12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916 |
- // simple procedures to manipulate UTF-8 encoded strings
- package strings
- import "core:io"
- import "core:mem"
- import "core:slice"
- import "core:unicode"
- import "core:unicode/utf8"
- // returns a clone of the string `s` allocated using the `allocator`
- clone :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> string {
- c := make([]byte, len(s), allocator, loc)
- copy(c, s)
- return string(c[:len(s)])
- }
- // returns a clone of the string `s` allocated using the `allocator`
- clone_safe :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> (str: string, err: mem.Allocator_Error) {
- c := make([]byte, len(s), allocator, loc) or_return
- copy(c, s)
- return string(c[:len(s)]), nil
- }
- // returns a clone of the string `s` allocated using the `allocator` as a cstring
- // a nul byte is appended to the clone, to make the cstring safe
- clone_to_cstring :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> cstring {
- c := make([]byte, len(s)+1, allocator, loc)
- copy(c, s)
- c[len(s)] = 0
- return cstring(&c[0])
- }
- // returns a string from a byte pointer `ptr` and byte length `len`
- // the string is valid as long as the parameters stay alive
- string_from_ptr :: proc(ptr: ^byte, len: int) -> string {
- return transmute(string)mem.Raw_String{ptr, len}
- }
- // returns a string from a byte pointer `ptr and byte length `len`
- // searches for a nul byte from 0..<len, otherwhise `len` will be the end size
- string_from_nul_terminated_ptr :: proc(ptr: ^byte, len: int) -> string {
- s := transmute(string)mem.Raw_String{ptr, len}
- s = truncate_to_byte(s, 0)
- return s
- }
- // returns the raw ^byte start of the string `str`
- ptr_from_string :: proc(str: string) -> ^byte {
- d := transmute(mem.Raw_String)str
- return d.data
- }
- // returns the transmute of string `str` to a cstring
- // not safe since the origin string may not contain a nul byte
- unsafe_string_to_cstring :: proc(str: string) -> cstring {
- d := transmute(mem.Raw_String)str
- return cstring(d.data)
- }
- // returns a string truncated to the first time it finds the byte `b`
- // uses the `len` of the string `str` when it couldn't find the input
- truncate_to_byte :: proc(str: string, b: byte) -> string {
- n := index_byte(str, b)
- if n < 0 {
- n = len(str)
- }
- return str[:n]
- }
- // returns a string truncated to the first time it finds the rune `r`
- // uses the `len` of the string `str` when it couldn't find the input
- truncate_to_rune :: proc(str: string, r: rune) -> string {
- n := index_rune(str, r)
- if n < 0 {
- n = len(str)
- }
- return str[:n]
- }
- // returns a cloned string of the byte array `s` using the `allocator`
- // appends a leading nul byte
- clone_from_bytes :: proc(s: []byte, allocator := context.allocator, loc := #caller_location) -> string {
- c := make([]byte, len(s)+1, allocator, loc)
- copy(c, s)
- c[len(s)] = 0
- return string(c[:len(s)])
- }
- // returns a clone of the cstring `s` using the `allocator` as a string
- clone_from_cstring :: proc(s: cstring, allocator := context.allocator, loc := #caller_location) -> string {
- return clone(string(s), allocator, loc)
- }
- // returns a cloned string from the pointer `ptr` and a byte length `len` using the `allocator`
- // same to `string_from_ptr` but allocates
- clone_from_ptr :: proc(ptr: ^byte, len: int, allocator := context.allocator, loc := #caller_location) -> string {
- s := string_from_ptr(ptr, len)
- return clone(s, allocator, loc)
- }
- // overload to clone from a `string`, `[]byte`, `cstring` or a `^byte + length` to a string
- clone_from :: proc{
- clone,
- clone_from_bytes,
- clone_from_cstring,
- clone_from_ptr,
- }
- // returns a cloned string from the cstring `ptr` and a byte length `len` using the `allocator`
- // truncates till the first nul byte it finds or the byte len
- clone_from_cstring_bounded :: proc(ptr: cstring, len: int, allocator := context.allocator, loc := #caller_location) -> string {
- s := string_from_ptr((^u8)(ptr), len)
- s = truncate_to_byte(s, 0)
- return clone(s, allocator, loc)
- }
- // Compares two strings, returning a value representing which one comes first lexiographically.
- // -1 for `lhs`; 1 for `rhs`, or 0 if they are equal.
- compare :: proc(lhs, rhs: string) -> int {
- return mem.compare(transmute([]byte)lhs, transmute([]byte)rhs)
- }
- // returns the byte offset of the rune `r` in the string `s`, -1 when not found
- contains_rune :: proc(s: string, r: rune) -> int {
- for c, offset in s {
- if c == r {
- return offset
- }
- }
- return -1
- }
- /*
- returns true when the string `substr` is contained inside the string `s`
- strings.contains("testing", "test") -> true
- strings.contains("testing", "ing") -> true
- strings.contains("testing", "text") -> false
- */
- contains :: proc(s, substr: string) -> bool {
- return index(s, substr) >= 0
- }
- /*
- returns true when the string `s` contains any of the characters inside the string `chars`
-
- strings.contains_any("test", "test") -> true
- strings.contains_any("test", "ts") -> true
- strings.contains_any("test", "et") -> true
- strings.contains_any("test", "a") -> false
- */
- contains_any :: proc(s, chars: string) -> bool {
- return index_any(s, chars) >= 0
- }
- /*
- returns the utf8 rune count of the string `s`
- strings.rune_count("test") -> 4
- strings.rune_count("testö") -> 5, where len("testö") -> 6
- */
- rune_count :: proc(s: string) -> int {
- return utf8.rune_count_in_string(s)
- }
- /*
- returns wether the strings `u` and `v` are the same alpha characters
- works with utf8 string content and ignores different casings
- strings.equal_fold("test", "test") -> true
- strings.equal_fold("Test", "test") -> true
- strings.equal_fold("Test", "tEsT") -> true
- strings.equal_fold("test", "tes") -> false
- */
- equal_fold :: proc(u, v: string) -> bool {
- s, t := u, v
- loop: for s != "" && t != "" {
- sr, tr: rune
- if s[0] < utf8.RUNE_SELF {
- sr, s = rune(s[0]), s[1:]
- } else {
- r, size := utf8.decode_rune_in_string(s)
- sr, s = r, s[size:]
- }
