12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732 |
- package linalg
- import "core:builtin"
- import "core:math"
- F16_EPSILON :: 1e-3
- F32_EPSILON :: 1e-7
- F64_EPSILON :: 1e-15
- Vector2f16 :: distinct [2]f16
- Vector3f16 :: distinct [3]f16
- Vector4f16 :: distinct [4]f16
- Matrix1x1f16 :: distinct matrix[1, 1]f16
- Matrix1x2f16 :: distinct matrix[1, 2]f16
- Matrix1x3f16 :: distinct matrix[1, 3]f16
- Matrix1x4f16 :: distinct matrix[1, 4]f16
- Matrix2x1f16 :: distinct matrix[2, 1]f16
- Matrix2x2f16 :: distinct matrix[2, 2]f16
- Matrix2x3f16 :: distinct matrix[2, 3]f16
- Matrix2x4f16 :: distinct matrix[2, 4]f16
- Matrix3x1f16 :: distinct matrix[3, 1]f16
- Matrix3x2f16 :: distinct matrix[3, 2]f16
- Matrix3x3f16 :: distinct matrix[3, 3]f16
- Matrix3x4f16 :: distinct matrix[3, 4]f16
- Matrix4x1f16 :: distinct matrix[4, 1]f16
- Matrix4x2f16 :: distinct matrix[4, 2]f16
- Matrix4x3f16 :: distinct matrix[4, 3]f16
- Matrix4x4f16 :: distinct matrix[4, 4]f16
- Matrix1f16 :: Matrix1x1f16
- Matrix2f16 :: Matrix2x2f16
- Matrix3f16 :: Matrix3x3f16
- Matrix4f16 :: Matrix4x4f16
- Vector2f32 :: distinct [2]f32
- Vector3f32 :: distinct [3]f32
- Vector4f32 :: distinct [4]f32
- Matrix1x1f32 :: distinct matrix[1, 1]f32
- Matrix1x2f32 :: distinct matrix[1, 2]f32
- Matrix1x3f32 :: distinct matrix[1, 3]f32
- Matrix1x4f32 :: distinct matrix[1, 4]f32
- Matrix2x1f32 :: distinct matrix[2, 1]f32
- Matrix2x2f32 :: distinct matrix[2, 2]f32
- Matrix2x3f32 :: distinct matrix[2, 3]f32
- Matrix2x4f32 :: distinct matrix[2, 4]f32
- Matrix3x1f32 :: distinct matrix[3, 1]f32
- Matrix3x2f32 :: distinct matrix[3, 2]f32
- Matrix3x3f32 :: distinct matrix[3, 3]f32
- Matrix3x4f32 :: distinct matrix[3, 4]f32
- Matrix4x1f32 :: distinct matrix[4, 1]f32
- Matrix4x2f32 :: distinct matrix[4, 2]f32
- Matrix4x3f32 :: distinct matrix[4, 3]f32
- Matrix4x4f32 :: distinct matrix[4, 4]f32
- Matrix1f32 :: Matrix1x1f32
- Matrix2f32 :: Matrix2x2f32
- Matrix3f32 :: Matrix3x3f32
- Matrix4f32 :: Matrix4x4f32
- Vector2f64 :: distinct [2]f64
- Vector3f64 :: distinct [3]f64
- Vector4f64 :: distinct [4]f64
- Matrix1x1f64 :: distinct matrix[1, 1]f64
- Matrix1x2f64 :: distinct matrix[1, 2]f64
- Matrix1x3f64 :: distinct matrix[1, 3]f64
- Matrix1x4f64 :: distinct matrix[1, 4]f64
- Matrix2x1f64 :: distinct matrix[2, 1]f64
- Matrix2x2f64 :: distinct matrix[2, 2]f64
- Matrix2x3f64 :: distinct matrix[2, 3]f64
- Matrix2x4f64 :: distinct matrix[2, 4]f64
- Matrix3x1f64 :: distinct matrix[3, 1]f64
- Matrix3x2f64 :: distinct matrix[3, 2]f64
- Matrix3x3f64 :: distinct matrix[3, 3]f64
- Matrix3x4f64 :: distinct matrix[3, 4]f64
- Matrix4x1f64 :: distinct matrix[4, 1]f64
- Matrix4x2f64 :: distinct matrix[4, 2]f64
- Matrix4x3f64 :: distinct matrix[4, 3]f64
- Matrix4x4f64 :: distinct matrix[4, 4]f64
- Matrix1f64 :: Matrix1x1f64
- Matrix2f64 :: Matrix2x2f64
- Matrix3f64 :: Matrix3x3f64
- Matrix4f64 :: Matrix4x4f64
- Quaternionf16 :: distinct quaternion64
- Quaternionf32 :: distinct quaternion128
- Quaternionf64 :: distinct quaternion256
- MATRIX1F16_IDENTITY :: Matrix1f16(1)
- MATRIX2F16_IDENTITY :: Matrix2f16(1)
- MATRIX3F16_IDENTITY :: Matrix3f16(1)
- MATRIX4F16_IDENTITY :: Matrix4f16(1)
- MATRIX1F32_IDENTITY :: Matrix1f32(1)
- MATRIX2F32_IDENTITY :: Matrix2f32(1)
- MATRIX3F32_IDENTITY :: Matrix3f32(1)
- MATRIX4F32_IDENTITY :: Matrix4f32(1)
- MATRIX1F64_IDENTITY :: Matrix1f64(1)
- MATRIX2F64_IDENTITY :: Matrix2f64(1)
- MATRIX3F64_IDENTITY :: Matrix3f64(1)
- MATRIX4F64_IDENTITY :: Matrix4f64(1)
- QUATERNIONF16_IDENTITY :: Quaternionf16(1)
- QUATERNIONF32_IDENTITY :: Quaternionf32(1)
- QUATERNIONF64_IDENTITY :: Quaternionf64(1)
- VECTOR3F16_X_AXIS :: Vector3f16{1, 0, 0}
- VECTOR3F16_Y_AXIS :: Vector3f16{0, 1, 0}
- VECTOR3F16_Z_AXIS :: Vector3f16{0, 0, 1}
- VECTOR3F32_X_AXIS :: Vector3f32{1, 0, 0}
- VECTOR3F32_Y_AXIS :: Vector3f32{0, 1, 0}
- VECTOR3F32_Z_AXIS :: Vector3f32{0, 0, 1}
- VECTOR3F64_X_AXIS :: Vector3f64{1, 0, 0}
- VECTOR3F64_Y_AXIS :: Vector3f64{0, 1, 0}
- VECTOR3F64_Z_AXIS :: Vector3f64{0, 0, 1}
- vector2_orthogonal :: proc(v: $V/[2]$E) -> V where !IS_ARRAY(E), IS_FLOAT(E) {
- return {-v.y, v.x}
- }
- vector3_orthogonal :: proc(v: $V/[3]$E) -> V where !IS_ARRAY(E), IS_FLOAT(E) {
- x := abs(v.x)
- y := abs(v.y)
- z := abs(v.z)
- other: V
- if x < y {
- if x < z {
- other = {1, 0, 0}
- } else {
- other = {0, 0, 1}
- }
- } else {
- if y < z {
- other = {0, 1, 0}
- } else {
- other = {0, 0, 1}
- }
- }
- return normalize(cross(v, other))
- }
- orthogonal :: proc{vector2_orthogonal, vector3_orthogonal}
- vector4_srgb_to_linear_f16 :: proc(col: Vector4f16) -> Vector4f16 {
- r := math.pow(col.x, 2.2)
- g := math.pow(col.y, 2.2)
- b := math.pow(col.z, 2.2)
- a := col.w
- return {r, g, b, a}
- }
- vector4_srgb_to_linear_f32 :: proc(col: Vector4f32) -> Vector4f32 {
- r := math.pow(col.x, 2.2)
- g := math.pow(col.y, 2.2)
- b := math.pow(col.z, 2.2)
- a := col.w
- return {r, g, b, a}
- }
- vector4_srgb_to_linear_f64 :: proc(col: Vector4f64) -> Vector4f64 {
- r := math.pow(col.x, 2.2)
- g := math.pow(col.y, 2.2)
- b := math.pow(col.z, 2.2)
- a := col.w
- return {r, g, b, a}
- }
- vector4_srgb_to_linear :: proc{
- vector4_srgb_to_linear_f16,
- vector4_srgb_to_linear_f32,
- vector4_srgb_to_linear_f64,
- }
- vector4_linear_to_srgb_f16 :: proc(col: Vector4f16) -> Vector4f16 {
- a :: 2.51
- b :: 0.03
- c :: 2.43
- d :: 0.59
- e :: 0.14
- x := col.x
- y := col.y
- z := col.z
- x = (x * (a * x + b)) / (x * (c * x + d) + e)
- y = (y * (a * y + b)) / (y * (c * y + d) + e)
- z = (z * (a * z + b)) / (z * (c * z + d) + e)
- x = math.pow(clamp(x, 0, 1), 1.0 / 2.2)
- y = math.pow(clamp(y, 0, 1), 1.0 / 2.2)
- z = math.pow(clamp(z, 0, 1), 1.0 / 2.2)
- return {x, y, z, col.w}
- }
- vector4_linear_to_srgb_f32 :: proc(col: Vector4f32) -> Vector4f32 {
- a :: 2.51
- b :: 0.03
- c :: 2.43
- d :: 0.59
- e :: 0.14
- x := col.x
- y := col.y
- z := col.z
- x = (x * (a * x + b)) / (x * (c * x + d) + e)
- y = (y * (a * y + b)) / (y * (c * y + d) + e)
- z = (z * (a * z + b)) / (z * (c * z + d) + e)
- x = math.pow(clamp(x, 0, 1), 1.0 / 2.2)
- y = math.pow(clamp(y, 0, 1), 1.0 / 2.2)
- z = math.pow(clamp(z, 0, 1), 1.0 / 2.2)
- return {x, y, z, col.w}
- }
- vector4_linear_to_srgb_f64 :: proc(col: Vector4f64) -> Vector4f64 {
- a :: 2.51
- b :: 0.03
- c :: 2.43
- d :: 0.59
- e :: 0.14
- x := col.x
- y := col.y
- z := col.z
- x = (x * (a * x + b)) / (x * (c * x + d) + e)
- y = (y * (a * y + b)) / (y * (c * y + d) + e)
- z = (z * (a * z + b)) / (z * (c * z + d) + e)
- x = math.pow(clamp(x, 0, 1), 1.0 / 2.2)
- y = math.pow(clamp(y, 0, 1), 1.0 / 2.2)
- z = math.pow(clamp(z, 0, 1), 1.0 / 2.2)
- return {x, y, z, col.w}
- }
- vector4_linear_to_srgb :: proc{
- vector4_linear_to_srgb_f16,
- vector4_linear_to_srgb_f32,
- vector4_linear_to_srgb_f64,
- }
- vector4_hsl_to_rgb_f16 :: proc(h, s, l: f16, a: f16 = 1) -> Vector4f16 {
- hue_to_rgb :: proc(p, q, t: f16) -> f16 {
- t := t
- if t < 0 { t += 1 }
- if t > 1 { t -= 1 }
- switch {
- case t < 1.0/6.0: return p + (q - p) * 6.0 * t
- case t < 1.0/2.0: return q
- case t < 2.0/3.0: return p + (q - p) * 6.0 * (2.0/3.0 - t)
- }
- return p
- }
- r, g, b: f16
- if s == 0 {
- r = l
- g = l
- b = l
- } else {
- q := l * (1+s) if l < 0.5 else l+s - l*s
- p := 2*l - q
- r = hue_to_rgb(p, q, h + 1.0/3.0)
- g = hue_to_rgb(p, q, h)
- b = hue_to_rgb(p, q, h - 1.0/3.0)
- }
- return {r, g, b, a}
- }
- vector4_hsl_to_rgb_f32 :: proc(h, s, l: f32, a: f32 = 1) -> Vector4f32 {
- hue_to_rgb :: proc(p, q, t: f32) -> f32 {
- t := t
- if t < 0 { t += 1 }
- if t > 1 { t -= 1 }
- switch {
- case t < 1.0/6.0: return p + (q - p) * 6.0 * t
- case t < 1.0/2.0: return q
- case t < 2.0/3.0: return p + (q - p) * 6.0 * (2.0/3.0 - t)
- }
- return p
- }
- r, g, b: f32
- if s == 0 {
- r = l
- g = l
- b = l
- } else {
- q := l * (1+s) if l < 0.5 else l+s - l*s
- p := 2*l - q
- r = hue_to_rgb(p, q, h + 1.0/3.0)
- g = hue_to_rgb(p, q, h)
- b = hue_to_rgb(p, q, h - 1.0/3.0)
- }
- return {r, g, b, a}
- }
- vector4_hsl_to_rgb_f64 :: proc(h, s, l: f64, a: f64 = 1) -> Vector4f64 {
- hue_to_rgb :: proc(p, q, t: f64) -> f64 {
- t := t
- if t < 0 { t += 1 }
- if t > 1 { t -= 1 }
- switch {
- case t < 1.0/6.0: return p + (q - p) * 6.0 * t
- case t < 1.0/2.0: return q
- case t < 2.0/3.0: return p + (q - p) * 6.0 * (2.0/3.0 - t)
- }
- return p
- }
- r, g, b: f64
- if s == 0 {
- r = l
- g = l
- b = l
- } else {
- q := l * (1+s) if l < 0.5 else l+s - l*s
- p := 2*l - q
- r = hue_to_rgb(p, q, h + 1.0/3.0)
- g = hue_to_rgb(p, q, h)
- b = hue_to_rgb(p, q, h - 1.0/3.0)
- }
- return {r, g, b, a}
- }
- vector4_hsl_to_rgb :: proc{
- vector4_hsl_to_rgb_f16,
- vector4_hsl_to_rgb_f32,
- vector4_hsl_to_rgb_f64,
- }
- vector4_rgb_to_hsl_f16 :: proc(col: Vector4f16) -> Vector4f16 {
- r := col.x
- g := col.y
- b := col.z
- a := col.w
- v_min := min(r, g, b)
- v_max := max(r, g, b)
