123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356 |
- package linalg
- import "core:math"
- euler_angles_from_matrix3_f16 :: proc(m: Matrix3f16, order: Euler_Angle_Order) -> (t1, t2, t3: f16) {
- switch order {
- case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix3(m)
- case .XZY: t1, t2, t3 = euler_angles_xzy_from_matrix3(m)
- case .YXZ: t1, t2, t3 = euler_angles_yxz_from_matrix3(m)
- case .YZX: t1, t2, t3 = euler_angles_yzx_from_matrix3(m)
- case .ZXY: t1, t2, t3 = euler_angles_zxy_from_matrix3(m)
- case .ZYX: t1, t2, t3 = euler_angles_zyx_from_matrix3(m)
- case .XYX: t1, t2, t3 = euler_angles_xyx_from_matrix3(m)
- case .XZX: t1, t2, t3 = euler_angles_xzx_from_matrix3(m)
- case .YXY: t1, t2, t3 = euler_angles_yxy_from_matrix3(m)
- case .YZY: t1, t2, t3 = euler_angles_yzy_from_matrix3(m)
- case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_matrix3(m)
- case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_matrix3(m)
- }
- return
- }
- euler_angles_from_matrix4_f16 :: proc(m: Matrix4f16, order: Euler_Angle_Order) -> (t1, t2, t3: f16) {
- switch order {
- case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix4(m)
- case .XZY: t1, t2, t3 = euler_angles_xzy_from_matrix4(m)
- case .YXZ: t1, t2, t3 = euler_angles_yxz_from_matrix4(m)
- case .YZX: t1, t2, t3 = euler_angles_yzx_from_matrix4(m)
- case .ZXY: t1, t2, t3 = euler_angles_zxy_from_matrix4(m)
- case .ZYX: t1, t2, t3 = euler_angles_zyx_from_matrix4(m)
- case .XYX: t1, t2, t3 = euler_angles_xyx_from_matrix4(m)
- case .XZX: t1, t2, t3 = euler_angles_xzx_from_matrix4(m)
- case .YXY: t1, t2, t3 = euler_angles_yxy_from_matrix4(m)
- case .YZY: t1, t2, t3 = euler_angles_yzy_from_matrix4(m)
- case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_matrix4(m)
- case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_matrix4(m)
- }
- return
- }
- euler_angles_from_quaternion_f16 :: proc(m: Quaternionf16, order: Euler_Angle_Order) -> (t1, t2, t3: f16) {
- switch order {
- case .XYZ: t1, t2, t3 = euler_angles_xyz_from_quaternion(m)
- case .XZY: t1, t2, t3 = euler_angles_xzy_from_quaternion(m)
- case .YXZ: t1, t2, t3 = euler_angles_yxz_from_quaternion(m)
- case .YZX: t1, t2, t3 = euler_angles_yzx_from_quaternion(m)
- case .ZXY: t1, t2, t3 = euler_angles_zxy_from_quaternion(m)
- case .ZYX: t1, t2, t3 = euler_angles_zyx_from_quaternion(m)
- case .XYX: t1, t2, t3 = euler_angles_xyx_from_quaternion(m)
- case .XZX: t1, t2, t3 = euler_angles_xzx_from_quaternion(m)
- case .YXY: t1, t2, t3 = euler_angles_yxy_from_quaternion(m)
- case .YZY: t1, t2, t3 = euler_angles_yzy_from_quaternion(m)
- case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_quaternion(m)
- case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_quaternion(m)
- }
- return
- }
- matrix3_from_euler_angles_f16 :: proc(t1, t2, t3: f16, order: Euler_Angle_Order) -> (m: Matrix3f16) {
- switch order {
- case .XYZ: return matrix3_from_euler_angles_xyz(t1, t2, t3) // m1, m2, m3 = X(t1), Y(t2), Z(t3);
- case .XZY: return matrix3_from_euler_angles_xzy(t1, t2, t3) // m1, m2, m3 = X(t1), Z(t2), Y(t3);
- case .YXZ: return matrix3_from_euler_angles_yxz(t1, t2, t3) // m1, m2, m3 = Y(t1), X(t2), Z(t3);
- case .YZX: return matrix3_from_euler_angles_yzx(t1, t2, t3) // m1, m2, m3 = Y(t1), Z(t2), X(t3);
