123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319 |
- package linalg
- import "core:math"
- import "core:builtin"
- import "core:intrinsics"
- // Generic
- TAU :: 6.28318530717958647692528676655900576
- PI :: 3.14159265358979323846264338327950288
- E :: 2.71828182845904523536
- τ :: TAU
- π :: PI
- e :: E
- SQRT_TWO :: 1.41421356237309504880168872420969808
- SQRT_THREE :: 1.73205080756887729352744634150587236
- SQRT_FIVE :: 2.23606797749978969640917366873127623
- LN2 :: 0.693147180559945309417232121458176568
- LN10 :: 2.30258509299404568401799145468436421
- MAX_F64_PRECISION :: 16 // Maximum number of meaningful digits after the decimal point for 'f64'
- MAX_F32_PRECISION :: 8 // Maximum number of meaningful digits after the decimal point for 'f32'
- RAD_PER_DEG :: TAU/360.0
- DEG_PER_RAD :: 360.0/TAU
- @private IS_NUMERIC :: intrinsics.type_is_numeric
- @private IS_QUATERNION :: intrinsics.type_is_quaternion
- @private IS_ARRAY :: intrinsics.type_is_array
- @private IS_FLOAT :: intrinsics.type_is_float
- @private BASE_TYPE :: intrinsics.type_base_type
- @private ELEM_TYPE :: intrinsics.type_elem_type
- scalar_dot :: proc(a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
- return a * b
- }
- vector_dot :: proc(a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) #no_bounds_check {
- for i in 0..<N {
- c += a[i] * b[i]
- }
- return
- }
- quaternion64_dot :: proc(a, b: $T/quaternion64) -> (c: f16) {
- return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
- }
- quaternion128_dot :: proc(a, b: $T/quaternion128) -> (c: f32) {
- return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
- }
- quaternion256_dot :: proc(a, b: $T/quaternion256) -> (c: f64) {
- return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
- }
- dot :: proc{scalar_dot, vector_dot, quaternion64_dot, quaternion128_dot, quaternion256_dot}
- inner_product :: dot
- outer_product :: builtin.outer_product
- quaternion_inverse :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
- return conj(q) * quaternion(1.0/dot(q, q), 0, 0, 0)
- }
- scalar_cross :: proc(a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
- return a * b
- }
- vector_cross2 :: proc(a, b: $T/[2]$E) -> E where IS_NUMERIC(E) {
- return a[0]*b[1] - b[0]*a[1]
- }
- vector_cross3 :: proc(a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) {
- c[0] = a[1]*b[2] - b[1]*a[2]
- c[1] = a[2]*b[0] - b[2]*a[0]
- c[2] = a[0]*b[1] - b[0]*a[1]
- return
- }
- quaternion_cross :: proc(q1, q2: $Q) -> (q3: Q) where IS_QUATERNION(Q) {
- q3.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y
- q3.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z
- q3.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x
- q3.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z
- return
- }
- vector_cross :: proc{scalar_cross, vector_cross2, vector_cross3}
- cross :: proc{scalar_cross, vector_cross2, vector_cross3, quaternion_cross}
- vector_normalize :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
- return v / length(v)
- }
- quaternion_normalize :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
- return q/abs(q)
- }
- normalize :: proc{vector_normalize, quaternion_normalize}
- vector_normalize0 :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
- m := length(v)
- return 0 if m == 0 else v/m
- }
- quaternion_normalize0 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
- m := abs(q)
- return 0 if m == 0 else q/m
- }
- normalize0 :: proc{vector_normalize0, quaternion_normalize0}
- vector_length :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
- return math.sqrt(dot(v, v))
- }
- vector_length2 :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
- return dot(v, v)
- }
- quaternion_length :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
- return abs(q)
- }
- quaternion_length2 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
- return dot(q, q)
- }
- scalar_triple_product :: proc(a, b, c: $T/[$N]$E) -> E where IS_NUMERIC(E) {
- // a . (b x c)
- // b . (c x a)
- // c . (a x b)
- return dot(a, cross(b, c))
- }
- vector_triple_product :: proc(a, b, c: $T/[$N]$E) -> T where IS_NUMERIC(E) {
- // a x (b x c)
- // (a . c)b - (a . b)c
- return cross(a, cross(b, c))
- }
- length :: proc{vector_length, quaternion_length}
- length2 :: proc{vector_length2, quaternion_length2}
- projection :: proc(x, normal: $T/[$N]$E) -> T where IS_NUMERIC(E) {
- return dot(x, normal) / dot(normal, normal) * normal
- }
- identity :: proc($T: typeid/[$N][N]$E) -> (m: T) #no_bounds_check {
- for i in 0..<N {
- m[i][i] = E(1)
- }
- return m
- }
- trace :: builtin.matrix_trace
- transpose :: builtin.transpose
- matrix_mul :: proc(a, b: $M/matrix[$N, N]$E) -> (c: M)
- where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
- return a * b
- }
- matrix_comp_mul :: proc(a, b: $M/matrix[$I, $J]$E) -> (c: M)