- h, s, l: f16
- h = 0.0
- s = 0.0
- l = (v_min + v_max) * 0.5
- if v_max != v_min {
- d: = v_max - v_min
- s = d / (2.0 - v_max - v_min) if l > 0.5 else d / (v_max + v_min)
- switch {
- case v_max == r:
- h = (g - b) / d + (6.0 if g < b else 0.0)
- case v_max == g:
- h = (b - r) / d + 2.0
- case v_max == b:
- h = (r - g) / d + 4.0
- }
- h *= 1.0/6.0
- }
- return {h, s, l, a}
- }
- vector4_rgb_to_hsl_f32 :: proc(col: Vector4f32) -> Vector4f32 {
- r := col.x
- g := col.y
- b := col.z
- a := col.w
- v_min := min(r, g, b)
- v_max := max(r, g, b)
- h, s, l: f32
- h = 0.0
- s = 0.0
- l = (v_min + v_max) * 0.5
- if v_max != v_min {
- d: = v_max - v_min
- s = d / (2.0 - v_max - v_min) if l > 0.5 else d / (v_max + v_min)
- switch {
- case v_max == r:
- h = (g - b) / d + (6.0 if g < b else 0.0)
- case v_max == g:
- h = (b - r) / d + 2.0
- case v_max == b:
- h = (r - g) / d + 4.0
- }
- h *= 1.0/6.0
- }
- return {h, s, l, a}
- }
- vector4_rgb_to_hsl_f64 :: proc(col: Vector4f64) -> Vector4f64 {
- r := col.x
- g := col.y
- b := col.z
- a := col.w
- v_min := min(r, g, b)
- v_max := max(r, g, b)
- h, s, l: f64
- h = 0.0
- s = 0.0
- l = (v_min + v_max) * 0.5
- if v_max != v_min {
- d: = v_max - v_min
- s = d / (2.0 - v_max - v_min) if l > 0.5 else d / (v_max + v_min)
- switch {
- case v_max == r:
- h = (g - b) / d + (6.0 if g < b else 0.0)
- case v_max == g:
- h = (b - r) / d + 2.0
- case v_max == b:
- h = (r - g) / d + 4.0
- }
- h *= 1.0/6.0
- }
- return {h, s, l, a}
- }
- vector4_rgb_to_hsl :: proc{
- vector4_rgb_to_hsl_f16,
- vector4_rgb_to_hsl_f32,
- vector4_rgb_to_hsl_f64,
- }
- quaternion_angle_axis_f16 :: proc(angle_radians: f16, axis: Vector3f16) -> (q: Quaternionf16) {
- t := angle_radians*0.5
- v := normalize(axis) * math.sin(t)
- q.x = v.x
- q.y = v.y
- q.z = v.z
- q.w = math.cos(t)
- return
- }
- quaternion_angle_axis_f32 :: proc(angle_radians: f32, axis: Vector3f32) -> (q: Quaternionf32) {
- t := angle_radians*0.5
- v := normalize(axis) * math.sin(t)
- q.x = v.x
- q.y = v.y
- q.z = v.z
- q.w = math.cos(t)
- return
- }
- quaternion_angle_axis_f64 :: proc(angle_radians: f64, axis: Vector3f64) -> (q: Quaternionf64) {
- t := angle_radians*0.5
- v := normalize(axis) * math.sin(t)
- q.x = v.x
- q.y = v.y
- q.z = v.z
- q.w = math.cos(t)
- return
- }
- quaternion_angle_axis :: proc{
- quaternion_angle_axis_f16,
- quaternion_angle_axis_f32,
- quaternion_angle_axis_f64,
- }
- angle_from_quaternion_f16 :: proc(q: Quaternionf16) -> f16 {
- if abs(q.w) > math.SQRT_THREE*0.5 {
- return math.asin(q.x*q.x + q.y*q.y + q.z*q.z) * 2
- }
- return math.acos(q.w) * 2
- }
- angle_from_quaternion_f32 :: proc(q: Quaternionf32) -> f32 {
- if abs(q.w) > math.SQRT_THREE*0.5 {
- return math.asin(q.x*q.x + q.y*q.y + q.z*q.z) * 2
- }
- return math.acos(q.w) * 2
- }
- angle_from_quaternion_f64 :: proc(q: Quaternionf64) -> f64 {
- if abs(q.w) > math.SQRT_THREE*0.5 {
- return math.asin(q.x*q.x + q.y*q.y + q.z*q.z) * 2
- }
- return math.acos(q.w) * 2
- }
- angle_from_quaternion :: proc{
- angle_from_quaternion_f16,
- angle_from_quaternion_f32,
- angle_from_quaternion_f64,
- }
- axis_from_quaternion_f16 :: proc(q: Quaternionf16) -> Vector3f16 {
- t1 := 1 - q.w*q.w
- if t1 < 0 {
- return {0, 0, 1}
- }
- t2 := 1.0 / math.sqrt(t1)
- return {q.x*t2, q.y*t2, q.z*t2}
- }
- axis_from_quaternion_f32 :: proc(q: Quaternionf32) -> Vector3f32 {
- t1 := 1 - q.w*q.w
- if t1 < 0 {
- return {0, 0, 1}
- }
- t2 := 1.0 / math.sqrt(t1)
- return {q.x*t2, q.y*t2, q.z*t2}
- }
- axis_from_quaternion_f64 :: proc(q: Quaternionf64) -> Vector3f64 {
- t1 := 1 - q.w*q.w
- if t1 < 0 {
- return {0, 0, 1}
- }
- t2 := 1.0 / math.sqrt(t1)
- return {q.x*t2, q.y*t2, q.z*t2}
- }
- axis_from_quaternion :: proc{
- axis_from_quaternion_f16,
- axis_from_quaternion_f32,
- axis_from_quaternion_f64,
- }
- angle_axis_from_quaternion_f16 :: proc(q: Quaternionf16) -> (angle: f16, axis: Vector3f16) {
- angle = angle_from_quaternion(q)
- axis = axis_from_quaternion(q)
- return
- }
- angle_axis_from_quaternion_f32 :: proc(q: Quaternionf32) -> (angle: f32, axis: Vector3f32) {
- angle = angle_from_quaternion(q)
- axis = axis_from_quaternion(q)
- return
- }
- angle_axis_from_quaternion_f64 :: proc(q: Quaternionf64) -> (angle: f64, axis: Vector3f64) {
- angle = angle_from_quaternion(q)
- axis = axis_from_quaternion(q)
- return
- }
- angle_axis_from_quaternion :: proc {
- angle_axis_from_quaternion_f16,
- angle_axis_from_quaternion_f32,
- angle_axis_from_quaternion_f64,
- }
- quaternion_from_forward_and_up_f16 :: proc(forward, up: Vector3f16) -> Quaternionf16 {
- f := normalize(forward)
- s := normalize(cross(f, up))
- u := cross(s, f)
- m := Matrix3f16{
- +s.x, +s.y, +s.z,
- +u.x, +u.y, +u.z,
- -f.x, -f.y, -f.z,
- }
- tr := trace(m)
- q: Quaternionf16
- switch {
- case tr > 0:
- S := 2 * math.sqrt(1 + tr)
- q.w = 0.25 * S
- q.x = (m[1, 2] - m[2, 1]) / S
- q.y = (m[2, 0] - m[0, 2]) / S
- q.z = (m[0, 1] - m[1, 0]) / S
- case (m[0, 0] > m[1, 1]) && (m[0, 0] > m[2, 2]):
- S := 2 * math.sqrt(1 + m[0, 0] - m[1, 1] - m[2, 2])
- q.w = (m[1, 2] - m[2, 1]) / S
- q.x = 0.25 * S
- q.y = (m[1, 0] + m[0, 1]) / S
- q.z = (m[2, 0] + m[0, 2]) / S
- case m[1, 1] > m[2, 2]:
- S := 2 * math.sqrt(1 + m[1, 1] - m[0, 0] - m[2, 2])
- q.w = (m[2, 0] - m[0, 2]) / S
- q.x = (m[1, 0] + m[0, 1]) / S
- q.y = 0.25 * S
- q.z = (m[2, 1] + m[1, 2]) / S
- case:
- S := 2 * math.sqrt(1 + m[2, 2] - m[0, 0] - m[1, 1])
- q.w = (m[0, 1] - m[1, 0]) / S
- q.x = (m[2, 0] - m[0, 2]) / S
- q.y = (m[2, 1] + m[1, 2]) / S
- q.z = 0.25 * S
- }
- return normalize(q)
- }
- quaternion_from_forward_and_up_f32 :: proc(forward, up: Vector3f32) -> Quaternionf32 {
- f := normalize(forward)
- s := normalize(cross(f, up))
- u := cross(s, f)
- m := Matrix3f32{
- +s.x, +s.y, +s.z,
- +u.x, +u.y, +u.z,
- -f.x, -f.y, -f.z,
- }
- tr := trace(m)
- q: Quaternionf32
- switch {
- case tr > 0:
- S := 2 * math.sqrt(1 + tr)
- q.w = 0.25 * S
- q.x = (m[1, 2] - m[2, 1]) / S
- q.y = (m[2, 0] - m[0, 2]) / S
- q.z = (m[0, 1] - m[1, 0]) / S
- case (m[0, 0] > m[1, 1]) && (m[0, 0] > m[2, 2]):
- S := 2 * math.sqrt(1 + m[0, 0] - m[1, 1] - m[2, 2])
- q.w = (m[1, 2] - m[2, 1]) / S
- q.x = 0.25 * S
- q.y = (m[1, 0] + m[0, 1]) / S
- q.z = (m[2, 0] + m[0, 2]) / S
- case m[1, 1] > m[2, 2]:
- S := 2 * math.sqrt(1 + m[1, 1] - m[0, 0] - m[2, 2])
- q.w = (m[2, 0] - m[0, 2]) / S
- q.x = (m[1, 0] + m[0, 1]) / S
- q.y = 0.25 * S
- q.z = (m[2, 1] + m[1, 2]) / S
- case:
- S := 2 * math.sqrt(1 + m[2, 2] - m[0, 0] - m[1, 1])
- q.w = (m[0, 1] - m[1, 0]) / S
- q.x = (m[2, 0] - m[0, 2]) / S
- q.y = (m[2, 1] + m[1, 2]) / S
- q.z = 0.25 * S
- }
- return normalize(q)
- }
- quaternion_from_forward_and_up_f64 :: proc(forward, up: Vector3f64) -> Quaternionf64 {
- f := normalize(forward)
- s := normalize(cross(f, up))
- u := cross(s, f)
- m := Matrix3f64{
- +s.x, +s.y, +s.z,
- +u.x, +u.y, +u.z,
- -f.x, -f.y, -f.z,
- }
- tr := trace(m)
- q: Quaternionf64
- switch {
- case tr > 0:
- S := 2 * math.sqrt(1 + tr)
- q.w = 0.25 * S
- q.x = (m[1, 2] - m[2, 1]) / S
- q.y = (m[2, 0] - m[0, 2]) / S
- q.z = (m[0, 1] - m[1, 0]) / S
- case (m[0, 0] > m[1, 1]) && (m[0, 0] > m[2, 2]):
- S := 2 * math.sqrt(1 + m[0, 0] - m[1, 1] - m[2, 2])
- q.w = (m[1, 2] - m[2, 1]) / S
- q.x = 0.25 * S
- q.y = (m[1, 0] + m[0, 1]) / S
- q.z = (m[2, 0] + m[0, 2]) / S
- case m[1, 1] > m[2, 2]:
- S := 2 * math.sqrt(1 + m[1, 1] - m[0, 0] - m[2, 2])
- q.w = (m[2, 0] - m[0, 2]) / S
- q.x = (m[1, 0] + m[0, 1]) / S
- q.y = 0.25 * S
- q.z = (m[2, 1] + m[1, 2]) / S
- case:
- S := 2 * math.sqrt(1 + m[2, 2] - m[0, 0] - m[1, 1])
- q.w = (m[0, 1] - m[1, 0]) / S
- q.x = (m[2, 0] - m[0, 2]) / S
- q.y = (m[2, 1] + m[1, 2]) / S
- q.z = 0.25 * S
- }
- return normalize(q)
- }
- quaternion_from_forward_and_up :: proc{
- quaternion_from_forward_and_up_f16,
- quaternion_from_forward_and_up_f32,
- quaternion_from_forward_and_up_f64,
- }
- quaternion_look_at_f16 :: proc(eye, centre: Vector3f16, up: Vector3f16) -> Quaternionf16 {
- return quaternion_from_matrix3(matrix3_look_at(eye, centre, up))
- }
- quaternion_look_at_f32 :: proc(eye, centre: Vector3f32, up: Vector3f32) -> Quaternionf32 {
- return quaternion_from_matrix3(matrix3_look_at(eye, centre, up))
- }
- quaternion_look_at_f64 :: proc(eye, centre: Vector3f64, up: Vector3f64) -> Quaternionf64 {
- return quaternion_from_matrix3(matrix3_look_at(eye, centre, up))
- }
- quaternion_look_at :: proc{
- quaternion_look_at_f16,
- quaternion_look_at_f32,
- quaternion_look_at_f64,
- }
- quaternion_nlerp_f16 :: proc(a, b: Quaternionf16, t: f16) -> (c: Quaternionf16) {
- c.x = a.x + (b.x-a.x)*t
- c.y = a.y + (b.y-a.y)*t
- c.z = a.z + (b.z-a.z)*t
- c.w = a.w + (b.w-a.w)*t
- return normalize(c)
- }
- quaternion_nlerp_f32 :: proc(a, b: Quaternionf32, t: f32) -> (c: Quaternionf32) {
- c.x = a.x + (b.x-a.x)*t
- c.y = a.y + (b.y-a.y)*t