- case .ZXY: return matrix3_from_euler_angles_zxy(t1, t2, t3) // m1, m2, m3 = Z(t1), X(t2), Y(t3);
- case .ZYX: return matrix3_from_euler_angles_zyx(t1, t2, t3) // m1, m2, m3 = Z(t1), Y(t2), X(t3);
- case .XYX: return matrix3_from_euler_angles_xyx(t1, t2, t3) // m1, m2, m3 = X(t1), Y(t2), X(t3);
- case .XZX: return matrix3_from_euler_angles_xzx(t1, t2, t3) // m1, m2, m3 = X(t1), Z(t2), X(t3);
- case .YXY: return matrix3_from_euler_angles_yxy(t1, t2, t3) // m1, m2, m3 = Y(t1), X(t2), Y(t3);
- case .YZY: return matrix3_from_euler_angles_yzy(t1, t2, t3) // m1, m2, m3 = Y(t1), Z(t2), Y(t3);
- case .ZXZ: return matrix3_from_euler_angles_zxz(t1, t2, t3) // m1, m2, m3 = Z(t1), X(t2), Z(t3);
- case .ZYZ: return matrix3_from_euler_angles_zyz(t1, t2, t3) // m1, m2, m3 = Z(t1), Y(t2), Z(t3);
- }
- return
- }
- matrix4_from_euler_angles_f16 :: proc(t1, t2, t3: f16, order: Euler_Angle_Order) -> (m: Matrix4f16) {
- switch order {
- case .XYZ: return matrix4_from_euler_angles_xyz(t1, t2, t3) // m1, m2, m3 = X(t1), Y(t2), Z(t3);
- case .XZY: return matrix4_from_euler_angles_xzy(t1, t2, t3) // m1, m2, m3 = X(t1), Z(t2), Y(t3);
- case .YXZ: return matrix4_from_euler_angles_yxz(t1, t2, t3) // m1, m2, m3 = Y(t1), X(t2), Z(t3);
- case .YZX: return matrix4_from_euler_angles_yzx(t1, t2, t3) // m1, m2, m3 = Y(t1), Z(t2), X(t3);
- case .ZXY: return matrix4_from_euler_angles_zxy(t1, t2, t3) // m1, m2, m3 = Z(t1), X(t2), Y(t3);
- case .ZYX: return matrix4_from_euler_angles_zyx(t1, t2, t3) // m1, m2, m3 = Z(t1), Y(t2), X(t3);
- case .XYX: return matrix4_from_euler_angles_xyx(t1, t2, t3) // m1, m2, m3 = X(t1), Y(t2), X(t3);
- case .XZX: return matrix4_from_euler_angles_xzx(t1, t2, t3) // m1, m2, m3 = X(t1), Z(t2), X(t3);
- case .YXY: return matrix4_from_euler_angles_yxy(t1, t2, t3) // m1, m2, m3 = Y(t1), X(t2), Y(t3);
- case .YZY: return matrix4_from_euler_angles_yzy(t1, t2, t3) // m1, m2, m3 = Y(t1), Z(t2), Y(t3);
- case .ZXZ: return matrix4_from_euler_angles_zxz(t1, t2, t3) // m1, m2, m3 = Z(t1), X(t2), Z(t3);
- case .ZYZ: return matrix4_from_euler_angles_zyz(t1, t2, t3) // m1, m2, m3 = Z(t1), Y(t2), Z(t3);
- }
- return
- }
- quaternion_from_euler_angles_f16 :: proc(t1, t2, t3: f16, order: Euler_Angle_Order) -> Quaternionf16 {
- X :: quaternion_from_euler_angle_x
- Y :: quaternion_from_euler_angle_y
- Z :: quaternion_from_euler_angle_z
- q1, q2, q3: Quaternionf16
- switch order {
- case .XYZ: q1, q2, q3 = X(t1), Y(t2), Z(t3)
- case .XZY: q1, q2, q3 = X(t1), Z(t2), Y(t3)
- case .YXZ: q1, q2, q3 = Y(t1), X(t2), Z(t3)
- case .YZX: q1, q2, q3 = Y(t1), Z(t2), X(t3)
- case .ZXY: q1, q2, q3 = Z(t1), X(t2), Y(t3)
- case .ZYX: q1, q2, q3 = Z(t1), Y(t2), X(t3)
- case .XYX: q1, q2, q3 = X(t1), Y(t2), X(t3)
- case .XZX: q1, q2, q3 = X(t1), Z(t2), X(t3)
- case .YXY: q1, q2, q3 = Y(t1), X(t2), Y(t3)
- case .YZY: q1, q2, q3 = Y(t1), Z(t2), Y(t3)
- case .ZXZ: q1, q2, q3 = Z(t1), X(t2), Z(t3)
- case .ZYZ: q1, q2, q3 = Z(t1), Y(t2), Z(t3)
- }
- return q1 * (q2 * q3)
- }
- // Quaternionf16s
- quaternion_from_euler_angle_x_f16 :: proc(angle_x: f16) -> (q: Quaternionf16) {
- return quaternion_angle_axis_f16(angle_x, {1, 0, 0})
- }
- quaternion_from_euler_angle_y_f16 :: proc(angle_y: f16) -> (q: Quaternionf16) {
- return quaternion_angle_axis_f16(angle_y, {0, 1, 0})
- }
- quaternion_from_euler_angle_z_f16 :: proc(angle_z: f16) -> (q: Quaternionf16) {