- where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
- return hadamard_product(a, b)
- }
- matrix_mul_differ :: proc(a: $A/matrix[$I, $J]$E, b: $B/matrix[J, $K]E) -> (c: matrix[I, K]E)
- where !IS_ARRAY(E), IS_NUMERIC(E), I != K #no_bounds_check {
- return a * b
- }
- matrix_mul_vector :: proc(a: $A/matrix[$I, $J]$E, b: $B/[J]E) -> (c: B)
- where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
- return a * b
- }
- quaternion_mul_quaternion :: proc(q1, q2: $Q) -> Q where IS_QUATERNION(Q) {
- return q1 * q2
- }
- quaternion64_mul_vector3 :: proc(q: $Q/quaternion64, v: $V/[3]$F/f16) -> V {
- Raw_Quaternion :: struct {xyz: [3]f16, r: f16}
- q := transmute(Raw_Quaternion)q
- v := transmute([3]f16)v
- t := cross(2*q.xyz, v)
- return V(v + q.r*t + cross(q.xyz, t))
- }
- quaternion128_mul_vector3 :: proc(q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
- Raw_Quaternion :: struct {xyz: [3]f32, r: f32}
- q := transmute(Raw_Quaternion)q
- v := transmute([3]f32)v
- t := cross(2*q.xyz, v)
- return V(v + q.r*t + cross(q.xyz, t))
- }
- quaternion256_mul_vector3 :: proc(q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
- Raw_Quaternion :: struct {xyz: [3]f64, r: f64}
- q := transmute(Raw_Quaternion)q
- v := transmute([3]f64)v
- t := cross(2*q.xyz, v)
- return V(v + q.r*t + cross(q.xyz, t))
- }
- quaternion_mul_vector3 :: proc{quaternion64_mul_vector3, quaternion128_mul_vector3, quaternion256_mul_vector3}
- mul :: proc{
- matrix_mul,
- matrix_mul_differ,
- matrix_mul_vector,
- quaternion64_mul_vector3,
- quaternion128_mul_vector3,
- quaternion256_mul_vector3,
- quaternion_mul_quaternion,
- }
- vector_to_ptr :: proc(v: ^$V/[$N]$E) -> ^E where IS_NUMERIC(E), N > 0 #no_bounds_check {
- return &v[0]
- }
- matrix_to_ptr :: proc(m: ^$A/matrix[$I, $J]$E) -> ^E where IS_NUMERIC(E), I > 0, J > 0 #no_bounds_check {
- return &m[0, 0]
- }
- to_ptr :: proc{vector_to_ptr, matrix_to_ptr}
- // Splines
- vector_slerp :: proc(x, y: $T/[$N]$E, a: E) -> T {
- cos_alpha := dot(x, y)
- alpha := math.acos(cos_alpha)
- sin_alpha := math.sin(alpha)
- t1 := math.sin((1 - a) * alpha) / sin_alpha
- t2 := math.sin(a * alpha) / sin_alpha
- return x * t1 + y * t2
- }
- catmull_rom :: proc(v1, v2, v3, v4: $T/[$N]$E, s: E) -> T {
- s2 := s*s
- s3 := s2*s
- f1 := -s3 + 2 * s2 - s
- f2 := 3 * s3 - 5 * s2 + 2
- f3 := -3 * s3 + 4 * s2 + s
- f4 := s3 - s2
- return (f1 * v1 + f2 * v2 + f3 * v3 + f4 * v4) * 0.5
- }
- hermite :: proc(v1, t1, v2, t2: $T/[$N]$E, s: E) -> T {
- s2 := s*s
- s3 := s2*s
- f1 := 2 * s3 - 3 * s2 + 1
- f2 := -2 * s3 + 3 * s2
- f3 := s3 - 2 * s2 + s
- f4 := s3 - s2
- return f1 * v1 + f2 * v2 + f3 * t1 + f4 * t2
- }
- cubic :: proc(v1, v2, v3, v4: $T/[$N]$E, s: E) -> T {
- return ((v1 * s + v2) * s + v3) * s + v4
- }
- array_cast :: proc(v: $A/[$N]$T, $Elem_Type: typeid) -> (w: [N]Elem_Type) #no_bounds_check {
- for i in 0..<N {
- w[i] = Elem_Type(v[i])
- }
- return
- }
- matrix_cast :: proc(v: $A/matrix[$M, $N]$T, $Elem_Type: typeid) -> (w: matrix[M, N]Elem_Type) #no_bounds_check {
- for j in 0..<N {
- for i in 0..<M {
- w[i, j] = Elem_Type(v[i, j])
- }
- }
- return
- }
- to_f32 :: #force_inline proc(v: $A/[$N]$T) -> [N]f32 { return array_cast(v, f32) }
- to_f64 :: #force_inline proc(v: $A/[$N]$T) -> [N]f64 { return array_cast(v, f64) }
- to_i8 :: #force_inline proc(v: $A/[$N]$T) -> [N]i8 { return array_cast(v, i8) }
- to_i16 :: #force_inline proc(v: $A/[$N]$T) -> [N]i16 { return array_cast(v, i16) }
- to_i32 :: #force_inline proc(v: $A/[$N]$T) -> [N]i32 { return array_cast(v, i32) }
- to_i64 :: #force_inline proc(v: $A/[$N]$T) -> [N]i64 { return array_cast(v, i64) }
- to_int :: #force_inline proc(v: $A/[$N]$T) -> [N]int { return array_cast(v, int) }
- to_u8 :: #force_inline proc(v: $A/[$N]$T) -> [N]u8 { return array_cast(v, u8) }
- to_u16 :: #force_inline proc(v: $A/[$N]$T) -> [N]u16 { return array_cast(v, u16) }
- to_u32 :: #force_inline proc(v: $A/[$N]$T) -> [N]u32 { return array_cast(v, u32) }
- to_u64 :: #force_inline proc(v: $A/[$N]$T) -> [N]u64 { return array_cast(v, u64) }
- to_uint :: #force_inline proc(v: $A/[$N]$T) -> [N]uint { return array_cast(v, uint) }
- to_complex32 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex32 { return array_cast(v, complex32) }
- to_complex64 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex64 { return array_cast(v, complex64) }
- to_complex128 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex128 { return array_cast(v, complex128) }
- to_quaternion64 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion64 { return array_cast(v, quaternion64) }
- to_quaternion128 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion128 { return array_cast(v, quaternion128) }
- to_quaternion256 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion256 { return array_cast(v, quaternion256) }
|