- if t[0] < utf8.RUNE_SELF {
- tr, t = rune(t[0]), t[1:]
- } else {
- r, size := utf8.decode_rune_in_string(t)
- tr, t = r, t[size:]
- }
- if tr == sr { // easy case
- continue loop
- }
- if tr < sr {
- tr, sr = sr, tr
- }
- if tr < utf8.RUNE_SELF {
- switch sr {
- case 'A'..='Z':
- if tr == (sr+'a')-'A' {
- continue loop
- }
- }
- return false
- }
- // TODO(bill): Unicode folding
- return false
- }
- return s == t
- }
- /*
- return true when the string `prefix` is contained at the start of the string `s`
- strings.has_prefix("testing", "test") -> true
- strings.has_prefix("testing", "te") -> true
- strings.has_prefix("telephone", "te") -> true
- strings.has_prefix("testing", "est") -> false
- */
- has_prefix :: proc(s, prefix: string) -> bool {
- return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
- }
- /*
- returns true when the string `suffix` is contained at the end of the string `s`
- good example to use this is for file extensions
- strings.has_suffix("todo.txt", ".txt") -> true
- strings.has_suffix("todo.doc", ".txt") -> false
- strings.has_suffix("todo.doc.txt", ".txt") -> true
- */
- has_suffix :: proc(s, suffix: string) -> bool {
- return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
- }
- /*
- returns a combined string from the slice of strings `a` seperated with the `sep` string
- allocates the string using the `allocator`
- a := [?]string { "a", "b", "c" }
- b := strings.join(a[:], " ") -> "a b c"
- c := strings.join(a[:], "-") -> "a-b-c"
- d := strings.join(a[:], "...") -> "a...b...c"
- */
- join :: proc(a: []string, sep: string, allocator := context.allocator) -> string {
- if len(a) == 0 {
- return ""
- }
- n := len(sep) * (len(a) - 1)
- for s in a {
- n += len(s)
- }
- b := make([]byte, n, allocator)
- i := copy(b, a[0])
- for s in a[1:] {
- i += copy(b[i:], sep)
- i += copy(b[i:], s)
- }
- return string(b)
- }
- join_safe :: proc(a: []string, sep: string, allocator := context.allocator) -> (str: string, err: mem.Allocator_Error) {
- if len(a) == 0 {
- return "", nil
- }
- n := len(sep) * (len(a) - 1)
- for s in a {
- n += len(s)
- }
- b := make([]byte, n, allocator) or_return
- i := copy(b, a[0])
- for s in a[1:] {
- i += copy(b[i:], sep)
- i += copy(b[i:], s)
- }
- return string(b), nil
- }
- /*
- returns a combined string from the slice of strings `a` without a seperator
- allocates the string using the `allocator`
-
- a := [?]string { "a", "b", "c" }
- b := strings.concatenate(a[:]) -> "abc"
- */
- concatenate :: proc(a: []string, allocator := context.allocator) -> string {
- if len(a) == 0 {
- return ""
- }
- n := 0
- for s in a {
- n += len(s)
- }
- b := make([]byte, n, allocator)
- i := 0
- for s in a {
- i += copy(b[i:], s)
- }
- return string(b)
- }
- concatenate_safe :: proc(a: []string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) {
- if len(a) == 0 {
- return "", nil
- }
- n := 0
- for s in a {
- n += len(s)
- }
- b := make([]byte, n, allocator) or_return
- i := 0
- for s in a {
- i += copy(b[i:], s)
- }
- return string(b), nil
- }
- /*
- `rune_offset` and `rune_length` are in runes, not bytes.
- If `rune_length` <= 0, then it'll return the remainder of the string starting at `rune_offset`.
- strings.cut("some example text", 0, 4) -> "some"
- strings.cut("some example text", 2, 2) -> "me"
- strings.cut("some example text", 5, 7) -> "example"
- */
- cut :: proc(s: string, rune_offset := int(0), rune_length := int(0), allocator := context.allocator) -> (res: string) {
- s := s; rune_length := rune_length
- context.allocator = allocator
- // If we signal that we want the entire remainder (length <= 0) *and*
- // the offset is zero, then we can early out by cloning the input
- if rune_offset == 0 && rune_length <= 0 {
- return clone(s)
- }
- // We need to know if we have enough runes to cover offset + length.
- rune_count := utf8.rune_count_in_string(s)
- // We're asking for a substring starting after the end of the input string.
- // That's just an empty string.
- if rune_offset >= rune_count {
- return ""
- }
- // If we don't specify the length of the substring, use the remainder.
- if rune_length <= 0 {
- rune_length = rune_count - rune_offset
- }
- // We don't yet know how many bytes we need exactly.
- // But we do know it's bounded by the number of runes * 4 bytes,
- // and can be no more than the size of the input string.
- bytes_needed := min(rune_length * 4, len(s))
- buf := make([]u8, bytes_needed)
- byte_offset := 0
- for i := 0; i < rune_count; i += 1 {
- _, w := utf8.decode_rune_in_string(s)
- // If the rune is part of the substring, copy it to the output buffer.
- if i >= rune_offset {
- for j := 0; j < w; j += 1 {
- buf[byte_offset+j] = s[j]
- }
- byte_offset += w
- }
- // We're done if we reach the end of the input string, *or*
- // if we've reached a specified length in runes.
- if rune_length > 0 {
- if i == rune_offset + rune_length - 1 { break }
- }
- s = s[w:]
- }
- return string(buf[:byte_offset])
- }
- @private
- _split :: proc(s_, sep: string, sep_save, n_: int, allocator := context.allocator) -> []string {
- s, n := s_, n_
- if n == 0 {
- return nil
- }
- if sep == "" {
- l := utf8.rune_count_in_string(s)
- if n < 0 || n > l {
- n = l
- }
- res := make([dynamic]string, n, allocator)
- for i := 0; i < n-1; i += 1 {
- _, w := utf8.decode_rune_in_string(s)
- res[i] = s[:w]
- s = s[w:]
- }
- if n > 0 {
- res[n-1] = s
- }
- return res[:]
- }
- if n < 0 {
- n = count(s, sep) + 1
- }
- res := make([dynamic]string, n, allocator)
- n -= 1
- i := 0
- for ; i < n; i += 1 {
- m := index(s, sep)
- if m < 0 {
- break
- }
- res[i] = s[:m+sep_save]
- s = s[m+len(sep):]
- }
- res[i] = s
- return res[:i+1]
- }
- /*
- Splits a string into parts, based on a separator.
- Returned strings are substrings of 's'.
- ```
- s := "aaa.bbb.ccc.ddd.eee" // 5 parts
- ss := split(s, ".")
- fmt.println(ss) // [aaa, bbb, ccc, ddd, eee]
- ```
- */
- split :: proc(s, sep: string, allocator := context.allocator) -> []string {
- return _split(s, sep, 0, -1, allocator)
- }
- /*
- Splits a string into a total of 'n' parts, based on a separator.