- return quaternion_angle_axis_f16(angle_z, {0, 0, 1})
- }
- quaternion_from_pitch_yaw_roll_f16 :: proc(pitch, yaw, roll: f16) -> Quaternionf16 {
- a, b, c := pitch, yaw, roll
- ca, sa := math.cos(a*0.5), math.sin(a*0.5)
- cb, sb := math.cos(b*0.5), math.sin(b*0.5)
- cc, sc := math.cos(c*0.5), math.sin(c*0.5)
- q: Quaternionf16
- q.x = sa*cb*cc - ca*sb*sc
- q.y = ca*sb*cc + sa*cb*sc
- q.z = ca*cb*sc - sa*sb*cc
- q.w = ca*cb*cc + sa*sb*sc
- return q
- }
- roll_from_quaternion_f16 :: proc(q: Quaternionf16) -> f16 {
- return math.atan2(2 * q.x*q.y + q.w*q.z, q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z)
- }
- pitch_from_quaternion_f16 :: proc(q: Quaternionf16) -> f16 {
- y := 2 * (q.y*q.z + q.w*q.w)
- x := q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z
- if abs(x) <= F16_EPSILON && abs(y) <= F16_EPSILON {
- return 2 * math.atan2(q.x, q.w)
- }
- return math.atan2(y, x)
- }
- yaw_from_quaternion_f16 :: proc(q: Quaternionf16) -> f16 {
- return math.asin(clamp(-2 * (q.x*q.z - q.w*q.y), -1, 1))
- }
- pitch_yaw_roll_from_quaternion_f16 :: proc(q: Quaternionf16) -> (pitch, yaw, roll: f16) {
- pitch = pitch_from_quaternion(q)
- yaw = yaw_from_quaternion(q)
- roll = roll_from_quaternion(q)
- return
- }
- euler_angles_xyz_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
- return euler_angles_xyz_from_matrix4(matrix4_from_quaternion(q))
- }
- euler_angles_yxz_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
- return euler_angles_yxz_from_matrix4(matrix4_from_quaternion(q))
- }
- euler_angles_xzx_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
- return euler_angles_xzx_from_matrix4(matrix4_from_quaternion(q))
- }
- euler_angles_xyx_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
- return euler_angles_xyx_from_matrix4(matrix4_from_quaternion(q))
- }
- euler_angles_yxy_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
- return euler_angles_yxy_from_matrix4(matrix4_from_quaternion(q))
- }
- euler_angles_yzy_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
- return euler_angles_yzy_from_matrix4(matrix4_from_quaternion(q))
- }
- euler_angles_zyz_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
- return euler_angles_zyz_from_matrix4(matrix4_from_quaternion(q))
- }
- euler_angles_zxz_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
- return euler_angles_zxz_from_matrix4(matrix4_from_quaternion(q))
- }
- euler_angles_xzy_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
- return euler_angles_xzy_from_matrix4(matrix4_from_quaternion(q))
- }
- euler_angles_yzx_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
- return euler_angles_yzx_from_matrix4(matrix4_from_quaternion(q))
- }
- euler_angles_zyx_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
- return euler_angles_zyx_from_matrix4(matrix4_from_quaternion(q))
- }
- euler_angles_zxy_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
- return euler_angles_zxy_from_matrix4(matrix4_from_quaternion(q))
- }
- // Matrix3
- matrix3_from_euler_angle_x_f16 :: proc(angle_x: f16) -> (m: Matrix3f16) {
- cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
- m[0, 0] = 1
- m[1, 1] = +cos_x
- m[1, 2] = +sin_x
- m[2, 1] = -sin_x
- m[2, 2] = +cos_x
- return
- }
- matrix3_from_euler_angle_y_f16 :: proc(angle_y: f16) -> (m: Matrix3f16) {
- cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