- c.z = a.z + (b.z-a.z)*t
- c.w = a.w + (b.w-a.w)*t
- return normalize(c)
- }
- quaternion_nlerp_f64 :: proc(a, b: Quaternionf64, t: f64) -> (c: Quaternionf64) {
- c.x = a.x + (b.x-a.x)*t
- c.y = a.y + (b.y-a.y)*t
- c.z = a.z + (b.z-a.z)*t
- c.w = a.w + (b.w-a.w)*t
- return normalize(c)
- }
- quaternion_nlerp :: proc{
- quaternion_nlerp_f16,
- quaternion_nlerp_f32,
- quaternion_nlerp_f64,
- }
- quaternion_slerp_f16 :: proc(x, y: Quaternionf16, t: f16) -> (q: Quaternionf16) {
- a, b := x, y
- cos_angle := dot(a, b)
- if cos_angle < 0 {
- b = -b
- cos_angle = -cos_angle
- }
- if cos_angle > 1 - F32_EPSILON {
- q.x = a.x + (b.x-a.x)*t
- q.y = a.y + (b.y-a.y)*t
- q.z = a.z + (b.z-a.z)*t
- q.w = a.w + (b.w-a.w)*t
- return
- }
- angle := math.acos(cos_angle)
- sin_angle := math.sin(angle)
- factor_a := math.sin((1-t) * angle) / sin_angle
- factor_b := math.sin(t * angle) / sin_angle
- q.x = factor_a * a.x + factor_b * b.x
- q.y = factor_a * a.y + factor_b * b.y
- q.z = factor_a * a.z + factor_b * b.z
- q.w = factor_a * a.w + factor_b * b.w
- return
- }
- quaternion_slerp_f32 :: proc(x, y: Quaternionf32, t: f32) -> (q: Quaternionf32) {
- a, b := x, y
- cos_angle := dot(a, b)
- if cos_angle < 0 {
- b = -b
- cos_angle = -cos_angle
- }
- if cos_angle > 1 - F32_EPSILON {
- q.x = a.x + (b.x-a.x)*t
- q.y = a.y + (b.y-a.y)*t
- q.z = a.z + (b.z-a.z)*t
- q.w = a.w + (b.w-a.w)*t
- return
- }
- angle := math.acos(cos_angle)
- sin_angle := math.sin(angle)
- factor_a := math.sin((1-t) * angle) / sin_angle
- factor_b := math.sin(t * angle) / sin_angle
- q.x = factor_a * a.x + factor_b * b.x
- q.y = factor_a * a.y + factor_b * b.y
- q.z = factor_a * a.z + factor_b * b.z
- q.w = factor_a * a.w + factor_b * b.w
- return
- }
- quaternion_slerp_f64 :: proc(x, y: Quaternionf64, t: f64) -> (q: Quaternionf64) {
- a, b := x, y
- cos_angle := dot(a, b)
- if cos_angle < 0 {
- b = -b
- cos_angle = -cos_angle
- }
- if cos_angle > 1 - F64_EPSILON {
- q.x = a.x + (b.x-a.x)*t
- q.y = a.y + (b.y-a.y)*t
- q.z = a.z + (b.z-a.z)*t
- q.w = a.w + (b.w-a.w)*t
- return
- }
- angle := math.acos(cos_angle)
- sin_angle := math.sin(angle)
- factor_a := math.sin((1-t) * angle) / sin_angle
- factor_b := math.sin(t * angle) / sin_angle
- q.x = factor_a * a.x + factor_b * b.x
- q.y = factor_a * a.y + factor_b * b.y
- q.z = factor_a * a.z + factor_b * b.z
- q.w = factor_a * a.w + factor_b * b.w
- return
- }
- quaternion_slerp :: proc{
- quaternion_slerp_f16,
- quaternion_slerp_f32,
- quaternion_slerp_f64,
- }
- quaternion_squad_f16 :: proc(q1, q2, s1, s2: Quaternionf16, h: f16) -> Quaternionf16 {
- slerp :: quaternion_slerp
- return slerp(slerp(q1, q2, h), slerp(s1, s2, h), 2 * (1 - h) * h)
- }
- quaternion_squad_f32 :: proc(q1, q2, s1, s2: Quaternionf32, h: f32) -> Quaternionf32 {
- slerp :: quaternion_slerp
- return slerp(slerp(q1, q2, h), slerp(s1, s2, h), 2 * (1 - h) * h)
- }
- quaternion_squad_f64 :: proc(q1, q2, s1, s2: Quaternionf64, h: f64) -> Quaternionf64 {
- slerp :: quaternion_slerp
- return slerp(slerp(q1, q2, h), slerp(s1, s2, h), 2 * (1 - h) * h)
- }
- quaternion_squad :: proc{
- quaternion_squad_f16,
- quaternion_squad_f32,
- quaternion_squad_f64,
- }
- quaternion_from_matrix4_f16 :: proc(m: Matrix4f16) -> (q: Quaternionf16) {
- m3: Matrix3f16 = ---
- m3[0, 0], m3[1, 0], m3[2, 0] = m[0, 0], m[1, 0], m[2, 0]
- m3[0, 1], m3[1, 1], m3[2, 1] = m[0, 1], m[1, 1], m[2, 1]
- m3[0, 2], m3[1, 2], m3[2, 2] = m[0, 2], m[1, 2], m[2, 2]
- return quaternion_from_matrix3(m3)
- }
- quaternion_from_matrix4_f32 :: proc(m: Matrix4f32) -> (q: Quaternionf32) {
- m3: Matrix3f32 = ---
- m3[0, 0], m3[1, 0], m3[2, 0] = m[0, 0], m[1, 0], m[2, 0]
- m3[0, 1], m3[1, 1], m3[2, 1] = m[0, 1], m[1, 1], m[2, 1]
- m3[0, 2], m3[1, 2], m3[2, 2] = m[0, 2], m[1, 2], m[2, 2]
- return quaternion_from_matrix3(m3)
- }
- quaternion_from_matrix4_f64 :: proc(m: Matrix4f64) -> (q: Quaternionf64) {
- m3: Matrix3f64 = ---
- m3[0, 0], m3[1, 0], m3[2, 0] = m[0, 0], m[1, 0], m[2, 0]
- m3[0, 1], m3[1, 1], m3[2, 1] = m[0, 1], m[1, 1], m[2, 1]
- m3[0, 2], m3[1, 2], m3[2, 2] = m[0, 2], m[1, 2], m[2, 2]
- return quaternion_from_matrix3(m3)
- }
- quaternion_from_matrix4 :: proc{
- quaternion_from_matrix4_f16,
- quaternion_from_matrix4_f32,
- quaternion_from_matrix4_f64,
- }
- quaternion_from_matrix3_f16 :: proc(m: Matrix3f16) -> (q: Quaternionf16) {
- four_x_squared_minus_1 := m[0, 0] - m[1, 1] - m[2, 2]
- four_y_squared_minus_1 := m[1, 1] - m[0, 0] - m[2, 2]
- four_z_squared_minus_1 := m[2, 2] - m[0, 0] - m[1, 1]
- four_w_squared_minus_1 := m[0, 0] + m[1, 1] + m[2, 2]
- biggest_index := 0
- four_biggest_squared_minus_1 := four_w_squared_minus_1
- if four_x_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_x_squared_minus_1
- biggest_index = 1
- }
- if four_y_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_y_squared_minus_1
- biggest_index = 2
- }
- if four_z_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_z_squared_minus_1
- biggest_index = 3
- }
- biggest_val := math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5
- mult := 0.25 / biggest_val
- q = 1
- switch biggest_index {
- case 0:
- q.w = biggest_val
- q.x = (m[2, 1] - m[1, 2]) * mult
- q.y = (m[0, 2] - m[2, 0]) * mult
- q.z = (m[1, 0] - m[0, 1]) * mult
- case 1:
- q.w = (m[2, 1] - m[1, 2]) * mult
- q.x = biggest_val
- q.y = (m[1, 0] + m[0, 1]) * mult
- q.z = (m[0, 2] + m[2, 0]) * mult
- case 2:
- q.w = (m[0, 2] - m[2, 0]) * mult
- q.x = (m[1, 0] + m[0, 1]) * mult
- q.y = biggest_val
- q.z = (m[2, 1] + m[1, 2]) * mult
- case 3:
- q.w = (m[1, 0] - m[0, 1]) * mult
- q.x = (m[0, 2] + m[2, 0]) * mult
- q.y = (m[2, 1] + m[1, 2]) * mult
- q.z = biggest_val
- }
- return
- }
- quaternion_from_matrix3_f32 :: proc(m: Matrix3f32) -> (q: Quaternionf32) {
- four_x_squared_minus_1 := m[0, 0] - m[1, 1] - m[2, 2]
- four_y_squared_minus_1 := m[1, 1] - m[0, 0] - m[2, 2]
- four_z_squared_minus_1 := m[2, 2] - m[0, 0] - m[1, 1]
- four_w_squared_minus_1 := m[0, 0] + m[1, 1] + m[2, 2]
- biggest_index := 0
- four_biggest_squared_minus_1 := four_w_squared_minus_1
- if four_x_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_x_squared_minus_1
- biggest_index = 1
- }
- if four_y_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_y_squared_minus_1
- biggest_index = 2
- }
- if four_z_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_z_squared_minus_1
- biggest_index = 3
- }
- biggest_val := math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5
- mult := 0.25 / biggest_val
- q = 1
- switch biggest_index {
- case 0:
- q.w = biggest_val
- q.x = (m[2, 1] - m[1, 2]) * mult
- q.y = (m[0, 2] - m[2, 0]) * mult
- q.z = (m[1, 0] - m[0, 1]) * mult
- case 1:
- q.w = (m[2, 1] - m[1, 2]) * mult
- q.x = biggest_val
- q.y = (m[1, 0] + m[0, 1]) * mult
- q.z = (m[0, 2] + m[2, 0]) * mult
- case 2:
- q.w = (m[0, 2] - m[2, 0]) * mult
- q.x = (m[1, 0] + m[0, 1]) * mult
- q.y = biggest_val
- q.z = (m[2, 1] + m[1, 2]) * mult
- case 3:
- q.w = (m[1, 0] - m[0, 1]) * mult
- q.x = (m[0, 2] + m[2, 0]) * mult
- q.y = (m[2, 1] + m[1, 2]) * mult
- q.z = biggest_val
- }
- return
- }
- quaternion_from_matrix3_f64 :: proc(m: Matrix3f64) -> (q: Quaternionf64) {
- four_x_squared_minus_1 := m[0, 0] - m[1, 1] - m[2, 2]
- four_y_squared_minus_1 := m[1, 1] - m[0, 0] - m[2, 2]
- four_z_squared_minus_1 := m[2, 2] - m[0, 0] - m[1, 1]
- four_w_squared_minus_1 := m[0, 0] + m[1, 1] + m[2, 2]
- biggest_index := 0
- four_biggest_squared_minus_1 := four_w_squared_minus_1
- if four_x_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_x_squared_minus_1
- biggest_index = 1
- }
- if four_y_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_y_squared_minus_1
- biggest_index = 2
- }
- if four_z_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_z_squared_minus_1
- biggest_index = 3
- }
- biggest_val := math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5
- mult := 0.25 / biggest_val
- q = 1
- switch biggest_index {
- case 0:
- q.w = biggest_val
- q.x = (m[2, 1] - m[1, 2]) * mult
- q.y = (m[0, 2] - m[2, 0]) * mult
- q.z = (m[1, 0] - m[0, 1]) * mult
- case 1:
- q.w = (m[2, 1] - m[1, 2]) * mult
- q.x = biggest_val
- q.y = (m[1, 0] + m[0, 1]) * mult
- q.z = (m[0, 2] + m[2, 0]) * mult
- case 2:
- q.w = (m[0, 2] - m[2, 0]) * mult
- q.x = (m[1, 0] + m[0, 1]) * mult
- q.y = biggest_val
- q.z = (m[2, 1] + m[1, 2]) * mult
- case 3:
- q.w = (m[1, 0] - m[0, 1]) * mult
- q.x = (m[0, 2] + m[2, 0]) * mult
- q.y = (m[2, 1] + m[1, 2]) * mult
- q.z = biggest_val
- }
- return
- }
- quaternion_from_matrix3 :: proc{
- quaternion_from_matrix3_f16,
- quaternion_from_matrix3_f32,
- quaternion_from_matrix3_f64,
- }
- quaternion_between_two_vector3_f16 :: proc(from, to: Vector3f16) -> (q: Quaternionf16) {
- x := normalize(from)
- y := normalize(to)
- cos_theta := dot(x, y)
- if abs(cos_theta + 1) < 2*F32_EPSILON {
- v := vector3_orthogonal(x)