- Returns fewer parts if there wasn't enough occurrences of the separator.
- Returned strings are substrings of 's'.
- ```
- s := "aaa.bbb.ccc.ddd.eee" // 5 parts present
- ss := split_n(s, ".", 3) // total of 3 wanted
- fmt.println(ss) // [aaa, bbb, ccc.ddd.eee]
- ```
- */
- split_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> []string {
- return _split(s, sep, 0, n, allocator)
- }
- /*
- splits the string `s` after the seperator string `sep` appears
- returns the slice of split strings allocated using `allocator`
- a := "aaa.bbb.ccc.ddd.eee"
- aa := strings.split_after(a, ".")
- fmt.eprintln(aa) // [aaa., bbb., ccc., ddd., eee]
- */
- split_after :: proc(s, sep: string, allocator := context.allocator) -> []string {
- return _split(s, sep, len(sep), -1, allocator)
- }
- /*
- splits the string `s` after the seperator string `sep` appears into a total of `n` parts
- returns the slice of split strings allocated using `allocator`
- a := "aaa.bbb.ccc.ddd.eee"
- aa := strings.split_after(a, ".")
- fmt.eprintln(aa) // [aaa., bbb., ccc., ddd., eee]
- */
- split_after_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> []string {
- return _split(s, sep, len(sep), n, allocator)
- }
- @private
- _split_iterator :: proc(s: ^string, sep: string, sep_save: int) -> (res: string, ok: bool) {
- // stop once the string is empty or nil
- if s == nil || len(s^) == 0 {
- return
- }
- if sep == "" {
- res = s[:]
- ok = true
- s^ = s[len(s):]
- return
- }
- m := index(s^, sep)
- if m < 0 {
- // not found
- res = s[:]
- ok = res != ""
- s^ = s[len(s):]
- } else {
- res = s[:m+sep_save]
- ok = true
- s^ = s[m+len(sep):]
- }
- return
- }
- /*
- split the ^string `s` by the byte seperator `sep` in an iterator fashion
- consumes the original string till the end, leaving the string `s` with len == 0
- text := "a.b.c.d.e"
- for str in strings.split_by_byte_iterator(&text, '.') {
- fmt.eprintln(str) // every loop -> a b c d e
- }
- */
- split_by_byte_iterator :: proc(s: ^string, sep: u8) -> (res: string, ok: bool) {
- m := index_byte(s^, sep)
- if m < 0 {
- // not found
- res = s[:]
- ok = res != ""
- s^ = {}
- } else {
- res = s[:m]
- ok = true
- s^ = s[m+1:]
- }
- return
- }
- /*
- split the ^string `s` by the seperator string `sep` in an iterator fashion
- consumes the original string till the end
- text := "a.b.c.d.e"
- for str in strings.split_iterator(&text, ".") {
- fmt.eprintln(str) // every loop -> a b c d e
- }
- */
- split_iterator :: proc(s: ^string, sep: string) -> (string, bool) {
- return _split_iterator(s, sep, 0)
- }
- /*
- split the ^string `s` after every seperator string `sep` in an iterator fashion
- consumes the original string till the end
- text := "a.b.c.d.e"
- for str in strings.split_after_iterator(&text, ".") {
- fmt.eprintln(str) // every loop -> a. b. c. d. e
- }
- */
- split_after_iterator :: proc(s: ^string, sep: string) -> (string, bool) {
- return _split_iterator(s, sep, len(sep))
- }
- @(private)
- _trim_cr :: proc(s: string) -> string {
- n := len(s)
- if n > 0 {
- if s[n-1] == '\r' {
- return s[:n-1]
- }
- }
- return s
- }
- /*
- split the string `s` at every line break '\n'
- return an allocated slice of strings
- a := "a\nb\nc\nd\ne"
- b := strings.split_lines(a)
- fmt.eprintln(b) // [a, b, c, d, e]
- */
- split_lines :: proc(s: string, allocator := context.allocator) -> []string {
- sep :: "\n"
- lines := _split(s, sep, 0, -1, allocator)
- for line in &lines {
- line = _trim_cr(line)
- }
- return lines
- }
- /*
- split the string `s` at every line break '\n' for `n` parts
- return an allocated slice of strings
- a := "a\nb\nc\nd\ne"
- b := strings.split_lines_n(a, 3)
- fmt.eprintln(b) // [a, b, c, d\ne\n]
- */
- split_lines_n :: proc(s: string, n: int, allocator := context.allocator) -> []string {
- sep :: "\n"
- lines := _split(s, sep, 0, n, allocator)
- for line in &lines {
- line = _trim_cr(line)
- }
- return lines
- }
- /*
- split the string `s` at every line break '\n' leaving the '\n' in the resulting strings
- return an allocated slice of strings
- a := "a\nb\nc\nd\ne"
- b := strings.split_lines_after(a)
- fmt.eprintln(b) // [a\n, b\n, c\n, d\n, e\n]
- */
- split_lines_after :: proc(s: string, allocator := context.allocator) -> []string {
- sep :: "\n"
- lines := _split(s, sep, len(sep), -1, allocator)
- for line in &lines {
- line = _trim_cr(line)
- }
- return lines
- }
- /*
- split the string `s` at every line break '\n' leaving the '\n' in the resulting strings
- only runs for `n` parts
- return an allocated slice of strings
- a := "a\nb\nc\nd\ne"
- b := strings.split_lines_after_n(a, 3)
- fmt.eprintln(b) // [a\n, b\n, c\n, d\ne\n]
- */
- split_lines_after_n :: proc(s: string, n: int, allocator := context.allocator) -> []string {
- sep :: "\n"
- lines := _split(s, sep, len(sep), n, allocator)
- for line in &lines {
- line = _trim_cr(line)
- }
- return lines
- }
- /*
- split the string `s` at every line break '\n'
- returns the current split string every iteration till the string is consumed
- text := "a\nb\nc\nd\ne"
- for str in strings.split_lines_iterator(&text) {
- fmt.eprintln(text) // every loop -> a b c d e
- }
- */
- split_lines_iterator :: proc(s: ^string) -> (line: string, ok: bool) {
- sep :: "\n"
- line = _split_iterator(s, sep, 0) or_return
- return _trim_cr(line), true
- }
- /*
- split the string `s` at every line break '\n'
- returns the current split string every iteration till the string is consumed
- text := "a\nb\nc\nd\ne"
- for str in strings.split_lines_after_iterator(&text) {
- fmt.eprintln(text) // every loop -> a\n b\n c\n d\n e\n
- }
- */
- split_lines_after_iterator :: proc(s: ^string) -> (line: string, ok: bool) {
- sep :: "\n"
- line = _split_iterator(s, sep, len(sep)) or_return
- return _trim_cr(line), true
- }
- /*
- returns the byte offset of the first byte `c` in the string `s` it finds, -1 when not found
