123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312 |
- package rand
- import "core:math"
- float64_uniform :: float64_range
- float32_uniform :: float32_range
- // Triangular Distribution
- // See: http://wikipedia.org/wiki/Triangular_distribution
- float64_triangular :: proc(lo, hi: f64, mode: Maybe(f64), r: ^Rand = nil) -> f64 {
- if hi-lo == 0 {
- return lo
- }
- lo, hi := lo, hi
- u := float64(r)
- c := f64(0.5) if mode == nil else clamp((mode.?-lo) / (hi-lo), 0, 1)
- if u > c {
- u = 1-u
- c = 1-c
- lo, hi = hi, lo
- }
- return lo + (hi - lo) * math.sqrt(u * c)
- }
- // Triangular Distribution
- // See: http://wikipedia.org/wiki/Triangular_distribution
- float32_triangular :: proc(lo, hi: f32, mode: Maybe(f32), r: ^Rand = nil) -> f32 {
- if hi-lo == 0 {
- return lo
- }
- lo, hi := lo, hi
- u := float32(r)
- c := f32(0.5) if mode == nil else clamp((mode.?-lo) / (hi-lo), 0, 1)
- if u > c {
- u = 1-u
- c = 1-c
- lo, hi = hi, lo
- }
- return lo + (hi - lo) * math.sqrt(u * c)
- }
- // Normal/Gaussian Distribution
- float64_normal :: proc(mean, stddev: f64, r: ^Rand = nil) -> f64 {
- return norm_float64(r) * stddev + mean
- }
- // Normal/Gaussian Distribution
- float32_normal :: proc(mean, stddev: f32, r: ^Rand = nil) -> f32 {
- return f32(float64_normal(f64(mean), f64(stddev), r))
- }
- // Log Normal Distribution
- float64_log_normal :: proc(mean, stddev: f64, r: ^Rand = nil) -> f64 {
- return math.exp(float64_normal(mean, stddev, r))
- }
- // Log Normal Distribution
- float32_log_normal :: proc(mean, stddev: f32, r: ^Rand = nil) -> f32 {
- return f32(float64_log_normal(f64(mean), f64(stddev), r))
- }
- // Exponential Distribution
- // `lambda` is 1.0/(desired mean). It should be non-zero.
- // Return values range from
- // 0 to positive infinity if lambda > 0
- // negative infinity to 0 if lambda <= 0
- float64_exponential :: proc(lambda: f64, r: ^Rand = nil) -> f64 {
- return - math.ln(1 - float64(r)) / lambda
- }
- // Exponential Distribution
- // `lambda` is 1.0/(desired mean). It should be non-zero.
- // Return values range from
- // 0 to positive infinity if lambda > 0
- // negative infinity to 0 if lambda <= 0
- float32_exponential :: proc(lambda: f32, r: ^Rand = nil) -> f32 {
- return f32(float64_exponential(f64(lambda), r))
- }
- // Gamma Distribution (NOT THE GAMMA FUNCTION)
- //
- // Required: alpha > 0 and beta > 0
- //
- // math.pow(x, alpha-1) * math.exp(-x / beta)
- // pdf(x) = --------------------------------------------
- // math.gamma(alpha) * math.pow(beta, alpha)
- //
- // mean is alpha*beta, variance is math.pow(alpha*beta, 2)
- float64_gamma :: proc(alpha, beta: f64, r: ^Rand = nil) -> f64 {
- if alpha <= 0 || beta <= 0 {
- panic(#procedure + ": alpha and beta must be > 0.0")
- }
- LOG4 :: 1.3862943611198906188344642429163531361510002687205105082413600189
- SG_MAGIC_CONST :: 2.5040773967762740733732583523868748412194809812852436493487
- switch {
- case alpha > 1:
- // R.C.H. Cheng, "The generation of Gamma variables with non-integral shape parameters", Applied Statistics, (1977), 26, No. 1, p71-74
- ainv := math.sqrt(2 * alpha - 1)
- bbb := alpha - LOG4
- ccc := alpha + ainv
- for {
- u1 := float64(r)
- if !(1e-7 < u1 && u1 < 0.9999999) {