- q.x = v.x
- q.y = v.y
- q.z = v.z
- q.w = 0
- return
- }
- v := cross(x, y)
- w := cos_theta + 1
- q.w = w
- q.x = v.x
- q.y = v.y
- q.z = v.z
- return normalize(q)
- }
- quaternion_between_two_vector3_f32 :: proc(from, to: Vector3f32) -> (q: Quaternionf32) {
- x := normalize(from)
- y := normalize(to)
- cos_theta := dot(x, y)
- if abs(cos_theta + 1) < 2*F32_EPSILON {
- v := vector3_orthogonal(x)
- q.x = v.x
- q.y = v.y
- q.z = v.z
- q.w = 0
- return
- }
- v := cross(x, y)
- w := cos_theta + 1
- q.w = w
- q.x = v.x
- q.y = v.y
- q.z = v.z
- return normalize(q)
- }
- quaternion_between_two_vector3_f64 :: proc(from, to: Vector3f64) -> (q: Quaternionf64) {
- x := normalize(from)
- y := normalize(to)
- cos_theta := dot(x, y)
- if abs(cos_theta + 1) < 2*F64_EPSILON {
- v := vector3_orthogonal(x)
- q.x = v.x
- q.y = v.y
- q.z = v.z
- q.w = 0
- return
- }
- v := cross(x, y)
- w := cos_theta + 1
- q.w = w
- q.x = v.x
- q.y = v.y
- q.z = v.z
- return normalize(q)
- }
- quaternion_between_two_vector3 :: proc{
- quaternion_between_two_vector3_f16,
- quaternion_between_two_vector3_f32,
- quaternion_between_two_vector3_f64,
- }
- matrix2_inverse_transpose_f16 :: proc(m: Matrix2f16) -> (c: Matrix2f16) {
- d := m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]
- id := 1.0/d
- c[0, 0] = +m[1, 1] * id
- c[1, 0] = -m[1, 0] * id
- c[0, 1] = -m[0, 1] * id
- c[1, 1] = +m[0, 0] * id
- return c
- }
- matrix2_inverse_transpose_f32 :: proc(m: Matrix2f32) -> (c: Matrix2f32) {
- d := m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]
- id := 1.0/d
- c[0, 0] = +m[1, 1] * id
- c[1, 0] = -m[1, 0] * id
- c[0, 1] = -m[0, 1] * id
- c[1, 1] = +m[0, 0] * id
- return c
- }
- matrix2_inverse_transpose_f64 :: proc(m: Matrix2f64) -> (c: Matrix2f64) {
- d := m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]
- id := 1.0/d
- c[0, 0] = +m[1, 1] * id
- c[1, 0] = -m[1, 0] * id
- c[0, 1] = -m[0, 1] * id
- c[1, 1] = +m[0, 0] * id
- return c
- }
- matrix2_inverse_transpose :: proc{
- matrix2_inverse_transpose_f16,
- matrix2_inverse_transpose_f32,
- matrix2_inverse_transpose_f64,
- }
- matrix2_determinant_f16 :: proc(m: Matrix2f16) -> f16 {
- return m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]
- }
- matrix2_determinant_f32 :: proc(m: Matrix2f32) -> f32 {
- return m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]
- }
- matrix2_determinant_f64 :: proc(m: Matrix2f64) -> f64 {
- return m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]
- }
- matrix2_determinant :: proc{
- matrix2_determinant_f16,
- matrix2_determinant_f32,
- matrix2_determinant_f64,
- }
- matrix2_inverse_f16 :: proc(m: Matrix2f16) -> (c: Matrix2f16) {
- d := m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]
- id := 1.0/d
- c[0, 0] = +m[1, 1] * id
- c[0, 1] = -m[1, 0] * id
- c[1, 0] = -m[0, 1] * id
- c[1, 1] = +m[0, 0] * id
- return c
- }
- matrix2_inverse_f32 :: proc(m: Matrix2f32) -> (c: Matrix2f32) {
- d := m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]
- id := 1.0/d
- c[0, 0] = +m[1, 1] * id
- c[0, 1] = -m[1, 0] * id
- c[1, 0] = -m[0, 1] * id
- c[1, 1] = +m[0, 0] * id
- return c
- }
- matrix2_inverse_f64 :: proc(m: Matrix2f64) -> (c: Matrix2f64) {
- d := m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]
- id := 1.0/d
- c[0, 0] = +m[1, 1] * id
- c[0, 1] = -m[1, 0] * id
- c[1, 0] = -m[0, 1] * id
- c[1, 1] = +m[0, 0] * id
- return c
- }
- matrix2_inverse :: proc{
- matrix2_inverse_f16,
- matrix2_inverse_f32,
- matrix2_inverse_f64,
- }
- matrix2_adjoint_f16 :: proc(m: Matrix2f16) -> (c: Matrix2f16) {
- c[0, 0] = +m[1, 1]
- c[1, 0] = -m[0, 1]
- c[0, 1] = -m[1, 0]
- c[1, 1] = +m[0, 0]
- return c
- }
- matrix2_adjoint_f32 :: proc(m: Matrix2f32) -> (c: Matrix2f32) {
- c[0, 0] = +m[1, 1]
- c[1, 0] = -m[0, 1]
- c[0, 1] = -m[1, 0]
- c[1, 1] = +m[0, 0]
- return c
- }
- matrix2_adjoint_f64 :: proc(m: Matrix2f64) -> (c: Matrix2f64) {
- c[0, 0] = +m[1, 1]
- c[1, 0] = -m[0, 1]
- c[0, 1] = -m[1, 0]
- c[1, 1] = +m[0, 0]
- return c
- }
- matrix2_adjoint :: proc{
- matrix2_adjoint_f16,
- matrix2_adjoint_f32,
- matrix2_adjoint_f64,
- }
- matrix3_from_quaternion_f16 :: proc(q: Quaternionf16) -> (m: Matrix3f16) {
- qxx := q.x * q.x
- qyy := q.y * q.y
- qzz := q.z * q.z
- qxz := q.x * q.z
- qxy := q.x * q.y
- qyz := q.y * q.z
- qwx := q.w * q.x
- qwy := q.w * q.y
- qwz := q.w * q.z
- m[0, 0] = 1 - 2 * (qyy + qzz)
- m[1, 0] = 2 * (qxy + qwz)
- m[2, 0] = 2 * (qxz - qwy)
- m[0, 1] = 2 * (qxy - qwz)
- m[1, 1] = 1 - 2 * (qxx + qzz)
- m[2, 1] = 2 * (qyz + qwx)
- m[0, 2] = 2 * (qxz + qwy)
- m[1, 2] = 2 * (qyz - qwx)
- m[2, 2] = 1 - 2 * (qxx + qyy)
- return m
- }
- matrix3_from_quaternion_f32 :: proc(q: Quaternionf32) -> (m: Matrix3f32) {
- qxx := q.x * q.x
- qyy := q.y * q.y
- qzz := q.z * q.z
- qxz := q.x * q.z
- qxy := q.x * q.y
- qyz := q.y * q.z
- qwx := q.w * q.x
- qwy := q.w * q.y
- qwz := q.w * q.z
- m[0, 0] = 1 - 2 * (qyy + qzz)
- m[1, 0] = 2 * (qxy + qwz)
- m[2, 0] = 2 * (qxz - qwy)
- m[0, 1] = 2 * (qxy - qwz)
- m[1, 1] = 1 - 2 * (qxx + qzz)
- m[2, 1] = 2 * (qyz + qwx)
- m[0, 2] = 2 * (qxz + qwy)
- m[1, 2] = 2 * (qyz - qwx)
- m[2, 2] = 1 - 2 * (qxx + qyy)
- return m
- }
- matrix3_from_quaternion_f64 :: proc(q: Quaternionf64) -> (m: Matrix3f64) {
- qxx := q.x * q.x
- qyy := q.y * q.y
- qzz := q.z * q.z
- qxz := q.x * q.z
- qxy := q.x * q.y
- qyz := q.y * q.z
- qwx := q.w * q.x
- qwy := q.w * q.y
- qwz := q.w * q.z
- m[0, 0] = 1 - 2 * (qyy + qzz)
- m[1, 0] = 2 * (qxy + qwz)
- m[2, 0] = 2 * (qxz - qwy)
- m[0, 1] = 2 * (qxy - qwz)
- m[1, 1] = 1 - 2 * (qxx + qzz)
- m[2, 1] = 2 * (qyz + qwx)
- m[0, 2] = 2 * (qxz + qwy)
- m[1, 2] = 2 * (qyz - qwx)
- m[2, 2] = 1 - 2 * (qxx + qyy)
- return m
- }
- matrix3_from_quaternion :: proc{
- matrix3_from_quaternion_f16,
- matrix3_from_quaternion_f32,
- matrix3_from_quaternion_f64,
- }
- matrix3_inverse_f16 :: proc(m: Matrix3f16) -> Matrix3f16 {
- return transpose(matrix3_inverse_transpose(m))
- }
- matrix3_inverse_f32 :: proc(m: Matrix3f32) -> Matrix3f32 {
- return transpose(matrix3_inverse_transpose(m))
- }
- matrix3_inverse_f64 :: proc(m: Matrix3f64) -> Matrix3f64 {
- return transpose(matrix3_inverse_transpose(m))
- }
- matrix3_inverse :: proc{
- matrix3_inverse_f16,
- matrix3_inverse_f32,
- matrix3_inverse_f64,
- }
- matrix3_determinant_f16 :: proc(m: Matrix3f16) -> f16 {
- a := +m[0, 0] * (m[1, 1] * m[2, 2] - m[1, 2] * m[2, 1])
- b := -m[0, 1] * (m[1, 0] * m[2, 2] - m[1, 2] * m[2, 0])
- c := +m[0, 2] * (m[1, 0] * m[2, 1] - m[1, 1] * m[2, 0])
- return a + b + c
- }
- matrix3_determinant_f32 :: proc(m: Matrix3f32) -> f32 {
- a := +m[0, 0] * (m[1, 1] * m[2, 2] - m[1, 2] * m[2, 1])
- b := -m[0, 1] * (m[1, 0] * m[2, 2] - m[1, 2] * m[2, 0])
- c := +m[0, 2] * (m[1, 0] * m[2, 1] - m[1, 1] * m[2, 0])
- return a + b + c
- }
- matrix3_determinant_f64 :: proc(m: Matrix3f64) -> f64 {
- a := +m[0, 0] * (m[1, 1] * m[2, 2] - m[1, 2] * m[2, 1])
- b := -m[0, 1] * (m[1, 0] * m[2, 2] - m[1, 2] * m[2, 0])
- c := +m[0, 2] * (m[1, 0] * m[2, 1] - m[1, 1] * m[2, 0])
- return a + b + c
- }
- matrix3_determinant :: proc{
- matrix3_determinant_f16,
- matrix3_determinant_f32,
- matrix3_determinant_f64,
- }
- matrix3_adjoint_f16 :: proc(m: Matrix3f16) -> (adjoint: Matrix3f16) {
- adjoint[0, 0] = +(m[1, 1] * m[2, 2] - m[2, 1] * m[1, 2])
- adjoint[0, 1] = -(m[1, 0] * m[2, 2] - m[2, 0] * m[1, 2])
- adjoint[0, 2] = +(m[1, 0] * m[2, 1] - m[2, 0] * m[1, 1])
- adjoint[1, 0] = -(m[0, 1] * m[2, 2] - m[2, 1] * m[0, 2])
- adjoint[1, 1] = +(m[0, 0] * m[2, 2] - m[2, 0] * m[0, 2])
- adjoint[1, 2] = -(m[0, 0] * m[2, 1] - m[2, 0] * m[0, 1])
- adjoint[2, 0] = +(m[0, 1] * m[1, 2] - m[1, 1] * m[0, 2])
- adjoint[2, 1] = -(m[0, 0] * m[1, 2] - m[1, 0] * m[0, 2])
- adjoint[2, 2] = +(m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1])
- return adjoint
- }
- matrix3_adjoint_f32 :: proc(m: Matrix3f32) -> (adjoint: Matrix3f32) {
- adjoint[0, 0] = +(m[1, 1] * m[2, 2] - m[2, 1] * m[1, 2])
- adjoint[0, 1] = -(m[1, 0] * m[2, 2] - m[2, 0] * m[1, 2])
- adjoint[0, 2] = +(m[1, 0] * m[2, 1] - m[2, 0] * m[1, 1])
- adjoint[1, 0] = -(m[0, 1] * m[2, 2] - m[2, 1] * m[0, 2])
- adjoint[1, 1] = +(m[0, 0] * m[2, 2] - m[2, 0] * m[0, 2])
- adjoint[1, 2] = -(m[0, 0] * m[2, 1] - m[2, 0] * m[0, 1])
- adjoint[2, 0] = +(m[0, 1] * m[1, 2] - m[1, 1] * m[0, 2])
- adjoint[2, 1] = -(m[0, 0] * m[1, 2] - m[1, 0] * m[0, 2])
- adjoint[2, 2] = +(m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1])
- return adjoint
- }
- matrix3_adjoint_f64 :: proc(m: Matrix3f64) -> (adjoint: Matrix3f64) {
- adjoint[0, 0] = +(m[1, 1] * m[2, 2] - m[2, 1] * m[1, 2])
- adjoint[0, 1] = -(m[1, 0] * m[2, 2] - m[2, 0] * m[1, 2])
- adjoint[0, 2] = +(m[1, 0] * m[2, 1] - m[2, 0] * m[1, 1])
- adjoint[1, 0] = -(m[0, 1] * m[2, 2] - m[2, 1] * m[0, 2])
- adjoint[1, 1] = +(m[0, 0] * m[2, 2] - m[2, 0] * m[0, 2])
- adjoint[1, 2] = -(m[0, 0] * m[2, 1] - m[2, 0] * m[0, 1])