- can't find utf8 based runes
- strings.index_byte("test", 't') -> 0
- strings.index_byte("test", 'e') -> 1
- strings.index_byte("test", 'x') -> -1
- strings.index_byte("teäst", 'ä') -> -1
- */
- index_byte :: proc(s: string, c: byte) -> int {
- for i := 0; i < len(s); i += 1 {
- if s[i] == c {
- return i
- }
- }
- return -1
- }
- /*
- returns the byte offset of the last byte `c` in the string `s` it finds, -1 when not found
- can't find utf8 based runes
- strings.index_byte("test", 't') -> 3
- strings.index_byte("test", 'e') -> 1
- strings.index_byte("test", 'x') -> -1
- strings.index_byte("teäst", 'ä') -> -1
- */
- last_index_byte :: proc(s: string, c: byte) -> int {
- for i := len(s)-1; i >= 0; i -= 1 {
- if s[i] == c {
- return i
- }
- }
- return -1
- }
- /*
- returns the byte offset of the first rune `r` in the string `s` it finds, -1 when not found
- avoids invalid runes
- strings.index_rune("abcädef", 'x') -> -1
- strings.index_rune("abcädef", 'a') -> 0
- strings.index_rune("abcädef", 'b') -> 1
- strings.index_rune("abcädef", 'c') -> 2
- strings.index_rune("abcädef", 'ä') -> 3
- strings.index_rune("abcädef", 'd') -> 5
- strings.index_rune("abcädef", 'e') -> 6
- strings.index_rune("abcädef", 'f') -> 7
- */
- index_rune :: proc(s: string, r: rune) -> int {
- switch {
- case 0 <= r && r < utf8.RUNE_SELF:
- return index_byte(s, byte(r))
- case r == utf8.RUNE_ERROR:
- for c, i in s {
- if c == utf8.RUNE_ERROR {
- return i
- }
- }
- return -1
- case !utf8.valid_rune(r):
- return -1
- }
- b, w := utf8.encode_rune(r)
- return index(s, string(b[:w]))
- }
- @private PRIME_RABIN_KARP :: 16777619
- /*
- returns the byte offset of the string `substr` in the string `s`, -1 when not found
-
- strings.index("test", "t") -> 0
- strings.index("test", "te") -> 0
- strings.index("test", "st") -> 2
- strings.index("test", "tt") -> -1
- */
- index :: proc(s, substr: string) -> int {
- hash_str_rabin_karp :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) {
- for i := 0; i < len(s); i += 1 {
- hash = hash*PRIME_RABIN_KARP + u32(s[i])
- }
- sq := u32(PRIME_RABIN_KARP)
- for i := len(s); i > 0; i >>= 1 {
- if (i & 1) != 0 {
- pow *= sq
- }
- sq *= sq
- }
- return
- }
- n := len(substr)
- switch {
- case n == 0:
- return 0
- case n == 1:
- return index_byte(s, substr[0])
- case n == len(s):
- if s == substr {
- return 0
- }
- return -1
- case n > len(s):
- return -1
- }
- hash, pow := hash_str_rabin_karp(substr)
- h: u32
- for i := 0; i < n; i += 1 {
- h = h*PRIME_RABIN_KARP + u32(s[i])
- }
- if h == hash && s[:n] == substr {
- return 0
- }
- for i := n; i < len(s); /**/ {
- h *= PRIME_RABIN_KARP
- h += u32(s[i])
- h -= pow * u32(s[i-n])
- i += 1
- if h == hash && s[i-n:i] == substr {
- return i - n
- }
- }
- return -1
- }
- /*
- returns the last byte offset of the string `substr` in the string `s`, -1 when not found
-
- strings.index("test", "t") -> 3
- strings.index("test", "te") -> 0
- strings.index("test", "st") -> 2
- strings.index("test", "tt") -> -1
- */
- last_index :: proc(s, substr: string) -> int {
- hash_str_rabin_karp_reverse :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) {
- for i := len(s) - 1; i >= 0; i -= 1 {
- hash = hash*PRIME_RABIN_KARP + u32(s[i])
- }
- sq := u32(PRIME_RABIN_KARP)
- for i := len(s); i > 0; i >>= 1 {
- if (i & 1) != 0 {
- pow *= sq
- }
- sq *= sq
- }
- return
- }
- n := len(substr)
- switch {
- case n == 0:
- return len(s)
- case n == 1:
- return last_index_byte(s, substr[0])
- case n == len(s):
- return 0 if substr == s else -1
- case n > len(s):
- return -1
- }
- hash, pow := hash_str_rabin_karp_reverse(substr)
- last := len(s) - n
- h: u32
- for i := len(s)-1; i >= last; i -= 1 {
- h = h*PRIME_RABIN_KARP + u32(s[i])
- }
- if h == hash && s[last:] == substr {
- return last
- }
- for i := last-1; i >= 0; i -= 1 {
- h *= PRIME_RABIN_KARP
- h += u32(s[i])
- h -= pow * u32(s[i+n])
- if h == hash && s[i:i+n] == substr {
- return i
- }
- }
- return -1
- }
- /*
- returns the index of any first char of `chars` found in `s`, -1 if not found
-
- strings.index_any("test", "s") -> 2
- strings.index_any("test", "se") -> 1
- strings.index_any("test", "et") -> 0
- strings.index_any("test", "set") -> 0
- strings.index_any("test", "x") -> -1
- */
- index_any :: proc(s, chars: string) -> int {
- if chars == "" {
- return -1
- }
-
- if len(chars) == 1 {
- r := rune(chars[0])
- if r >= utf8.RUNE_SELF {
- r = utf8.RUNE_ERROR
- }
- return index_rune(s, r)
- }
-
- if len(s) > 8 {
- if as, ok := ascii_set_make(chars); ok {
- for i in 0..<len(s) {
- if ascii_set_contains(as, s[i]) {
- return i
- }
- }
- return -1
- }
- }
- for c, i in s {
- if index_rune(chars, c) >= 0 {
- return i
- }
- }
- return -1
- }
- /*
- returns the index of any first char of `chars` found in `s`, -1 if not found
- iterates the string in reverse
- strings.index_any("test", "s") -> 2
- strings.index_any("test", "se") -> 2
- strings.index_any("test", "et") -> 1
- strings.index_any("test", "set") -> 3
- strings.index_any("test", "x") -> -1
- */
- last_index_any :: proc(s, chars: string) -> int {
- if chars == "" {
- return -1
- }
-
- if len(s) == 1 {
- r := rune(s[0])
- if r >= utf8.RUNE_SELF {
- r = utf8.RUNE_ERROR
- }
- return index_rune(chars, r)
- }
-
- if len(s) > 8 {
- if as, ok := ascii_set_make(chars); ok {
- for i := len(s)-1; i >= 0; i -= 1 {
- if ascii_set_contains(as, s[i]) {
- return i
- }
- }
- return -1
- }
- }
-
- if len(chars) == 1 {
- r := rune(chars[0])
- if r >= utf8.RUNE_SELF {
- r = utf8.RUNE_ERROR
- }
- for i := len(s); i > 0; /**/ {
- c, w := utf8.decode_last_rune_in_string(s[:i])
- i -= w
- if c == r {
- return i
- }
- }
- return -1
- }
- for i := len(s); i > 0; /**/ {
- r, w := utf8.decode_last_rune_in_string(s[:i])
- i -= w
- if index_rune(chars, r) >= 0 {
- return i
- }
- }
- return -1
- }
- /*