- continue
- }
- u2 := 1 - float64(r)
- v := math.ln(u1 / (1 - u1)) / ainv
- x := alpha * math.exp(v)
- z := u1 * u1 * u2
- t := bbb + ccc*v - x
- if t + SG_MAGIC_CONST - 4.5 * z >= 0 || t >= math.ln(z) {
- return x * beta
- }
- }
- case alpha == 1:
- // float64_exponential(1/beta)
- return -math.ln(1 - float64(r)) * beta
- case:
- // ALGORITHM GS of Statistical Computing - Kennedy & Gentle
- x: f64
- for {
- u := float64(r)
- b := (math.e + alpha) / math.e
- p := b * u
- if p <= 1 {
- x = math.pow(p, 1/alpha)
- } else {
- x = -math.ln((b - p) / alpha)
- }
- u1 := float64(r)
- if p > 1 {
- if u1 <= math.pow(x, alpha-1) {
- break
- }
- } else if u1 <= math.exp(-x) {
- break
- }
- }
- return x * beta
- }
- }
- // Gamma Distribution (NOT THE GAMMA FUNCTION)
- //
- // Required: alpha > 0 and beta > 0
- //
- // math.pow(x, alpha-1) * math.exp(-x / beta)
- // pdf(x) = --------------------------------------------
- // math.gamma(alpha) * math.pow(beta, alpha)
- //
- // mean is alpha*beta, variance is math.pow(alpha*beta, 2)
- float32_gamma :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 {
- return f32(float64_gamma(f64(alpha), f64(beta), r))
- }
- // Beta Distribution
- //
- // Required: alpha > 0 and beta > 0
- //
- // Return values range between 0 and 1
- float64_beta :: proc(alpha, beta: f64, r: ^Rand = nil) -> f64 {
- if alpha <= 0 || beta <= 0 {
- panic(#procedure + ": alpha and beta must be > 0.0")
- }
- // Knuth Vol 2 Ed 3 pg 134 "the beta distribution"
- y := float64_gamma(alpha, 1.0, r)
- if y != 0 {
- return y / (y + float64_gamma(beta, 1.0, r))
- }
- return 0
- }
- // Beta Distribution
- //
- // Required: alpha > 0 and beta > 0
- //
- // Return values range between 0 and 1
- float32_beta :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 {
- return f32(float64_beta(f64(alpha), f64(beta), r))
- }
- // Pareto distribution, `alpha` is the shape parameter.
- // https://wikipedia.org/wiki/Pareto_distribution
- float64_pareto :: proc(alpha: f64, r: ^Rand = nil) -> f64 {
- return math.pow(1 - float64(r), -1.0 / alpha)
- }
- // Pareto distribution, `alpha` is the shape parameter.
- // https://wikipedia.org/wiki/Pareto_distribution
- float32_pareto :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 {
- return f32(float64_pareto(f64(alpha), r))
- }
- // Weibull distribution, `alpha` is the scale parameter, `beta` is the shape parameter.
- float64_weibull :: proc(alpha, beta: f64, r: ^Rand = nil) -> f64 {
- u := 1 - float64(r)
- return alpha * math.pow(-math.ln(u), 1.0/beta)
- }
- // Weibull distribution, `alpha` is the scale parameter, `beta` is the shape parameter.
- float32_weibull :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 {
- return f32(float64_weibull(f64(alpha), f64(beta), r))
- }
- // Circular Data (von Mises) Distribution
- // `mean_angle` is the in mean angle between 0 and 2pi radians
- // `kappa` is the concentration parameter which must be >= 0
- // When `kappa` is zero, the Distribution is a uniform Distribution over the range 0 to 2pi
- float64_von_mises :: proc(mean_angle, kappa: f64, r: ^Rand = nil) -> f64 {
- // Fisher, N.I., "Statistical Analysis of Circular Data", Cambridge University Press, 1993.