- adjoint[2, 0] = +(m[0, 1] * m[1, 2] - m[1, 1] * m[0, 2])
- adjoint[2, 1] = -(m[0, 0] * m[1, 2] - m[1, 0] * m[0, 2])
- adjoint[2, 2] = +(m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1])
- return adjoint
- }
- matrix3_adjoint :: proc{
- matrix3_adjoint_f16,
- matrix3_adjoint_f32,
- matrix3_adjoint_f64,
- }
- matrix3_inverse_transpose_f16 :: proc(m: Matrix3f16) -> (inverse_transpose: Matrix3f16) {
- return builtin.inverse_transpose(m)
- }
- matrix3_inverse_transpose_f32 :: proc(m: Matrix3f32) -> (inverse_transpose: Matrix3f32) {
- return builtin.inverse_transpose(m)
- }
- matrix3_inverse_transpose_f64 :: proc(m: Matrix3f64) -> (inverse_transpose: Matrix3f64) {
- return builtin.inverse_transpose(m)
- }
- matrix3_inverse_transpose :: proc{
- matrix3_inverse_transpose_f16,
- matrix3_inverse_transpose_f32,
- matrix3_inverse_transpose_f64,
- }
- matrix3_scale_f16 :: proc(s: Vector3f16) -> (m: Matrix3f16) {
- m[0, 0] = s[0]
- m[1, 1] = s[1]
- m[2, 2] = s[2]
- return m
- }
- matrix3_scale_f32 :: proc(s: Vector3f32) -> (m: Matrix3f32) {
- m[0, 0] = s[0]
- m[1, 1] = s[1]
- m[2, 2] = s[2]
- return m
- }
- matrix3_scale_f64 :: proc(s: Vector3f64) -> (m: Matrix3f64) {
- m[0, 0] = s[0]
- m[1, 1] = s[1]
- m[2, 2] = s[2]
- return m
- }
- matrix3_scale :: proc{
- matrix3_scale_f16,
- matrix3_scale_f32,
- matrix3_scale_f64,
- }
- matrix3_rotate_f16 :: proc(angle_radians: f16, v: Vector3f16) -> (rot: Matrix3f16) {
- c := math.cos(angle_radians)
- s := math.sin(angle_radians)
- a := normalize(v)
- t := a * (1-c)
- rot[0, 0] = c + t[0]*a[0]
- rot[1, 0] = 0 + t[0]*a[1] + s*a[2]
- rot[2, 0] = 0 + t[0]*a[2] - s*a[1]
- rot[0, 1] = 0 + t[1]*a[0] - s*a[2]
- rot[1, 1] = c + t[1]*a[1]
- rot[2, 1] = 0 + t[1]*a[2] + s*a[0]
- rot[0, 2] = 0 + t[2]*a[0] + s*a[1]
- rot[1, 2] = 0 + t[2]*a[1] - s*a[0]
- rot[2, 2] = c + t[2]*a[2]
- return rot
- }
- matrix3_rotate_f32 :: proc(angle_radians: f32, v: Vector3f32) -> (rot: Matrix3f32) {
- c := math.cos(angle_radians)
- s := math.sin(angle_radians)
- a := normalize(v)
- t := a * (1-c)
- rot[0, 0] = c + t[0]*a[0]
- rot[1, 0] = 0 + t[0]*a[1] + s*a[2]
- rot[2, 0] = 0 + t[0]*a[2] - s*a[1]
- rot[0, 1] = 0 + t[1]*a[0] - s*a[2]
- rot[1, 1] = c + t[1]*a[1]
- rot[2, 1] = 0 + t[1]*a[2] + s*a[0]
- rot[0, 2] = 0 + t[2]*a[0] + s*a[1]
- rot[1, 2] = 0 + t[2]*a[1] - s*a[0]
- rot[2, 2] = c + t[2]*a[2]
- return rot
- }
- matrix3_rotate_f64 :: proc(angle_radians: f64, v: Vector3f64) -> (rot: Matrix3f64) {
- c := math.cos(angle_radians)
- s := math.sin(angle_radians)
- a := normalize(v)
- t := a * (1-c)
- rot[0, 0] = c + t[0]*a[0]
- rot[1, 0] = 0 + t[0]*a[1] + s*a[2]
- rot[2, 0] = 0 + t[0]*a[2] - s*a[1]
- rot[0, 1] = 0 + t[1]*a[0] - s*a[2]
- rot[1, 1] = c + t[1]*a[1]
- rot[2, 1] = 0 + t[1]*a[2] + s*a[0]
- rot[0, 2] = 0 + t[2]*a[0] + s*a[1]
- rot[1, 2] = 0 + t[2]*a[1] - s*a[0]
- rot[2, 2] = c + t[2]*a[2]
- return rot
- }
- matrix3_rotate :: proc{
- matrix3_rotate_f16,
- matrix3_rotate_f32,
- matrix3_rotate_f64,
- }
- matrix3_look_at_f16 :: proc(eye, centre, up: Vector3f16) -> Matrix3f16 {
- f := normalize(centre - eye)
- s := normalize(cross(f, up))
- u := cross(s, f)
- return Matrix3f16{
- +s.x, +s.y, +s.z,
- +u.x, +u.y, +u.z,
- -f.x, -f.y, -f.z,
- }
- }
- matrix3_look_at_f32 :: proc(eye, centre, up: Vector3f32) -> Matrix3f32 {
- f := normalize(centre - eye)
- s := normalize(cross(f, up))
- u := cross(s, f)
- return Matrix3f32{
- +s.x, +s.y, +s.z,
- +u.x, +u.y, +u.z,
- -f.x, -f.y, -f.z,
- }
- }
- matrix3_look_at_f64 :: proc(eye, centre, up: Vector3f64) -> Matrix3f64 {
- f := normalize(centre - eye)
- s := normalize(cross(f, up))
- u := cross(s, f)
- return Matrix3f64{
- +s.x, +s.y, +s.z,
- +u.x, +u.y, +u.z,
- -f.x, -f.y, -f.z,
- }
- }
- matrix3_look_at :: proc{
- matrix3_look_at_f16,
- matrix3_look_at_f32,
- matrix3_look_at_f64,
- }
- matrix4_from_quaternion_f16 :: proc(q: Quaternionf16) -> (m: Matrix4f16) {
- qxx := q.x * q.x
- qyy := q.y * q.y
- qzz := q.z * q.z
- qxz := q.x * q.z
- qxy := q.x * q.y
- qyz := q.y * q.z
- qwx := q.w * q.x
- qwy := q.w * q.y
- qwz := q.w * q.z
- m[0, 0] = 1 - 2 * (qyy + qzz)
- m[1, 0] = 2 * (qxy + qwz)
- m[2, 0] = 2 * (qxz - qwy)
- m[0, 1] = 2 * (qxy - qwz)
- m[1, 1] = 1 - 2 * (qxx + qzz)
- m[2, 1] = 2 * (qyz + qwx)
- m[0, 2] = 2 * (qxz + qwy)
- m[1, 2] = 2 * (qyz - qwx)
- m[2, 2] = 1 - 2 * (qxx + qyy)
- m[3, 3] = 1
- return m
- }
- matrix4_from_quaternion_f32 :: proc(q: Quaternionf32) -> (m: Matrix4f32) {
- qxx := q.x * q.x
- qyy := q.y * q.y
- qzz := q.z * q.z
- qxz := q.x * q.z
- qxy := q.x * q.y
- qyz := q.y * q.z
- qwx := q.w * q.x
- qwy := q.w * q.y
- qwz := q.w * q.z
- m[0, 0] = 1 - 2 * (qyy + qzz)
- m[1, 0] = 2 * (qxy + qwz)
- m[2, 0] = 2 * (qxz - qwy)
- m[0, 1] = 2 * (qxy - qwz)
- m[1, 1] = 1 - 2 * (qxx + qzz)
- m[2, 1] = 2 * (qyz + qwx)
- m[0, 2] = 2 * (qxz + qwy)
- m[1, 2] = 2 * (qyz - qwx)
- m[2, 2] = 1 - 2 * (qxx + qyy)
- m[3, 3] = 1
- return m
- }
- matrix4_from_quaternion_f64 :: proc(q: Quaternionf64) -> (m: Matrix4f64) {
- qxx := q.x * q.x
- qyy := q.y * q.y
- qzz := q.z * q.z
- qxz := q.x * q.z
- qxy := q.x * q.y
- qyz := q.y * q.z
- qwx := q.w * q.x
- qwy := q.w * q.y
- qwz := q.w * q.z
- m[0, 0] = 1 - 2 * (qyy + qzz)
- m[1, 0] = 2 * (qxy + qwz)
- m[2, 0] = 2 * (qxz - qwy)
- m[0, 1] = 2 * (qxy - qwz)
- m[1, 1] = 1 - 2 * (qxx + qzz)
- m[2, 1] = 2 * (qyz + qwx)
- m[0, 2] = 2 * (qxz + qwy)
- m[1, 2] = 2 * (qyz - qwx)
- m[2, 2] = 1 - 2 * (qxx + qyy)
- m[3, 3] = 1
- return m
- }
- matrix4_from_quaternion :: proc{
- matrix4_from_quaternion_f16,
- matrix4_from_quaternion_f32,
- matrix4_from_quaternion_f64,
- }
- matrix4_from_trs_f16 :: proc(t: Vector3f16, r: Quaternionf16, s: Vector3f16) -> Matrix4f16 {
- translation := matrix4_translate(t)
- rotation := matrix4_from_quaternion(r)
- scale := matrix4_scale(s)
- return mul(translation, mul(rotation, scale))
- }
- matrix4_from_trs_f32 :: proc(t: Vector3f32, r: Quaternionf32, s: Vector3f32) -> Matrix4f32 {
- translation := matrix4_translate(t)
- rotation := matrix4_from_quaternion(r)
- scale := matrix4_scale(s)
- return mul(translation, mul(rotation, scale))
- }
- matrix4_from_trs_f64 :: proc(t: Vector3f64, r: Quaternionf64, s: Vector3f64) -> Matrix4f64 {
- translation := matrix4_translate(t)
- rotation := matrix4_from_quaternion(r)
- scale := matrix4_scale(s)
- return mul(translation, mul(rotation, scale))
- }
- matrix4_from_trs :: proc{
- matrix4_from_trs_f16,
- matrix4_from_trs_f32,
- matrix4_from_trs_f64,
- }
- matrix4_inverse_f16 :: proc(m: Matrix4f16) -> Matrix4f16 {
- return transpose(matrix4_inverse_transpose(m))
- }
- matrix4_inverse_f32 :: proc(m: Matrix4f32) -> Matrix4f32 {
- return transpose(matrix4_inverse_transpose(m))
- }
- matrix4_inverse_f64 :: proc(m: Matrix4f64) -> Matrix4f64 {
- return transpose(matrix4_inverse_transpose(m))
- }
- matrix4_inverse :: proc{
- matrix4_inverse_f16,
- matrix4_inverse_f32,
- matrix4_inverse_f64,
- }
- matrix4_minor_f16 :: proc(m: Matrix4f16, c, r: int) -> f16 {
- cut_down: Matrix3f16
- for i in 0..<3 {
- col := i if i < c else i+1
- for j in 0..<3 {
- row := j if j < r else j+1
- cut_down[i][j] = m[col][row]
- }
- }
- return matrix3_determinant(cut_down)
- }
- matrix4_minor_f32 :: proc(m: Matrix4f32, c, r: int) -> f32 {
- cut_down: Matrix3f32
- for i in 0..<3 {
- col := i if i < c else i+1
- for j in 0..<3 {
- row := j if j < r else j+1
- cut_down[i][j] = m[col][row]
- }
- }
- return matrix3_determinant(cut_down)
- }
- matrix4_minor_f64 :: proc(m: Matrix4f64, c, r: int) -> f64 {
- cut_down: Matrix3f64
- for i in 0..<3 {
- col := i if i < c else i+1
- for j in 0..<3 {
- row := j if j < r else j+1
- cut_down[i][j] = m[col][row]
- }
- }
- return matrix3_determinant(cut_down)
- }
- matrix4_minor :: proc{
- matrix4_minor_f16,
- matrix4_minor_f32,
- matrix4_minor_f64,
- }
- matrix4_cofactor_f16 :: proc(m: Matrix4f16, c, r: int) -> f16 {
- sign, minor: f16
- sign = 1 if (c + r) % 2 == 0 else -1
- minor = matrix4_minor(m, c, r)
- return sign * minor
- }
- matrix4_cofactor_f32 :: proc(m: Matrix4f32, c, r: int) -> f32 {
- sign, minor: f32
- sign = 1 if (c + r) % 2 == 0 else -1
- minor = matrix4_minor(m, c, r)
- return sign * minor
- }
- matrix4_cofactor_f64 :: proc(m: Matrix4f64, c, r: int) -> f64 {
- sign, minor: f64
- sign = 1 if (c + r) % 2 == 0 else -1
- minor = matrix4_minor(m, c, r)
- return sign * minor
- }
- matrix4_cofactor :: proc{
- matrix4_cofactor_f16,
- matrix4_cofactor_f32,
- matrix4_cofactor_f64,
- }
- matrix4_adjoint_f16 :: proc(m: Matrix4f16) -> (adjoint: Matrix4f16) {
- for i in 0..<4 {
- for j in 0..<4 {
- adjoint[i][j] = matrix4_cofactor(m, i, j)
- }
- }
- return
- }
- matrix4_adjoint_f32 :: proc(m: Matrix4f32) -> (adjoint: Matrix4f32) {
- for i in 0..<4 {
- for j in 0..<4 {
- adjoint[i][j] = matrix4_cofactor(m, i, j)
- }
- }
- return
- }