- returns the count of the string `substr` found in the string `s`
- returns the rune_count + 1 of the string `s` on empty `substr`
- strings.count("abbccc", "a") -> 1
- strings.count("abbccc", "b") -> 2
- strings.count("abbccc", "c") -> 3
- strings.count("abbccc", "ab") -> 1
- strings.count("abbccc", " ") -> 0
- */
- count :: proc(s, substr: string) -> int {
- if len(substr) == 0 { // special case
- return rune_count(s) + 1
- }
- if len(substr) == 1 {
- c := substr[0]
- switch len(s) {
- case 0:
- return 0
- case 1:
- return int(s[0] == c)
- }
- n := 0
- for i := 0; i < len(s); i += 1 {
- if s[i] == c {
- n += 1
- }
- }
- return n
- }
- // TODO(bill): Use a non-brute for approach
- n := 0
- str := s
- for {
- i := index(str, substr)
- if i == -1 {
- return n
- }
- n += 1
- str = str[i+len(substr):]
- }
- return n
- }
- /*
- repeats the string `s` multiple `count` times and returns the allocated string
- panics when `count` is below 0
- strings.repeat("abc", 2) -> "abcabc"
- */
- repeat :: proc(s: string, count: int, allocator := context.allocator) -> string {
- if count < 0 {
- panic("strings: negative repeat count")
- } else if count > 0 && (len(s)*count)/count != len(s) {
- panic("strings: repeat count will cause an overflow")
- }
- b := make([]byte, len(s)*count, allocator)
- i := copy(b, s)
- for i < len(b) { // 2^N trick to reduce the need to copy
- copy(b[i:], b[:i])
- i *= 2
- }
- return string(b)
- }
- /*
- replaces all instances of `old` in the string `s` with the `new` string
- returns the `output` string and true when an a allocation through a replace happened
- strings.replace_all("xyzxyz", "xyz", "abc") -> "abcabc", true
- strings.replace_all("xyzxyz", "abc", "xyz") -> "xyzxyz", false
- strings.replace_all("xyzxyz", "xy", "z") -> "zzzz", true
- */
- replace_all :: proc(s, old, new: string, allocator := context.allocator) -> (output: string, was_allocation: bool) {
- return replace(s, old, new, -1, allocator)
- }
- /*
- replaces `n` instances of `old` in the string `s` with the `new` string
- if n < 0, no limit on the number of replacements
- returns the `output` string and true when an a allocation through a replace happened
- strings.replace("xyzxyz", "xyz", "abc", 2) -> "abcabc", true
- strings.replace("xyzxyz", "xyz", "abc", 1) -> "abcxyz", true
- strings.replace("xyzxyz", "abc", "xyz", -1) -> "xyzxyz", false
- strings.replace("xyzxyz", "xy", "z", -1) -> "zzzz", true
- */
- replace :: proc(s, old, new: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) {
- if old == new || n == 0 {
- was_allocation = false
- output = s
- return
- }
- byte_count := n
- if m := count(s, old); m == 0 {
- was_allocation = false
- output = s
- return
- } else if n < 0 || m < n {
- byte_count = m
- }
- t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator)
- was_allocation = true
- w := 0
- start := 0
- for i := 0; i < byte_count; i += 1 {
- j := start
- if len(old) == 0 {
- if i > 0 {
- _, width := utf8.decode_rune_in_string(s[start:])
- j += width
- }
- } else {
- j += index(s[start:], old)
- }
- w += copy(t[w:], s[start:j])
- w += copy(t[w:], new)
- start = j + len(old)
- }
- w += copy(t[w:], s[start:])
- output = string(t[0:w])
- return
- }
- /*
- removes the `key` string `n` times from the `s` string
- if n < 0, no limit on the number of removes
- returns the `output` string and true when an a allocation through a remove happened
- strings.remove("abcabc", "abc", 1) -> "abc", true
- strings.remove("abcabc", "abc", -1) -> "", true
- strings.remove("abcabc", "a", -1) -> "bcbc", true
- strings.remove("abcabc", "x", -1) -> "abcabc", false
- */
- remove :: proc(s, key: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) {
- return replace(s, key, "", n, allocator)
- }
- /*
- removes all the `key` string instanes from the `s` string
- returns the `output` string and true when an a allocation through a remove happened
- strings.remove("abcabc", "abc") -> "", true
- strings.remove("abcabc", "a") -> "bcbc", true
- strings.remove("abcabc", "x") -> "abcabc", false
- */
- remove_all :: proc(s, key: string, allocator := context.allocator) -> (output: string, was_allocation: bool) {
- return remove(s, key, -1, allocator)
- }
- @(private) _ascii_space := [256]bool{'\t' = true, '\n' = true, '\v' = true, '\f' = true, '\r' = true, ' ' = true}
- // return true when the `r` rune is '\t', '\n', '\v', '\f', '\r' or ' '
- is_ascii_space :: proc(r: rune) -> bool {
- if r < utf8.RUNE_SELF {
- return _ascii_space[u8(r)]
- }
- return false
- }
- // returns true when the `r` rune is any asci or utf8 based whitespace
- is_space :: proc(r: rune) -> bool {
- if r < 0x2000 {
- switch r {
- case '\t', '\n', '\v', '\f', '\r', ' ', 0x85, 0xa0, 0x1680:
- return true
- }
- } else {
- if r <= 0x200a {
- return true
- }
- switch r {
- case 0x2028, 0x2029, 0x202f, 0x205f, 0x3000:
- return true
- }
- }
- return false
- }
- // returns true when the `r` rune is a nul byte
- is_null :: proc(r: rune) -> bool {
- return r == 0x0000
- }
- /*
- runs trough the `s` string linearly and watches wether the `p` procedure matches the `truth` bool
- returns the rune offset or -1 when no match was found
- call :: proc(r: rune) -> bool {
- return r == 'a'
- }
- strings.index_proc("abcabc", call) -> 0
- strings.index_proc("cbacba", call) -> 2
- strings.index_proc("cbacba", call, false) -> 0
- strings.index_proc("abcabc", call, false) -> 1
- strings.index_proc("xyz", call) -> -1
- */
- index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> int {
- for r, i in s {
- if p(r) == truth {
- return i
- }
- }
- return -1
- }
- // same as `index_proc` but with a `p` procedure taking a rawptr for state
- index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
- for r, i in s {
- if p(state, r) == truth {
- return i
- }
- }
- return -1
- }
- // same as `index_proc` but runs through the string in reverse