- m[0, 0] = +cos_y
- m[0, 2] = -sin_y
- m[1, 1] = 1
- m[2, 0] = +sin_y
- m[2, 2] = +cos_y
- return
- }
- matrix3_from_euler_angle_z_f16 :: proc(angle_z: f16) -> (m: Matrix3f16) {
- cos_z, sin_z := math.cos(angle_z), math.sin(angle_z)
- m[0, 0] = +cos_z
- m[0, 1] = +sin_z
- m[1, 1] = +cos_z
- m[1, 0] = -sin_z
- m[2, 2] = 1
- return
- }
- matrix3_from_derived_euler_angle_x_f16 :: proc(angle_x: f16, angular_velocity_x: f16) -> (m: Matrix3f16) {
- cos_x := math.cos(angle_x) * angular_velocity_x
- sin_x := math.sin(angle_x) * angular_velocity_x
- m[0, 0] = 1
- m[1, 1] = +cos_x
- m[1, 2] = +sin_x
- m[2, 1] = -sin_x
- m[2, 2] = +cos_x
- return
- }
- matrix3_from_derived_euler_angle_y_f16 :: proc(angle_y: f16, angular_velocity_y: f16) -> (m: Matrix3f16) {
- cos_y := math.cos(angle_y) * angular_velocity_y
- sin_y := math.sin(angle_y) * angular_velocity_y
- m[0, 0] = +cos_y
- m[0, 2] = -sin_y
- m[1, 1] = 1
- m[2, 0] = +sin_y
- m[2, 2] = +cos_y
- return
- }
- matrix3_from_derived_euler_angle_z_f16 :: proc(angle_z: f16, angular_velocity_z: f16) -> (m: Matrix3f16) {
- cos_z := math.cos(angle_z) * angular_velocity_z
- sin_z := math.sin(angle_z) * angular_velocity_z
- m[0, 0] = +cos_z
- m[0, 1] = +sin_z
- m[1, 1] = +cos_z
- m[1, 0] = -sin_z
- m[2, 2] = 1
- return
- }
- matrix3_from_euler_angles_xy_f16 :: proc(angle_x, angle_y: f16) -> (m: Matrix3f16) {
- cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
- cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
- m[0, 0] = cos_y
- m[0, 1] = -sin_x * - sin_y
- m[0, 2] = -cos_x * - sin_y
- m[1, 1] = cos_x
- m[1, 2] = sin_x
- m[2, 0] = sin_y
- m[2, 1] = -sin_x * cos_y
- m[2, 2] = cos_x * cos_y
- return
- }
- matrix3_from_euler_angles_yx_f16 :: proc(angle_y, angle_x: f16) -> (m: Matrix3f16) {
- cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
- cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
- m[0, 0] = cos_y
- m[0, 2] = -sin_y
- m[1, 0] = sin_y*sin_x
- m[1, 1] = cos_x
- m[1, 2] = cos_y*sin_x
- m[2, 0] = sin_y*cos_x
- m[2, 1] = -sin_x
- m[2, 2] = cos_y*cos_x
- return
- }
- matrix3_from_euler_angles_xz_f16 :: proc(angle_x, angle_z: f16) -> (m: Matrix3f16) {
- return mul(matrix3_from_euler_angle_x(angle_x), matrix3_from_euler_angle_z(angle_z))
- }
- matrix3_from_euler_angles_zx_f16 :: proc(angle_z, angle_x: f16) -> (m: Matrix3f16) {
- return mul(matrix3_from_euler_angle_z(angle_z), matrix3_from_euler_angle_x(angle_x))
- }
- matrix3_from_euler_angles_yz_f16 :: proc(angle_y, angle_z: f16) -> (m: Matrix3f16) {
- return mul(matrix3_from_euler_angle_y(angle_y), matrix3_from_euler_angle_z(angle_z))
- }
- matrix3_from_euler_angles_zy_f16 :: proc(angle_z, angle_y: f16) -> (m: Matrix3f16) {
- return mul(matrix3_from_euler_angle_z(angle_z), matrix3_from_euler_angle_y(angle_y))
- }
- matrix3_from_euler_angles_xyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
- c1 := math.cos(-t1)
- c2 := math.cos(-t2)
- c3 := math.cos(-t3)
- s1 := math.sin(-t1)
- s2 := math.sin(-t2)
- s3 := math.sin(-t3)
- m[0, 0] = c2 * c3
- m[1, 0] =-c1 * s3 + s1 * s2 * c3
- m[2, 0] = s1 * s3 + c1 * s2 * c3
- m[0, 1] = c2 * s3
- m[1, 1] = c1 * c3 + s1 * s2 * s3
- m[2, 1] =-s1 * c3 + c1 * s2 * s3
- m[0, 2] =-s2
- m[1, 2] = s1 * c2
- m[2, 2] = c1 * c2
- return
- }
- matrix3_from_euler_angles_yxz_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix3f16) {