- matrix4_adjoint_f64 :: proc(m: Matrix4f64) -> (adjoint: Matrix4f64) {
- for i in 0..<4 {
- for j in 0..<4 {
- adjoint[i][j] = matrix4_cofactor(m, i, j)
- }
- }
- return
- }
- matrix4_adjoint :: proc{
- matrix4_adjoint_f16,
- matrix4_adjoint_f32,
- matrix4_adjoint_f64,
- }
- matrix4_determinant_f16 :: proc(m: Matrix4f16) -> (determinant: f16) {
- adjoint := matrix4_adjoint(m)
- for i in 0..<4 {
- determinant += m[i][0] * adjoint[i][0]
- }
- return
- }
- matrix4_determinant_f32 :: proc(m: Matrix4f32) -> (determinant: f32) {
- adjoint := matrix4_adjoint(m)
- for i in 0..<4 {
- determinant += m[i][0] * adjoint[i][0]
- }
- return
- }
- matrix4_determinant_f64 :: proc(m: Matrix4f64) -> (determinant: f64) {
- adjoint := matrix4_adjoint(m)
- for i in 0..<4 {
- determinant += m[i][0] * adjoint[i][0]
- }
- return
- }
- matrix4_determinant :: proc{
- matrix4_determinant_f16,
- matrix4_determinant_f32,
- matrix4_determinant_f64,
- }
- matrix4_inverse_transpose_f16 :: proc(m: Matrix4f16) -> (inverse_transpose: Matrix4f16) {
- adjoint := matrix4_adjoint(m)
- determinant: f16 = 0
- for i in 0..<4 {
- determinant += m[i][0] * adjoint[i][0]
- }
- inv_determinant := 1.0 / determinant
- for i in 0..<4 {
- for j in 0..<4 {
- inverse_transpose[i][j] = adjoint[i][j] * inv_determinant
- }
- }
- return
- }
- matrix4_inverse_transpose_f32 :: proc(m: Matrix4f32) -> (inverse_transpose: Matrix4f32) {
- adjoint := matrix4_adjoint(m)
- determinant: f32 = 0
- for i in 0..<4 {
- determinant += m[i][0] * adjoint[i][0]
- }
- inv_determinant := 1.0 / determinant
- for i in 0..<4 {
- for j in 0..<4 {
- inverse_transpose[i][j] = adjoint[i][j] * inv_determinant
- }
- }
- return
- }
- matrix4_inverse_transpose_f64 :: proc(m: Matrix4f64) -> (inverse_transpose: Matrix4f64) {
- adjoint := matrix4_adjoint(m)
- determinant: f64 = 0
- for i in 0..<4 {
- determinant += m[i][0] * adjoint[i][0]
- }
- inv_determinant := 1.0 / determinant
- for i in 0..<4 {
- for j in 0..<4 {
- inverse_transpose[i][j] = adjoint[i][j] * inv_determinant
- }
- }
- return
- }
- matrix4_inverse_transpose :: proc{
- matrix4_inverse_transpose_f16,
- matrix4_inverse_transpose_f32,
- matrix4_inverse_transpose_f64,
- }
- matrix4_translate_f16 :: proc(v: Vector3f16) -> Matrix4f16 {
- m := MATRIX4F16_IDENTITY
- m[3][0] = v[0]
- m[3][1] = v[1]
- m[3][2] = v[2]
- return m
- }
- matrix4_translate_f32 :: proc(v: Vector3f32) -> Matrix4f32 {
- m := MATRIX4F32_IDENTITY
- m[3][0] = v[0]
- m[3][1] = v[1]
- m[3][2] = v[2]
- return m
- }
- matrix4_translate_f64 :: proc(v: Vector3f64) -> Matrix4f64 {
- m := MATRIX4F64_IDENTITY
- m[3][0] = v[0]
- m[3][1] = v[1]
- m[3][2] = v[2]
- return m
- }
- matrix4_translate :: proc{
- matrix4_translate_f16,
- matrix4_translate_f32,
- matrix4_translate_f64,
- }
- matrix4_rotate_f16 :: proc(angle_radians: f16, v: Vector3f16) -> Matrix4f16 {
- c := math.cos(angle_radians)
- s := math.sin(angle_radians)
- a := normalize(v)
- t := a * (1-c)
- rot := MATRIX4F16_IDENTITY
- rot[0][0] = c + t[0]*a[0]
- rot[0][1] = 0 + t[0]*a[1] + s*a[2]
- rot[0][2] = 0 + t[0]*a[2] - s*a[1]
- rot[0][3] = 0
- rot[1][0] = 0 + t[1]*a[0] - s*a[2]
- rot[1][1] = c + t[1]*a[1]
- rot[1][2] = 0 + t[1]*a[2] + s*a[0]
- rot[1][3] = 0
- rot[2][0] = 0 + t[2]*a[0] + s*a[1]
- rot[2][1] = 0 + t[2]*a[1] - s*a[0]
- rot[2][2] = c + t[2]*a[2]
- rot[2][3] = 0
- return rot
- }
- matrix4_rotate_f32 :: proc(angle_radians: f32, v: Vector3f32) -> Matrix4f32 {
- c := math.cos(angle_radians)
- s := math.sin(angle_radians)
- a := normalize(v)
- t := a * (1-c)
- rot := MATRIX4F32_IDENTITY
- rot[0][0] = c + t[0]*a[0]
- rot[0][1] = 0 + t[0]*a[1] + s*a[2]
- rot[0][2] = 0 + t[0]*a[2] - s*a[1]
- rot[0][3] = 0
- rot[1][0] = 0 + t[1]*a[0] - s*a[2]
- rot[1][1] = c + t[1]*a[1]
- rot[1][2] = 0 + t[1]*a[2] + s*a[0]
- rot[1][3] = 0
- rot[2][0] = 0 + t[2]*a[0] + s*a[1]
- rot[2][1] = 0 + t[2]*a[1] - s*a[0]
- rot[2][2] = c + t[2]*a[2]
- rot[2][3] = 0
- return rot
- }
- matrix4_rotate_f64 :: proc(angle_radians: f64, v: Vector3f64) -> Matrix4f64 {
- c := math.cos(angle_radians)
- s := math.sin(angle_radians)
- a := normalize(v)
- t := a * (1-c)
- rot := MATRIX4F64_IDENTITY
- rot[0][0] = c + t[0]*a[0]
- rot[0][1] = 0 + t[0]*a[1] + s*a[2]
- rot[0][2] = 0 + t[0]*a[2] - s*a[1]
- rot[0][3] = 0
- rot[1][0] = 0 + t[1]*a[0] - s*a[2]
- rot[1][1] = c + t[1]*a[1]
- rot[1][2] = 0 + t[1]*a[2] + s*a[0]
- rot[1][3] = 0
- rot[2][0] = 0 + t[2]*a[0] + s*a[1]
- rot[2][1] = 0 + t[2]*a[1] - s*a[0]
- rot[2][2] = c + t[2]*a[2]
- rot[2][3] = 0
- return rot
- }
- matrix4_rotate :: proc{
- matrix4_rotate_f16,
- matrix4_rotate_f32,
- matrix4_rotate_f64,
- }
- matrix4_scale_f16 :: proc(v: Vector3f16) -> (m: Matrix4f16) {
- m[0][0] = v[0]
- m[1][1] = v[1]
- m[2][2] = v[2]
- m[3][3] = 1
- return
- }
- matrix4_scale_f32 :: proc(v: Vector3f32) -> (m: Matrix4f32) {
- m[0][0] = v[0]
- m[1][1] = v[1]
- m[2][2] = v[2]
- m[3][3] = 1
- return
- }
- matrix4_scale_f64 :: proc(v: Vector3f64) -> (m: Matrix4f64) {
- m[0][0] = v[0]
- m[1][1] = v[1]
- m[2][2] = v[2]
- m[3][3] = 1
- return
- }
- matrix4_scale :: proc{
- matrix4_scale_f16,
- matrix4_scale_f32,
- matrix4_scale_f64,
- }
- matrix4_look_at_f16 :: proc(eye, centre, up: Vector3f16, flip_z_axis := true) -> (m: Matrix4f16) {
- f := normalize(centre - eye)
- s := normalize(cross(f, up))
- u := cross(s, f)
- fe := dot(f, eye)
- return {
- +s.x, +s.y, +s.z, -dot(s, eye),
- +u.x, +u.y, +u.z, -dot(u, eye),
- -f.x, -f.y, -f.z, +fe if flip_z_axis else -fe,
- 0, 0, 0, 1,
- }
- }
- matrix4_look_at_f32 :: proc(eye, centre, up: Vector3f32, flip_z_axis := true) -> (m: Matrix4f32) {
- f := normalize(centre - eye)
- s := normalize(cross(f, up))
- u := cross(s, f)
- fe := dot(f, eye)
- return {
- +s.x, +s.y, +s.z, -dot(s, eye),
- +u.x, +u.y, +u.z, -dot(u, eye),
- -f.x, -f.y, -f.z, +fe if flip_z_axis else -fe,
- 0, 0, 0, 1,
- }
- }
- matrix4_look_at_f64 :: proc(eye, centre, up: Vector3f64, flip_z_axis := true) -> (m: Matrix4f64) {
- f := normalize(centre - eye)
- s := normalize(cross(f, up))
- u := cross(s, f)
- fe := dot(f, eye)
- return {
- +s.x, +s.y, +s.z, -dot(s, eye),
- +u.x, +u.y, +u.z, -dot(u, eye),
- -f.x, -f.y, -f.z, +fe if flip_z_axis else -fe,
- 0, 0, 0, 1,
- }
- }
- matrix4_look_at :: proc{
- matrix4_look_at_f16,
- matrix4_look_at_f32,
- matrix4_look_at_f64,
- }
- matrix4_look_at_from_fru_f16 :: proc(eye, f, r, u: Vector3f16, flip_z_axis := true) -> (m: Matrix4f16) {
- f, s, u := f, r, u
- f = normalize(f)
- s = normalize(s)
- u = normalize(u)
- fe := dot(f, eye)
- return {
- +s.x, +s.y, +s.z, -dot(s, eye),
- +u.x, +u.y, +u.z, -dot(u, eye),
- -f.x, -f.y, -f.z, +fe if flip_z_axis else -fe,
- 0, 0, 0, 1,
- }
- }
- matrix4_look_at_from_fru_f32 :: proc(eye, f, r, u: Vector3f32, flip_z_axis := true) -> (m: Matrix4f32) {
- f, s, u := f, r, u
- f = normalize(f)
- s = normalize(s)
- u = normalize(u)
- fe := dot(f, eye)
- return {
- +s.x, +s.y, +s.z, -dot(s, eye),
- +u.x, +u.y, +u.z, -dot(u, eye),
- -f.x, -f.y, -f.z, +fe if flip_z_axis else -fe,
- 0, 0, 0, 1,
- }
- }
- matrix4_look_at_from_fru_f64 :: proc(eye, f, r, u: Vector3f64, flip_z_axis := true) -> (m: Matrix4f64) {
- f, s, u := f, r, u
- f = normalize(f)
- s = normalize(s)
- u = normalize(u)
- fe := dot(f, eye)
- return {
- +s.x, +s.y, +s.z, -dot(s, eye),
- +u.x, +u.y, +u.z, -dot(u, eye),
- -f.x, -f.y, -f.z, +fe if flip_z_axis else -fe,
- 0, 0, 0, 1,
- }
- }
- matrix4_look_at_from_fru :: proc{
- matrix4_look_at_from_fru_f16,
- matrix4_look_at_from_fru_f32,
- matrix4_look_at_from_fru_f64,
- }
- matrix4_perspective_f16 :: proc(fovy, aspect, near, far: f16, flip_z_axis := true) -> (m: Matrix4f16) {
- tan_half_fovy := math.tan(0.5 * fovy)
- m[0, 0] = 1 / (aspect*tan_half_fovy)
- m[1, 1] = 1 / (tan_half_fovy)
- m[2, 2] = +(far + near) / (far - near)
- m[3, 2] = +1
- m[2, 3] = -2*far*near / (far - near)
- if flip_z_axis {
- m[2] = -m[2]
- }
- return
- }
- matrix4_perspective_f32 :: proc(fovy, aspect, near, far: f32, flip_z_axis := true) -> (m: Matrix4f32) {
- tan_half_fovy := math.tan(0.5 * fovy)
- m[0, 0] = 1 / (aspect*tan_half_fovy)
- m[1, 1] = 1 / (tan_half_fovy)
- m[2, 2] = +(far + near) / (far - near)
- m[3, 2] = +1
- m[2, 3] = -2*far*near / (far - near)
- if flip_z_axis {
- m[2] = -m[2]
- }
- return
- }
- matrix4_perspective_f64 :: proc(fovy, aspect, near, far: f64, flip_z_axis := true) -> (m: Matrix4f64) {
- tan_half_fovy := math.tan(0.5 * fovy)
- m[0, 0] = 1 / (aspect*tan_half_fovy)
- m[1, 1] = 1 / (tan_half_fovy)
- m[2, 2] = +(far + near) / (far - near)
- m[3, 2] = +1
- m[2, 3] = -2*far*near / (far - near)
- if flip_z_axis {
- m[2] = -m[2]
- }
- return
- }
- matrix4_perspective :: proc{
- matrix4_perspective_f16,
- matrix4_perspective_f32,
- matrix4_perspective_f64,
- }
- matrix_ortho3d_f16 :: proc(left, right, bottom, top, near, far: f16, flip_z_axis := true) -> (m: Matrix4f16) {
- m[0, 0] = +2 / (right - left)