- last_index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> int {
- // TODO(bill): Probably use Rabin-Karp Search
- for i := len(s); i > 0; {
- r, size := utf8.decode_last_rune_in_string(s[:i])
- i -= size
- if p(r) == truth {
- return i
- }
- }
- return -1
- }
- // same as `index_proc_with_state` but runs through the string in reverse
- last_index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
- // TODO(bill): Probably use Rabin-Karp Search
- for i := len(s); i > 0; {
- r, size := utf8.decode_last_rune_in_string(s[:i])
- i -= size
- if p(state, r) == truth {
- return i
- }
- }
- return -1
- }
-
- /*
- trims the input string `s` until the procedure `p` returns false
- does not allocate - only returns a cut variant of the input string
- returns an empty string when no match was found at all
- find :: proc(r: rune) -> bool {
- return r != 'i'
- }
- strings.trim_left_proc("testing", find) -> "ing"
- */
- trim_left_proc :: proc(s: string, p: proc(rune) -> bool) -> string {
- i := index_proc(s, p, false)
- if i == -1 {
- return ""
- }
- return s[i:]
- }
- /*
- trims the input string `s` until the procedure `p` with state returns false
- returns an empty string when no match was found at all
- */
- trim_left_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> string {
- i := index_proc_with_state(s, p, state, false)
- if i == -1 {
- return ""
- }
- return s[i:]
- }
- /*
- trims the input string `s` from the right until the procedure `p` returns false
- does not allocate - only returns a cut variant of the input string
- returns an empty string when no match was found at all
- find :: proc(r: rune) -> bool {
- return r != 't'
- }
- strings.trim_left_proc("testing", find) -> "test"
- */
- trim_right_proc :: proc(s: string, p: proc(rune) -> bool) -> string {
- i := last_index_proc(s, p, false)
- if i >= 0 && s[i] >= utf8.RUNE_SELF {
- _, w := utf8.decode_rune_in_string(s[i:])
- i += w
- } else {
- i += 1
- }
- return s[0:i]
- }
- /*
- trims the input string `s` from the right until the procedure `p` with state returns false
- returns an empty string when no match was found at all
- */
- trim_right_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> string {
- i := last_index_proc_with_state(s, p, state, false)
- if i >= 0 && s[i] >= utf8.RUNE_SELF {
- _, w := utf8.decode_rune_in_string(s[i:])
- i += w
- } else {
- i += 1
- }
- return s[0:i]
- }
- // procedure for `trim_*_proc` variants, which has a string rawptr cast + rune comparison
- is_in_cutset :: proc(state: rawptr, r: rune) -> bool {
- if state == nil {
- return false
- }
- cutset := (^string)(state)^
- for c in cutset {
- if r == c {
- return true
- }
- }
- return false
- }
- // trims the `cutset` string from the `s` string
- trim_left :: proc(s: string, cutset: string) -> string {
- if s == "" || cutset == "" {
- return s
- }
- state := cutset
- return trim_left_proc_with_state(s, is_in_cutset, &state)
- }
- // trims the `cutset` string from the `s` string from the right
- trim_right :: proc(s: string, cutset: string) -> string {
- if s == "" || cutset == "" {
- return s
- }
- state := cutset
- return trim_right_proc_with_state(s, is_in_cutset, &state)
- }
- // trims the `cutset` string from the `s` string, both from left and right
- trim :: proc(s: string, cutset: string) -> string {
- return trim_right(trim_left(s, cutset), cutset)
- }
- // trims until a valid non space rune: "\t\txyz\t\t" -> "xyz\t\t"
- trim_left_space :: proc(s: string) -> string {
- return trim_left_proc(s, is_space)
- }
- // trims from the right until a valid non space rune: "\t\txyz\t\t" -> "\t\txyz"
- trim_right_space :: proc(s: string) -> string {
- return trim_right_proc(s, is_space)
- }
- // trims from both sides until a valid non space rune: "\t\txyz\t\t" -> "xyz"
- trim_space :: proc(s: string) -> string {
- return trim_right_space(trim_left_space(s))
- }
- // trims nul runes from the left: "\x00\x00testing\x00\x00" -> "testing\x00\x00"
- trim_left_null :: proc(s: string) -> string {
- return trim_left_proc(s, is_null)
- }
- // trims nul runes from the right: "\x00\x00testing\x00\x00" -> "\x00\x00testing"
- trim_right_null :: proc(s: string) -> string {
- return trim_right_proc(s, is_null)
- }
- // trims nul runes from both sides: "\x00\x00testing\x00\x00" -> "testing"
- trim_null :: proc(s: string) -> string {
- return trim_right_null(trim_left_null(s))
- }
- /*
- trims a `prefix` string from the start of the `s` string and returns the trimmed string
- returns the input string `s` when no prefix was found
- strings.trim_prefix("testing", "test") -> "ing"
- strings.trim_prefix("testing", "abc") -> "testing"
- */
- trim_prefix :: proc(s, prefix: string) -> string {
- if has_prefix(s, prefix) {
- return s[len(prefix):]
- }
- return s
- }
- /*
- trims a `suffix` string from the end of the `s` string and returns the trimmed string
- returns the input string `s` when no suffix was found
- strings.trim_suffix("todo.txt", ".txt") -> "todo"
- strings.trim_suffix("todo.doc", ".txt") -> "todo.doc"
- */
- trim_suffix :: proc(s, suffix: string) -> string {
- if has_suffix(s, suffix) {
- return s[:len(s)-len(suffix)]
- }
- return s
- }
- /*
- splits the input string `s` by all possible `substrs` []string
- returns the allocated []string, nil on any empty substring or no matches
- splits := [?]string { "---", "~~~", ".", "_", "," }
- res := strings.split_multi("testing,this.out_nice---done~~~last", splits[:])
- fmt.eprintln(res) // -> [testing, this, out, nice, done, last]
- */
- split_multi :: proc(s: string, substrs: []string, allocator := context.allocator) -> (buf: []string) #no_bounds_check {
- if s == "" || len(substrs) <= 0 {
- return
- }
- // disallow "" substr
- for substr in substrs {
- if len(substr) == 0 {
- return
- }
- }
- // TODO maybe remove duplicate substrs