- ch := math.cos(yaw)
- sh := math.sin(yaw)
- cp := math.cos(pitch)
- sp := math.sin(pitch)
- cb := math.cos(roll)
- sb := math.sin(roll)
- m[0, 0] = ch * cb + sh * sp * sb
- m[1, 0] = sb * cp
- m[2, 0] = -sh * cb + ch * sp * sb
- m[0, 1] = -ch * sb + sh * sp * cb
- m[1, 1] = cb * cp
- m[2, 1] = sb * sh + ch * sp * cb
- m[0, 2] = sh * cp
- m[1, 2] = -sp
- m[2, 2] = ch * cp
- return
- }
- matrix3_from_euler_angles_xzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c2
- m[1, 0] = c1 * s2
- m[2, 0] = s1 * s2
- m[0, 1] =-c3 * s2
- m[1, 1] = c1 * c2 * c3 - s1 * s3
- m[2, 1] = c1 * s3 + c2 * c3 * s1
- m[0, 2] = s2 * s3
- m[1, 2] =-c3 * s1 - c1 * c2 * s3
- m[2, 2] = c1 * c3 - c2 * s1 * s3
- return
- }
- matrix3_from_euler_angles_xyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c2
- m[1, 0] = s1 * s2
- m[2, 0] =-c1 * s2
- m[0, 1] = s2 * s3
- m[1, 1] = c1 * c3 - c2 * s1 * s3
- m[2, 1] = c3 * s1 + c1 * c2 * s3
- m[0, 2] = c3 * s2
- m[1, 2] =-c1 * s3 - c2 * c3 * s1
- m[2, 2] = c1 * c2 * c3 - s1 * s3
- return
- }
- matrix3_from_euler_angles_yxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c1 * c3 - c2 * s1 * s3
- m[1, 0] = s2* s3
- m[2, 0] =-c3 * s1 - c1 * c2 * s3
- m[0, 1] = s1 * s2
- m[1, 1] = c2
- m[2, 1] = c1 * s2
- m[0, 2] = c1 * s3 + c2 * c3 * s1
- m[1, 2] =-c3 * s2
- m[2, 2] = c1 * c2 * c3 - s1 * s3
- return
- }
- matrix3_from_euler_angles_yzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c1 * c2 * c3 - s1 * s3
- m[1, 0] = c3 * s2
- m[2, 0] =-c1 * s3 - c2 * c3 * s1
- m[0, 1] =-c1 * s2
- m[1, 1] = c2
- m[2, 1] = s1 * s2
- m[0, 2] = c3 * s1 + c1 * c2 * s3
- m[1, 2] = s2 * s3
- m[2, 2] = c1 * c3 - c2 * s1 * s3
- return
- }
- matrix3_from_euler_angles_zyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c1 * c2 * c3 - s1 * s3
- m[1, 0] = c1 * s3 + c2 * c3 * s1
- m[2, 0] =-c3 * s2
- m[0, 1] =-c3 * s1 - c1 * c2 * s3
- m[1, 1] = c1 * c3 - c2 * s1 * s3
- m[2, 1] = s2 * s3
- m[0, 2] = c1 * s2
- m[1, 2] = s1 * s2
- m[2, 2] = c2
- return
- }
- matrix3_from_euler_angles_zxz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c1 * c3 - c2 * s1 * s3
- m[1, 0] = c3 * s1 + c1 * c2 * s3
- m[2, 0] = s2 *s3
- m[0, 1] =-c1 * s3 - c2 * c3 * s1
- m[1, 1] = c1 * c2 * c3 - s1 * s3
- m[2, 1] = c3 * s2
- m[0, 2] = s1 * s2
- m[1, 2] =-c1 * s2
- m[2, 2] = c2
- return
- }
- matrix3_from_euler_angles_xzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c2 * c3
- m[1, 0] = s1 * s3 + c1 * c3 * s2
- m[2, 0] = c3 * s1 * s2 - c1 * s3
- m[0, 1] =-s2
- m[1, 1] = c1 * c2
- m[2, 1] = c2 * s1
- m[0, 2] = c2 * s3
- m[1, 2] = c1 * s2 * s3 - c3 * s1
- m[2, 2] = c1 * c3 + s1 * s2 *s3
- return
- }
- matrix3_from_euler_angles_yzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c1 * c2
- m[1, 0] = s2
- m[2, 0] =-c2 * s1
- m[0, 1] = s1 * s3 - c1 * c3 * s2
- m[1, 1] = c2 * c3
- m[2, 1] = c1 * s3 + c3 * s1 * s2
- m[0, 2] = c3 * s1 + c1 * s2 * s3
- m[1, 2] =-c2 * s3
- m[2, 2] = c1 * c3 - s1 * s2 * s3
- return
- }
- matrix3_from_euler_angles_zyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c1 * c2
- m[1, 0] = c2 * s1
- m[2, 0] =-s2
- m[0, 1] = c1 * s2 * s3 - c3 * s1
- m[1, 1] = c1 * c3 + s1 * s2 * s3
- m[2, 1] = c2 * s3
- m[0, 2] = s1 * s3 + c1 * c3 * s2
- m[1, 2] = c3 * s1 * s2 - c1 * s3
- m[2, 2] = c2 * c3
- return
- }
