complex128 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex128 { return array_cast(v, complex128) }
  240. to_quaternion64 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion64 { return array_cast(v, quaternion64) }
  241. to_quaternion128 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion128 { return array_cast(v, quaternion128) }
  242. to_quaternion256 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion256 { return array_cast(v, quaternion256) }