- // sort substrings by string size, largest to smallest
- temp_substrs := slice.clone(substrs, context.temp_allocator)
- slice.sort_by(temp_substrs, proc(a, b: string) -> bool {
- return len(a) > len(b)
- })
- substrings_found: int
- temp := s
- // count substr results found in string
- first_pass: for len(temp) > 0 {
- for substr in temp_substrs {
- size := len(substr)
- // check range and compare string to substr
- if size <= len(temp) && temp[:size] == substr {
- substrings_found += 1
- temp = temp[size:]
- continue first_pass
- }
- }
- // step through string
- _, skip := utf8.decode_rune_in_string(temp[:])
- temp = temp[skip:]
- }
- // skip when no results
- if substrings_found < 1 {
- return
- }
- buf = make([]string, substrings_found + 1, allocator)
- buf_index: int
- temp = s
- temp_old := temp
- // gather results in the same fashion
- second_pass: for len(temp) > 0 {
- for substr in temp_substrs {
- size := len(substr)
- // check range and compare string to substr
- if size <= len(temp) && temp[:size] == substr {
- buf[buf_index] = temp_old[:len(temp_old) - len(temp)]
- buf_index += 1
- temp = temp[size:]
- temp_old = temp
- continue second_pass
- }
- }
- // step through string
- _, skip := utf8.decode_rune_in_string(temp[:])
- temp = temp[skip:]
- }
- buf[buf_index] = temp_old[:]
- return buf
- }
- // state for the split multi iterator
- Split_Multi :: struct {
- temp: string,
- temp_old: string,
- substrs: []string,
- }
- // returns split multi state with sorted `substrs`
- split_multi_init :: proc(s: string, substrs: []string) -> Split_Multi {
- // sort substrings, largest to smallest
- temp_substrs := slice.clone(substrs, context.temp_allocator)
- slice.sort_by(temp_substrs, proc(a, b: string) -> bool {
- return len(a) > len(b)
- })
- return {
- temp = s,
- temp_old = s,
- substrs = temp_substrs,
- }
- }
- /*
- splits the input string `s` by all possible `substrs` []string in an iterator fashion
- returns the split string every iteration, the full string on no match
- splits := [?]string { "---", "~~~", ".", "_", "," }
- state := strings.split_multi_init("testing,this.out_nice---done~~~last", splits[:])
- for str in strings.split_multi_iterate(&state) {
- fmt.eprintln(str) // every iteration -> [testing, this, out, nice, done, last]
- }
- */
- split_multi_iterate :: proc(using sm: ^Split_Multi) -> (res: string, ok: bool) #no_bounds_check {
- pass: for len(temp) > 0 {
- for substr in substrs {
- size := len(substr)
- // check range and compare string to substr
- if size <= len(temp) && temp[:size] == substr {
- res = temp_old[:len(temp_old) - len(temp)]
- temp = temp[size:]
- temp_old = temp
- ok = true
- return
- }
- }
- // step through string
- _, skip := utf8.decode_rune_in_string(temp[:])
- temp = temp[skip:]
- }
- // allow last iteration
- if temp_old != "" {
- res = temp_old[:]
- ok = true
- temp_old = ""
- }
- return
- }
- // scrub scruvs invalid utf-8 characters and replaces them with the replacement string
- // Adjacent invalid bytes are only replaced once
- scrub :: proc(s: string, replacement: string, allocator := context.allocator) -> string {
- str := s
- b: Builder
- init_builder(&b, 0, len(s), allocator)
- has_error := false
- cursor := 0
- origin := str
- for len(str) > 0 {
- r, w := utf8.decode_rune_in_string(str)
- if r == utf8.RUNE_ERROR {
- if !has_error {
- has_error = true
- write_string(&b, origin[:cursor])
- }
- } else if has_error {
- has_error = false
- write_string(&b, replacement)
- origin = origin[cursor:]
- cursor = 0
- }
- cursor += w
- str = str[w:]
- }
- return to_string(b)
- }
- /*
- returns a reversed version of the `s` string
- a := "abcxyz"
- b := strings.reverse(a)
- fmt.eprintln(a, b) // abcxyz zyxcba
- */
- reverse :: proc(s: string, allocator := context.allocator) -> string {
- str := s
- n := len(str)
- buf := make([]byte, n)
- i := n
- for len(str) > 0 {
- _, w := utf8.decode_rune_in_string(str)
- i -= w
- copy(buf[i:], str[:w])
- str = str[w:]
- }
- return string(buf)
- }
- /*
- expands the string to a grid spaced by `tab_size` whenever a `\t` character appears
- returns the tabbed string, panics on tab_size <= 0
- strings.expand_tabs("abc1\tabc2\tabc3", 4) -> abc1 abc2 abc3
- strings.expand_tabs("abc1\tabc2\tabc3", 5) -> abc1 abc2 abc3
- strings.expand_tabs("abc1\tabc2\tabc3", 6) -> abc1 abc2 abc3
- */
- expand_tabs :: proc(s: string, tab_size: int, allocator := context.allocator) -> string {
- if tab_size <= 0 {
- panic("tab size must be positive")
- }
- if s == "" {
- return ""
- }
- b: Builder
- init_builder(&b, allocator)
- writer := to_writer(&b)
- str := s
- column: int
- for len(str) > 0 {
- r, w := utf8.decode_rune_in_string(str)
- if r == '\t' {
- expand := tab_size - column%tab_size
- for i := 0; i < expand; i += 1 {
- io.write_byte(writer, ' ')
- }
- column += expand
- } else {
- if r == '\n' {
- column = 0
- } else {
- column += w
- }
- io.write_rune(writer, r)
- }
- str = str[w:]
- }
- return to_string(b)
- }
- /*
- splits the `str` string by the seperator `sep` string and returns 3 parts
- `head`: before the split, `match`: the seperator, `tail`: the end of the split
- returns the input string when the `sep` was not found
- text := "testing this out"
- strings.partition(text, " this ") -> head: "testing", match: " this ", tail: "out"
- strings.partition(text, "hi") -> head: "testing t", match: "hi", tail: "s out"
- strings.partition(text, "xyz") -> head: "testing this out", match: "", tail: ""
- */
- partition :: proc(str, sep: string) -> (head, match, tail: string) {
- i := index(str, sep)
- if i == -1 {
- head = str
- return
- }
- head = str[:i]
- match = str[i:i+len(sep)]
- tail = str[i+len(sep):]
- return
- }
- center_justify :: centre_justify // NOTE(bill): Because Americans exist
- // centre_justify returns a string with a pad string at boths sides if the str's rune length is smaller than length