- m[1, 1] = +2 / (top - bottom)
- m[2, 2] = +2 / (far - near)
- m[0, 3] = -(right + left) / (right - left)
- m[1, 3] = -(top + bottom) / (top - bottom)
- m[2, 3] = -(far + near) / (far- near)
- m[3, 3] = 1
- if flip_z_axis {
- m[2] = -m[2]
- }
- return
- }
- matrix_ortho3d_f32 :: proc(left, right, bottom, top, near, far: f32, flip_z_axis := true) -> (m: Matrix4f32) {
- m[0, 0] = +2 / (right - left)
- m[1, 1] = +2 / (top - bottom)
- m[2, 2] = +2 / (far - near)
- m[0, 3] = -(right + left) / (right - left)
- m[1, 3] = -(top + bottom) / (top - bottom)
- m[2, 3] = -(far + near) / (far- near)
- m[3, 3] = 1
- if flip_z_axis {
- m[2] = -m[2]
- }
- return
- }
- matrix_ortho3d_f64 :: proc(left, right, bottom, top, near, far: f64, flip_z_axis := true) -> (m: Matrix4f64) {
- m[0, 0] = +2 / (right - left)
- m[1, 1] = +2 / (top - bottom)
- m[2, 2] = +2 / (far - near)
- m[0, 3] = -(right + left) / (right - left)
- m[1, 3] = -(top + bottom) / (top - bottom)
- m[2, 3] = -(far + near) / (far- near)
- m[3, 3] = 1
- if flip_z_axis {
- m[2] = -m[2]
- }
- return
- }
- matrix_ortho3d :: proc{
- matrix_ortho3d_f16,
- matrix_ortho3d_f32,
- matrix_ortho3d_f64,
- }
- matrix4_infinite_perspective_f16 :: proc(fovy, aspect, near: f16, flip_z_axis := true) -> (m: Matrix4f16) {
- tan_half_fovy := math.tan(0.5 * fovy)
- m[0, 0] = 1 / (aspect*tan_half_fovy)
- m[1, 1] = 1 / (tan_half_fovy)
- m[2, 2] = +1
- m[3, 2] = +1
- m[2, 3] = -2*near
- if flip_z_axis {
- m[2] = -m[2]
- }
- return
- }
- matrix4_infinite_perspective_f32 :: proc(fovy, aspect, near: f32, flip_z_axis := true) -> (m: Matrix4f32) {
- tan_half_fovy := math.tan(0.5 * fovy)
- m[0, 0] = 1 / (aspect*tan_half_fovy)
- m[1, 1] = 1 / (tan_half_fovy)
- m[2, 2] = +1
- m[3, 2] = +1
- m[2, 3] = -2*near
- if flip_z_axis {
- m[2] = -m[2]
- }
- return
- }
- matrix4_infinite_perspective_f64 :: proc(fovy, aspect, near: f64, flip_z_axis := true) -> (m: Matrix4f64) {
- tan_half_fovy := math.tan(0.5 * fovy)
- m[0, 0] = 1 / (aspect*tan_half_fovy)
- m[1, 1] = 1 / (tan_half_fovy)
- m[2, 2] = +1
- m[3, 2] = +1
- m[2, 3] = -2*near
- if flip_z_axis {
- m[2] = -m[2]
- }
- return
- }
- matrix4_infinite_perspective :: proc{
- matrix4_infinite_perspective_f16,
- matrix4_infinite_perspective_f32,
- matrix4_infinite_perspective_f64,
- }
- matrix2_from_scalar_f16 :: proc(f: f16) -> (m: Matrix2f16) {
- m[0, 0], m[1, 0] = f, 0
- m[0, 1], m[1, 1] = 0, f
- return
- }
- matrix2_from_scalar_f32 :: proc(f: f32) -> (m: Matrix2f32) {
- m[0, 0], m[1, 0] = f, 0
- m[0, 1], m[1, 1] = 0, f
- return
- }
- matrix2_from_scalar_f64 :: proc(f: f64) -> (m: Matrix2f64) {
- m[0, 0], m[1, 0] = f, 0
- m[0, 1], m[1, 1] = 0, f
- return
- }
- matrix2_from_scalar :: proc{
- matrix2_from_scalar_f16,
- matrix2_from_scalar_f32,
- matrix2_from_scalar_f64,
- }
- matrix3_from_scalar_f16 :: proc(f: f16) -> (m: Matrix3f16) {
- m[0, 0], m[1, 0], m[2, 0] = f, 0, 0
- m[0, 1], m[1, 1], m[2, 1] = 0, f, 0
- m[0, 2], m[1, 2], m[2, 2] = 0, 0, f
- return
- }
- matrix3_from_scalar_f32 :: proc(f: f32) -> (m: Matrix3f32) {
- m[0, 0], m[1, 0], m[2, 0] = f, 0, 0
- m[0, 1], m[1, 1], m[2, 1] = 0, f, 0
- m[0, 2], m[1, 2], m[2, 2] = 0, 0, f
- return
- }
- matrix3_from_scalar_f64 :: proc(f: f64) -> (m: Matrix3f64) {
- m[0, 0], m[1, 0], m[2, 0] = f, 0, 0
- m[0, 1], m[1, 1], m[2, 1] = 0, f, 0
- m[0, 2], m[1, 2], m[2, 2] = 0, 0, f
- return
- }
- matrix3_from_scalar :: proc{
- matrix3_from_scalar_f16,
- matrix3_from_scalar_f32,
- matrix3_from_scalar_f64,
- }
- matrix4_from_scalar_f16 :: proc(f: f16) -> (m: Matrix4f16) {
- m[0, 0], m[1, 0], m[2, 0], m[3, 0] = f, 0, 0, 0
- m[0, 1], m[1, 1], m[2, 1], m[3, 1] = 0, f, 0, 0
- m[0, 2], m[1, 2], m[2, 2], m[3, 2] = 0, 0, f, 0
- m[0, 3], m[1, 3], m[2, 3], m[3, 3] = 0, 0, 0, f
- return
- }
- matrix4_from_scalar_f32 :: proc(f: f32) -> (m: Matrix4f32) {
- m[0, 0], m[1, 0], m[2, 0], m[3, 0] = f, 0, 0, 0
- m[0, 1], m[1, 1], m[2, 1], m[3, 1] = 0, f, 0, 0
- m[0, 2], m[1, 2], m[2, 2], m[3, 2] = 0, 0, f, 0
- m[0, 3], m[1, 3], m[2, 3], m[3, 3] = 0, 0, 0, f
- return
- }
- matrix4_from_scalar_f64 :: proc(f: f64) -> (m: Matrix4f64) {
- m[0, 0], m[1, 0], m[2, 0], m[3, 0] = f, 0, 0, 0
- m[0, 1], m[1, 1], m[2, 1], m[3, 1] = 0, f, 0, 0
- m[0, 2], m[1, 2], m[2, 2], m[3, 2] = 0, 0, f, 0
- m[0, 3], m[1, 3], m[2, 3], m[3, 3] = 0, 0, 0, f
- return
- }
- matrix4_from_scalar :: proc{
- matrix4_from_scalar_f16,
- matrix4_from_scalar_f32,
- matrix4_from_scalar_f64,
- }
- matrix2_from_matrix3_f16 :: proc(m: Matrix3f16) -> (r: Matrix2f16) {
- r[0, 0], r[1, 0] = m[0, 0], m[1, 0]
- r[0, 1], r[1, 1] = m[0, 1], m[1, 1]
- return
- }
- matrix2_from_matrix3_f32 :: proc(m: Matrix3f32) -> (r: Matrix2f32) {
- r[0, 0], r[1, 0] = m[0, 0], m[1, 0]
- r[0, 1], r[1, 1] = m[0, 1], m[1, 1]
- return
- }
- matrix2_from_matrix3_f64 :: proc(m: Matrix3f64) -> (r: Matrix2f64) {
- r[0, 0], r[1, 0] = m[0, 0], m[1, 0]
- r[0, 1], r[1, 1] = m[0, 1], m[1, 1]
- return
- }
- matrix2_from_matrix3 :: proc{
- matrix2_from_matrix3_f16,
- matrix2_from_matrix3_f32,
- matrix2_from_matrix3_f64,
- }
- matrix2_from_matrix4_f16 :: proc(m: Matrix4f16) -> (r: Matrix2f16) {
- r[0, 0], r[1, 0] = m[0, 0], m[1, 0]
- r[0, 1], r[1, 1] = m[0, 1], m[1, 1]
- return
- }
- matrix2_from_matrix4_f32 :: proc(m: Matrix4f32) -> (r: Matrix2f32) {
- r[0, 0], r[1, 0] = m[0, 0], m[1, 0]
- r[0, 1], r[1, 1] = m[0, 1], m[1, 1]
- return
- }
- matrix2_from_matrix4_f64 :: proc(m: Matrix4f64) -> (r: Matrix2f64) {
- r[0, 0], r[1, 0] = m[0, 0], m[1, 0]
- r[0, 1], r[1, 1] = m[0, 1], m[1, 1]
- return
- }
- matrix2_from_matrix4 :: proc{
- matrix2_from_matrix4_f16,
- matrix2_from_matrix4_f32,
- matrix2_from_matrix4_f64,
- }
- matrix3_from_matrix2_f16 :: proc(m: Matrix2f16) -> (r: Matrix3f16) {
- r[0, 0], r[1, 0], r[2, 0] = m[0, 0], m[1, 0], 0
- r[0, 1], r[1, 1], r[2, 1] = m[0, 1], m[1, 1], 0
- r[0, 2], r[1, 2], r[2, 2] = 0, 0, 1
- return
- }
- matrix3_from_matrix2_f32 :: proc(m: Matrix2f32) -> (r: Matrix3f32) {
- r[0, 0], r[1, 0], r[2, 0] = m[0, 0], m[1, 0], 0
- r[0, 1], r[1, 1], r[2, 1] = m[0, 1], m[1, 1], 0
- r[0, 2], r[1, 2], r[2, 2] = 0, 0, 1
- return
- }
- matrix3_from_matrix2_f64 :: proc(m: Matrix2f64) -> (r: Matrix3f64) {
- r[0, 0], r[1, 0], r[2, 0] = m[0, 0], m[1, 0], 0
- r[0, 1], r[1, 1], r[2, 1] = m[0, 1], m[1, 1], 0
- r[0, 2], r[1, 2], r[2, 2] = 0, 0, 1
- return
- }
- matrix3_from_matrix2 :: proc{
- matrix3_from_matrix2_f16,
- matrix3_from_matrix2_f32,
- matrix3_from_matrix2_f64,
- }
- matrix3_from_matrix4_f16 :: proc(m: Matrix4f16) -> (r: Matrix3f16) {
- r[0, 0], r[1, 0], r[2, 0] = m[0, 0], m[1, 0], m[2, 0]
- r[0, 1], r[1, 1], r[2, 1] = m[0, 1], m[1, 1], m[2, 1]
- r[0, 2], r[1, 2], r[2, 2] = m[0, 2], m[1, 2], m[2, 2]
- return
- }
- matrix3_from_matrix4_f32 :: proc(m: Matrix4f32) -> (r: Matrix3f32) {
- r[0, 0], r[1, 0], r[2, 0] = m[0, 0], m[1, 0], m[2, 0]
- r[0, 1], r[1, 1], r[2, 1] = m[0, 1], m[1, 1], m[2, 1]
- r[0, 2], r[1, 2], r[2, 2] = m[0, 2], m[1, 2], m[2, 2]
- return
- }
- matrix3_from_matrix4_f64 :: proc(m: Matrix4f64) -> (r: Matrix3f64) {
- r[0, 0], r[1, 0], r[2, 0] = m[0, 0], m[1, 0], m[2, 0]
- r[0, 1], r[1, 1], r[2, 1] = m[0, 1], m[1, 1], m[2, 1]
- r[0, 2], r[1, 2], r[2, 2] = m[0, 2], m[1, 2], m[2, 2]
- return
- }
- matrix3_from_matrix4 :: proc{
- matrix3_from_matrix4_f16,
- matrix3_from_matrix4_f32,
- matrix3_from_matrix4_f64,
- }
- matrix4_from_matrix2_f16 :: proc(m: Matrix2f16) -> (r: Matrix4f16) {
- r[0, 0], r[1, 0], r[2, 0], r[3, 0] = m[0, 0], m[1, 0], 0, 0
- r[0, 1], r[1, 1], r[2, 1], r[3, 1] = m[0, 1], m[1, 1], 0, 0
- r[0, 2], r[1, 2], r[2, 2], r[3, 2] = 0, 0, 1, 0
- r[0, 3], r[1, 3], r[2, 3], r[3, 3] = 0, 0, 0, 1
- return
- }
- matrix4_from_matrix2_f32 :: proc(m: Matrix2f32) -> (r: Matrix4f32) {
- r[0, 0], r[1, 0], r[2, 0], r[3, 0] = m[0, 0], m[1, 0], 0, 0
- r[0, 1], r[1, 1], r[2, 1], r[3, 1] = m[0, 1], m[1, 1], 0, 0
- r[0, 2], r[1, 2], r[2, 2], r[3, 2] = 0, 0, 1, 0
- r[0, 3], r[1, 3], r[2, 3], r[3, 3] = 0, 0, 0, 1
- return
- }
- matrix4_from_matrix2_f64 :: proc(m: Matrix2f64) -> (r: Matrix4f64) {
- r[0, 0], r[1, 0], r[2, 0], r[3, 0] = m[0, 0], m[1, 0], 0, 0
- r[0, 1], r[1, 1], r[2, 1], r[3, 1] = m[0, 1], m[1, 1], 0, 0
- r[0, 2], r[1, 2], r[2, 2], r[3, 2] = 0, 0, 1, 0
- r[0, 3], r[1, 3], r[2, 3], r[3, 3] = 0, 0, 0, 1
- return
- }
- matrix4_from_matrix2 :: proc{
- matrix4_from_matrix2_f16,
- matrix4_from_matrix2_f32,
- matrix4_from_matrix2_f64,
- }
- matrix4_from_matrix3_f16 :: proc(m: Matrix3f16) -> (r: Matrix4f16) {
- r[0, 0], r[1, 0], r[2, 0], r[3, 0] = m[0, 0], m[1, 0], m[2, 0], 0
- r[0, 1], r[1, 1], r[2, 1], r[3, 1] = m[0, 1], m[1, 1], m[2, 1], 0
- r[0, 2], r[1, 2], r[2, 2], r[3, 2] = m[0, 2], m[1, 2], m[2, 2], 0
- r[0, 3], r[1, 3], r[2, 3], r[3, 3] = 0, 0, 0, 1
- return
- }
- matrix4_from_matrix3_f32 :: proc(m: Matrix3f32) -> (r: Matrix4f32) {
- r[0, 0], r[1, 0], r[2, 0], r[3, 0] = m[0, 0], m[1, 0], m[2, 0], 0