- matrix3_from_euler_angles_zxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c1 * c3 - s1 * s2 * s3
- m[1, 0] = c3 * s1 + c1 * s2 * s3
- m[2, 0] =-c2 * s3
- m[0, 1] =-c2 * s1
- m[1, 1] = c1 * c2
- m[2, 1] = s2
- m[0, 2] = c1 * s3 + c3 * s1 * s2
- m[1, 2] = s1 * s3 - c1 * c3 * s2
- m[2, 2] = c2 * c3
- return
- }
- matrix3_from_yaw_pitch_roll_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix3f16) {
- ch := math.cos(yaw)
- sh := math.sin(yaw)
- cp := math.cos(pitch)
- sp := math.sin(pitch)
- cb := math.cos(roll)
- sb := math.sin(roll)
- m[0, 0] = ch * cb + sh * sp * sb
- m[1, 0] = sb * cp
- m[2, 0] = -sh * cb + ch * sp * sb
- m[0, 1] = -ch * sb + sh * sp * cb
- m[1, 1] = cb * cp
- m[2, 1] = sb * sh + ch * sp * cb
- m[0, 2] = sh * cp
- m[1, 2] = -sp
- m[2, 2] = ch * cp
- return m
- }
- euler_angles_xyz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[1, 2], m[2, 2])
- C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 1]*m[0, 1])
- T2 := math.atan2(-m[0, 2], C2)
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(S1*m[2, 0] - C1*m[1, 0], C1*m[1, 1] - S1*m[2, 1])
- t1 = -T1
- t2 = -T2
- t3 = -T3
- return
- }
- euler_angles_yxz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[0, 2], m[2, 2])
- C2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 1]*m[1, 1])
- T2 := math.atan2(-m[1, 2], C2)
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(S1*m[2, 1] - C1*m[0, 1], C1*m[0, 0] - S1*m[2, 0])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_xzx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[2, 0], m[1, 0])
- S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
- T2 := math.atan2(S2, m[0, 0])
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(C1*m[2, 1] - S1*m[1, 1], C1*m[2, 2] - S1*m[1, 2])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_xyx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[1, 0], -m[2, 0])
- S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
- T2 := math.atan2(S2, m[0, 0])
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(-C1*m[1, 2] - S1*m[2, 2], C1*m[1, 1] + S1*m[2, 1])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_yxy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[0, 1], m[2, 1])
- S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
- T2 := math.atan2(S2, m[1, 1])
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(C1*m[0, 2] - S1*m[2, 2], C1*m[0, 0] - S1*m[2, 0])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_yzy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[2, 1], -m[0, 1])
- S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
- T2 := math.atan2(S2, m[1, 1])
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(-S1*m[0, 0] - C1*m[2, 0], S1*m[0, 2] + C1*m[2, 2])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_zyz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[1, 2], m[0, 2])
- S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
- T2 := math.atan2(S2, m[2, 2])
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(C1*m[1, 0] - S1*m[0, 0], C1*m[1, 1] - S1*m[0, 1])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_zxz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[0, 2], -m[1, 2])
- S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
- T2 := math.atan2(S2, m[2, 2])