- centre_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
- n := rune_count(str)
- if n >= length || pad == "" {
- return clone(str, allocator)
- }
- remains := length-1
- pad_len := rune_count(pad)
- b: Builder
- init_builder(&b, allocator)
- grow_builder(&b, len(str) + (remains/pad_len + 1)*len(pad))
- w := to_writer(&b)
- write_pad_string(w, pad, pad_len, remains/2)
- io.write_string(w, str)
- write_pad_string(w, pad, pad_len, (remains+1)/2)
- return to_string(b)
- }
- // left_justify returns a string with a pad string at left side if the str's rune length is smaller than length
- left_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
- n := rune_count(str)
- if n >= length || pad == "" {
- return clone(str, allocator)
- }
- remains := length-1
- pad_len := rune_count(pad)
- b: Builder
- init_builder(&b, allocator)
- grow_builder(&b, len(str) + (remains/pad_len + 1)*len(pad))
- w := to_writer(&b)
- io.write_string(w, str)
- write_pad_string(w, pad, pad_len, remains)
- return to_string(b)
- }
- // right_justify returns a string with a pad string at right side if the str's rune length is smaller than length
- right_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
- n := rune_count(str)
- if n >= length || pad == "" {
- return clone(str, allocator)
- }
- remains := length-1
- pad_len := rune_count(pad)
- b: Builder
- init_builder(&b, allocator)
- grow_builder(&b, len(str) + (remains/pad_len + 1)*len(pad))
- w := to_writer(&b)
- write_pad_string(w, pad, pad_len, remains)
- io.write_string(w, str)
- return to_string(b)
- }
- @private
- write_pad_string :: proc(w: io.Writer, pad: string, pad_len, remains: int) {
- repeats := remains / pad_len
- for i := 0; i < repeats; i += 1 {
- io.write_string(w, pad)
- }
- n := remains % pad_len
- p := pad
- for i := 0; i < n; i += 1 {
- r, width := utf8.decode_rune_in_string(p)
- io.write_rune(w, r)
- p = p[width:]
- }
- }
- // fields splits the string s around each instance of one or more consecutive white space character, defined by unicode.is_space
- // returning a slice of substrings of s or an empty slice if s only contains white space
- fields :: proc(s: string, allocator := context.allocator) -> []string #no_bounds_check {
- n := 0
- was_space := 1
- set_bits := u8(0)
- // check to see
- for i in 0..<len(s) {
- r := s[i]
- set_bits |= r
- is_space := int(_ascii_space[r])
- n += was_space & ~is_space
- was_space = is_space
- }
- if set_bits >= utf8.RUNE_SELF {
- return fields_proc(s, unicode.is_space, allocator)
- }
- if n == 0 {
- return nil
- }
- a := make([]string, n, allocator)
- na := 0
- field_start := 0
- i := 0
- for i < len(s) && _ascii_space[s[i]] {
- i += 1
- }
- field_start = i
- for i < len(s) {
- if !_ascii_space[s[i]] {
- i += 1
- continue
- }
- a[na] = s[field_start : i]
- na += 1
- i += 1
- for i < len(s) && _ascii_space[s[i]] {
- i += 1
- }
- field_start = i
- }
- if field_start < len(s) {
- a[na] = s[field_start:]
- }
- return a
- }
- // fields_proc splits the string s at each run of unicode code points `ch` satisfying f(ch)
- // returns a slice of substrings of s
- // If all code points in s satisfy f(ch) or string is empty, an empty slice is returned
- //
- // fields_proc makes no guarantee about the order in which it calls f(ch)
- // it assumes that `f` always returns the same value for a given ch
- fields_proc :: proc(s: string, f: proc(rune) -> bool, allocator := context.allocator) -> []string #no_bounds_check {
- substrings := make([dynamic]string, 0, 32, allocator)
- start, end := -1, -1
- for r, offset in s {
- end = offset
- if f(r) {
- if start >= 0 {
- append(&substrings, s[start : end])
- // -1 could be used, but just speed it up through bitwise not
- // gotta love 2's complement
- start = ~start
- }
- } else {
- if start < 0 {
- start = end
- }
- }
- }
- if start >= 0 {
- append(&substrings, s[start : len(s)])
- }
- return substrings[:]
- }
- // `fields_iterator` returns the first run of characters in `s` that does not contain white space, defined by `unicode.is_space`
- // `s` will then start from any space after the substring, or be an empty string if the substring was the remaining characters
- fields_iterator :: proc(s: ^string) -> (field: string, ok: bool) {
- start, end := -1, -1
- for r, offset in s {
- end = offset
- if unicode.is_space(r) {
- if start >= 0 {
- field = s[start : end]
- ok = true
- s^ = s[end:]
- return
- }
- } else {
- if start < 0 {
- start = end
- }
- }
- }
- // if either of these are true, the string did not contain any characters
- if end < 0 || start < 0 {
- return "", false
- }
- field = s[start:]
- ok = true
- s^ = s[len(s):]
- return
- }
- // `levenshtein_distance` returns the Levenshtein edit distance between 2 strings.
- // This is a single-row-version of the Wagner–Fischer algorithm, based on C code by Martin Ettl.
- // Note: allocator isn't used if the length of string b in runes is smaller than 64.
- levenshtein_distance :: proc(a, b: string, allocator := context.allocator) -> int {
- LEVENSHTEIN_DEFAULT_COSTS: []int : {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63,
- }
- m, n := utf8.rune_count_in_string(a), utf8.rune_count_in_string(b)
- if m == 0 {
- return n
- }
- if n == 0 {
- return m
- }
- costs: []int
- if n + 1 > len(LEVENSHTEIN_DEFAULT_COSTS) {
- costs = make([]int, n + 1, allocator)
- for k in 0..=n {
- costs[k] = k
- }
- } else {
- costs = LEVENSHTEIN_DEFAULT_COSTS
- }
- defer if n + 1 > len(LEVENSHTEIN_DEFAULT_COSTS) {
- delete(costs, allocator)
- }
- i: int
- for c1 in a {
- costs[0] = i + 1
- corner := i
- j: int
- for c2 in b {
- upper := costs[j + 1]
- if c1 == c2 {
- costs[j + 1] = corner
- } else {
- t := upper if upper < corner else corner
- costs[j + 1] = (costs[j] if costs[j] < t else t) + 1
- }
- corner = upper
- j += 1
- }
- i += 1
- }
- return costs[n]
- }
|