- r[0, 1], r[1, 1], r[2, 1], r[3, 1] = m[0, 1], m[1, 1], m[2, 1], 0
- r[0, 2], r[1, 2], r[2, 2], r[3, 2] = m[0, 2], m[1, 2], m[2, 2], 0
- r[0, 3], r[1, 3], r[2, 3], r[3, 3] = 0, 0, 0, 1
- return
- }
- matrix4_from_matrix3_f64 :: proc(m: Matrix3f64) -> (r: Matrix4f64) {
- r[0, 0], r[1, 0], r[2, 0], r[3, 0] = m[0, 0], m[1, 0], m[2, 0], 0
- r[0, 1], r[1, 1], r[2, 1], r[3, 1] = m[0, 1], m[1, 1], m[2, 1], 0
- r[0, 2], r[1, 2], r[2, 2], r[3, 2] = m[0, 2], m[1, 2], m[2, 2], 0
- r[0, 3], r[1, 3], r[2, 3], r[3, 3] = 0, 0, 0, 1
- return
- }
- matrix4_from_matrix3 :: proc{
- matrix4_from_matrix3_f16,
- matrix4_from_matrix3_f32,
- matrix4_from_matrix3_f64,
- }
- quaternion_from_scalar_f16 :: proc(f: f16) -> (q: Quaternionf16) {
- q.w = f
- return
- }
- quaternion_from_scalar_f32 :: proc(f: f32) -> (q: Quaternionf32) {
- q.w = f
- return
- }
- quaternion_from_scalar_f64 :: proc(f: f64) -> (q: Quaternionf64) {
- q.w = f
- return
- }
- quaternion_from_scalar :: proc{
- quaternion_from_scalar_f16,
- quaternion_from_scalar_f32,
- quaternion_from_scalar_f64,
- }
- to_matrix2f16 :: proc{matrix2_from_scalar_f16, matrix2_from_matrix3_f16, matrix2_from_matrix4_f16}
- to_matrix3f16 :: proc{matrix3_from_scalar_f16, matrix3_from_matrix2_f16, matrix3_from_matrix4_f16, matrix3_from_quaternion_f16}
- to_matrix4f16 :: proc{matrix4_from_scalar_f16, matrix4_from_matrix2_f16, matrix4_from_matrix3_f16, matrix4_from_quaternion_f16}
- to_quaternionf16 :: proc{quaternion_from_scalar_f16, quaternion_from_matrix3_f16, quaternion_from_matrix4_f16}
- to_matrix2f32 :: proc{matrix2_from_scalar_f32, matrix2_from_matrix3_f32, matrix2_from_matrix4_f32}
- to_matrix3f32 :: proc{matrix3_from_scalar_f32, matrix3_from_matrix2_f32, matrix3_from_matrix4_f32, matrix3_from_quaternion_f32}
- to_matrix4f32 :: proc{matrix4_from_scalar_f32, matrix4_from_matrix2_f32, matrix4_from_matrix3_f32, matrix4_from_quaternion_f32}
- to_quaternionf32 :: proc{quaternion_from_scalar_f32, quaternion_from_matrix3_f32, quaternion_from_matrix4_f32}
- to_matrix2f64 :: proc{matrix2_from_scalar_f64, matrix2_from_matrix3_f64, matrix2_from_matrix4_f64}
- to_matrix3f64 :: proc{matrix3_from_scalar_f64, matrix3_from_matrix2_f64, matrix3_from_matrix4_f64, matrix3_from_quaternion_f64}
- to_matrix4f64 :: proc{matrix4_from_scalar_f64, matrix4_from_matrix2_f64, matrix4_from_matrix3_f64, matrix4_from_quaternion_f64}
- to_quaternionf64 :: proc{quaternion_from_scalar_f64, quaternion_from_matrix3_f64, quaternion_from_matrix4_f64}
- to_matrix2f :: proc{
- matrix2_from_scalar_f16, matrix2_from_matrix3_f16, matrix2_from_matrix4_f16,
- matrix2_from_scalar_f32, matrix2_from_matrix3_f32, matrix2_from_matrix4_f32,
- matrix2_from_scalar_f64, matrix2_from_matrix3_f64, matrix2_from_matrix4_f64,
- }
- to_matrix3 :: proc{
- matrix3_from_scalar_f16, matrix3_from_matrix2_f16, matrix3_from_matrix4_f16, matrix3_from_quaternion_f16,
- matrix3_from_scalar_f32, matrix3_from_matrix2_f32, matrix3_from_matrix4_f32, matrix3_from_quaternion_f32,
- matrix3_from_scalar_f64, matrix3_from_matrix2_f64, matrix3_from_matrix4_f64, matrix3_from_quaternion_f64,
- }
- to_matrix4 :: proc{
- matrix4_from_scalar_f16, matrix4_from_matrix2_f16, matrix4_from_matrix3_f16, matrix4_from_quaternion_f16,
- matrix4_from_scalar_f32, matrix4_from_matrix2_f32, matrix4_from_matrix3_f32, matrix4_from_quaternion_f32,
- matrix4_from_scalar_f64, matrix4_from_matrix2_f64, matrix4_from_matrix3_f64, matrix4_from_quaternion_f64,
- }
- to_quaternion :: proc{
- quaternion_from_scalar_f16, quaternion_from_matrix3_f16, quaternion_from_matrix4_f16,
- quaternion_from_scalar_f32, quaternion_from_matrix3_f32, quaternion_from_matrix4_f32,
- quaternion_from_scalar_f64, quaternion_from_matrix3_f64, quaternion_from_matrix4_f64,
- }
- matrix2_orthonormalize_f16 :: proc(m: Matrix2f16) -> (r: Matrix2f16) {
- r[0] = normalize(m[0])
- d0 := dot(r[0], r[1])
- r[1] -= r[0] * d0
- r[1] = normalize(r[1])
- return
- }
- matrix2_orthonormalize_f32 :: proc(m: Matrix2f32) -> (r: Matrix2f32) {
- r[0] = normalize(m[0])
- d0 := dot(r[0], r[1])
- r[1] -= r[0] * d0
- r[1] = normalize(r[1])
- return
- }
- matrix2_orthonormalize_f64 :: proc(m: Matrix2f64) -> (r: Matrix2f64) {
- r[0] = normalize(m[0])
- d0 := dot(r[0], r[1])
- r[1] -= r[0] * d0
- r[1] = normalize(r[1])
- return
- }
- matrix2_orthonormalize :: proc{
- matrix2_orthonormalize_f16,
- matrix2_orthonormalize_f32,
- matrix2_orthonormalize_f64,
- }
- matrix3_orthonormalize_f16 :: proc(m: Matrix3f16) -> (r: Matrix3f16) {
- r[0] = normalize(m[0])
- d0 := dot(r[0], r[1])
- r[1] -= r[0] * d0
- r[1] = normalize(r[1])
- d1 := dot(r[1], r[2])
- d0 = dot(r[0], r[2])
- r[2] -= r[0]*d0 + r[1]*d1
- r[2] = normalize(r[2])
- return
- }
- matrix3_orthonormalize_f32 :: proc(m: Matrix3f32) -> (r: Matrix3f32) {
- r[0] = normalize(m[0])
- d0 := dot(r[0], r[1])
- r[1] -= r[0] * d0
- r[1] = normalize(r[1])
- d1 := dot(r[1], r[2])
- d0 = dot(r[0], r[2])
- r[2] -= r[0]*d0 + r[1]*d1
- r[2] = normalize(r[2])
- return
- }
- matrix3_orthonormalize_f64 :: proc(m: Matrix3f64) -> (r: Matrix3f64) {
- r[0] = normalize(m[0])
- d0 := dot(r[0], r[1])
- r[1] -= r[0] * d0
- r[1] = normalize(r[1])
- d1 := dot(r[1], r[2])
- d0 = dot(r[0], r[2])
- r[2] -= r[0]*d0 + r[1]*d1
- r[2] = normalize(r[2])
- return
- }
- matrix3_orthonormalize :: proc{
- matrix3_orthonormalize_f16,
- matrix3_orthonormalize_f32,
- matrix3_orthonormalize_f64,
- }
- vector3_orthonormalize_f16 :: proc(x, y: Vector3f16) -> (z: Vector3f16) {
- return normalize(x - y * dot(y, x))
- }
- vector3_orthonormalize_f32 :: proc(x, y: Vector3f32) -> (z: Vector3f32) {
- return normalize(x - y * dot(y, x))
- }
- vector3_orthonormalize_f64 :: proc(x, y: Vector3f64) -> (z: Vector3f64) {
- return normalize(x - y * dot(y, x))
- }
- vector3_orthonormalize :: proc{
- vector3_orthonormalize_f16,
- vector3_orthonormalize_f32,
- vector3_orthonormalize_f64,
- }
- orthonormalize :: proc{
- matrix2_orthonormalize_f16, matrix3_orthonormalize_f16, vector3_orthonormalize_f16,
- matrix2_orthonormalize_f32, matrix3_orthonormalize_f32, vector3_orthonormalize_f32,
- matrix2_orthonormalize_f64, matrix3_orthonormalize_f64, vector3_orthonormalize_f64,
- }
- matrix4_orientation_f16 :: proc(normal, up: Vector3f16) -> Matrix4f16 {
- if all(equal(normal, up)) {
- return MATRIX4F16_IDENTITY
- }
- rotation_axis := cross(up, normal)
- angle := math.acos(dot(normal, up))
- return matrix4_rotate(angle, rotation_axis)
- }
- matrix4_orientation_f32 :: proc(normal, up: Vector3f32) -> Matrix4f32 {
- if all(equal(normal, up)) {
- return MATRIX4F32_IDENTITY
- }
- rotation_axis := cross(up, normal)
- angle := math.acos(dot(normal, up))
- return matrix4_rotate(angle, rotation_axis)
- }
- matrix4_orientation_f64 :: proc(normal, up: Vector3f64) -> Matrix4f64 {
- if all(equal(normal, up)) {
- return MATRIX4F64_IDENTITY
- }
- rotation_axis := cross(up, normal)
- angle := math.acos(dot(normal, up))
- return matrix4_rotate(angle, rotation_axis)
- }
- matrix4_orientation :: proc{
- matrix4_orientation_f16,
- matrix4_orientation_f32,
- matrix4_orientation_f64,
- }
- euclidean_from_polar_f16 :: proc(polar: Vector2f16) -> Vector3f16 {
- latitude, longitude := polar.x, polar.y
- cx, sx := math.cos(latitude), math.sin(latitude)
- cy, sy := math.cos(longitude), math.sin(longitude)
- return {
- cx*sy,
- sx,
- cx*cy,
- }
- }
- euclidean_from_polar_f32 :: proc(polar: Vector2f32) -> Vector3f32 {
- latitude, longitude := polar.x, polar.y
- cx, sx := math.cos(latitude), math.sin(latitude)
- cy, sy := math.cos(longitude), math.sin(longitude)
- return {
- cx*sy,
- sx,
- cx*cy,
- }
- }
- euclidean_from_polar_f64 :: proc(polar: Vector2f64) -> Vector3f64 {
- latitude, longitude := polar.x, polar.y
- cx, sx := math.cos(latitude), math.sin(latitude)
- cy, sy := math.cos(longitude), math.sin(longitude)
- return {
- cx*sy,
- sx,
- cx*cy,
- }
- }
- euclidean_from_polar :: proc{
- euclidean_from_polar_f16,
- euclidean_from_polar_f32,
- euclidean_from_polar_f64,
- }
- polar_from_euclidean_f16 :: proc(euclidean: Vector3f16) -> Vector3f16 {
- n := length(euclidean)
- tmp := euclidean / n
- xz_dist := math.sqrt(tmp.x*tmp.x + tmp.z*tmp.z)
- return {
- math.asin(tmp.y),
- math.atan2(tmp.x, tmp.z),
- xz_dist,
- }
- }
- polar_from_euclidean_f32 :: proc(euclidean: Vector3f32) -> Vector3f32 {
- n := length(euclidean)
- tmp := euclidean / n
- xz_dist := math.sqrt(tmp.x*tmp.x + tmp.z*tmp.z)
- return {
- math.asin(tmp.y),
- math.atan2(tmp.x, tmp.z),
- xz_dist,
- }
- }
- polar_from_euclidean_f64 :: proc(euclidean: Vector3f64) -> Vector3f64 {
- n := length(euclidean)
- tmp := euclidean / n
- xz_dist := math.sqrt(tmp.x*tmp.x + tmp.z*tmp.z)
- return {
- math.asin(tmp.y),
- math.atan2(tmp.x, tmp.z),
- xz_dist,
- }
- }
- polar_from_euclidean :: proc{
- polar_from_euclidean_f16,
- polar_from_euclidean_f32,
- polar_from_euclidean_f64,
- }
|