- mu := mean_angle
- if kappa <= 1e-6 {
- return math.TAU * float64(r)
- }
- s := 0.5 / kappa
- t := s + math.sqrt(1 + s*s)
- z: f64
- for {
- u1 := float64(r)
- z = math.cos(math.TAU * 0.5 * u1)
- d := z / (t + z)
- u2 := float64(r)
- if u2 < 1 - d*d || u2 <= (1-d)*math.exp(d) {
- break
- }
- }
- q := 1.0 / t
- f := (q + z) / (1 + q*z)
- u3 := float64(r)
- if u3 > 0.5 {
- return math.mod(mu + math.acos(f), math.TAU)
- } else {
- return math.mod(mu - math.acos(f), math.TAU)
- }
- }
- // Circular Data (von Mises) Distribution
- // `mean_angle` is the in mean angle between 0 and 2pi radians
- // `kappa` is the concentration parameter which must be >= 0
- // When `kappa` is zero, the Distribution is a uniform Distribution over the range 0 to 2pi
- float32_von_mises :: proc(mean_angle, kappa: f32, r: ^Rand = nil) -> f32 {
- return f32(float64_von_mises(f64(mean_angle), f64(kappa), r))
- }
- // Cauchy-Lorentz Distribution
- // `x_0` is the location, `gamma` is the scale where `gamma` > 0
- float64_cauchy_lorentz :: proc(x_0, gamma: f64, r: ^Rand = nil) -> f64 {
- assert(gamma > 0)
- // Calculated from the inverse CDF
- return math.tan(math.PI * (float64(r) - 0.5))*gamma + x_0
- }
- // Cauchy-Lorentz Distribution
- // `x_0` is the location, `gamma` is the scale where `gamma` > 0
- float32_cauchy_lorentz :: proc(x_0, gamma: f32, r: ^Rand = nil) -> f32 {
- return f32(float64_cauchy_lorentz(f64(x_0), f64(gamma), r))
- }
- // Log Cauchy-Lorentz Distribution
- // `x_0` is the location, `gamma` is the scale where `gamma` > 0
- float64_log_cauchy_lorentz :: proc(x_0, gamma: f64, r: ^Rand = nil) -> f64 {
- assert(gamma > 0)
- return math.exp(math.tan(math.PI * (float64(r) - 0.5))*gamma + x_0)
- }
- // Log Cauchy-Lorentz Distribution
- // `x_0` is the location, `gamma` is the scale where `gamma` > 0
- float32_log_cauchy_lorentz :: proc(x_0, gamma: f32, r: ^Rand = nil) -> f32 {
- return f32(float64_log_cauchy_lorentz(f64(x_0), f64(gamma), r))
- }
- // Laplace Distribution
- // `b` is the scale where `b` > 0
- float64_laplace :: proc(mean, b: f64, r: ^Rand = nil) -> f64 {
- assert(b > 0)
- p := float64(r)-0.5
- return -math.sign(p)*math.ln(1 - 2*abs(p))*b + mean
- }
- // Laplace Distribution
- // `b` is the scale where `b` > 0
- float32_laplace :: proc(mean, b: f32, r: ^Rand = nil) -> f32 {
- return f32(float64_laplace(f64(mean), f64(b), r))
- }
- // Gompertz Distribution
- // `eta` is the shape, `b` is the scale
- // Both `eta` and `b` must be > 0
- float64_gompertz :: proc(eta, b: f64, r: ^Rand = nil) -> f64 {
- if eta <= 0 || b <= 0 {
- panic(#procedure + ": eta and b must be > 0.0")
- }
- p := float64(r)
- return math.ln(1 - math.ln(1 - p)/eta)/b
- }
- // Gompertz Distribution
- // `eta` is the shape, `b` is the scale
- // Both `eta` and `b` must be > 0
- float32_gompertz :: proc(eta, b: f32, r: ^Rand = nil) -> f32 {
- return f32(float64_gompertz(f64(eta), f64(b), r))
- }
|