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(-C1*m[0, 1] - S1*m[1, 1], C1*m[0, 0] + S1*m[1, 0])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_xzy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[2, 1], m[1, 1])
- C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 2]*m[0, 2])
- T2 := math.atan2(-m[0, 1], C2)
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(S1*m[1, 0] - C1*m[2, 0], C1*m[2, 2] - S1*m[1, 2])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_yzx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(-m[2, 0], m[0, 0])
- C2 := math.sqrt(m[1, 1]*m[1, 1] + m[1, 2]*m[1, 2])
- T2 := math.atan2(m[1, 0], C2)
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(S1*m[0, 1] + C1*m[2, 1], S1*m[0, 2] + C1*m[2, 2])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_zyx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[1, 0], m[0, 0])
- C2 := math.sqrt(m[2, 1]*m[2, 1] + m[2, 2]*m[2, 2])
- T2 := math.atan2(-m[2, 0], C2)
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(S1*m[0, 2] - C1*m[1, 2], C1*m[1, 1] - S1*m[0, 1])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_zxy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(-m[0, 1], m[1, 1])
- C2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 2]*m[2, 2])
- T2 := math.atan2(m[2, 1], C2)
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(C1*m[0, 2] + S1*m[1, 2], C1*m[0, 0] + S1*m[1, 0])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- // Matrix4
- matrix4_from_euler_angle_x_f16 :: proc(angle_x: f16) -> (m: Matrix4f16) {
- cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
- m[0, 0] = 1
- m[1, 1] = +cos_x
- m[1, 2] = +sin_x
- m[2, 1] = -sin_x
- m[2, 2] = +cos_x
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angle_y_f16 :: proc(angle_y: f16) -> (m: Matrix4f16) {
- cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
- m[0, 0] = +cos_y
- m[0, 2] = -sin_y
- m[1, 1] = 1
- m[2, 0] = +sin_y
- m[2, 2] = +cos_y
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angle_z_f16 :: proc(angle_z: f16) -> (m: Matrix4f16) {
- cos_z, sin_z := math.cos(angle_z), math.sin(angle_z)
- m[0, 0] = +cos_z
- m[0, 1] = +sin_z
- m[1, 1] = +cos_z
- m[1, 0] = -sin_z
- m[2, 2] = 1
- m[3, 3] = 1
- return
- }
- matrix4_from_derived_euler_angle_x_f16 :: proc(angle_x: f16, angular_velocity_x: f16) -> (m: Matrix4f16) {
- cos_x := math.cos(angle_x) * angular_velocity_x
- sin_x := math.sin(angle_x) * angular_velocity_x
- m[0, 0] = 1
- m[1, 1] = +cos_x
- m[1, 2] = +sin_x
- m[2, 1] = -sin_x
- m[2, 2] = +cos_x
- m[3, 3] = 1
- return
- }
- matrix4_from_derived_euler_angle_y_f16 :: proc(angle_y: f16, angular_velocity_y: f16) -> (m: Matrix4f16) {
- cos_y := math.cos(angle_y) * angular_velocity_y
- sin_y := math.sin(angle_y) * angular_velocity_y
- m[0, 0] = +cos_y
- m[0, 2] = -sin_y
- m[1, 1] = 1
- m[2, 0] = +sin_y
- m[2, 2] = +cos_y
- m[3, 3] = 1
- return
- }
- matrix4_from_derived_euler_angle_z_f16 :: proc(angle_z: f16, angular_velocity_z: f16) -> (m: Matrix4f16) {
- cos_z := math.cos(angle_z) * angular_velocity_z
- sin_z := math.sin(angle_z) * angular_velocity_z
- m[0, 0] = +cos_z
- m[0, 1] = +sin_z
- m[1, 1] = +cos_z
- m[1, 0] = -sin_z
- m[2, 2] = 1
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angles_xy_f16 :: proc(angle_x, angle_y: f16) -> (m: Matrix4f16) {
- cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
- cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
- m[0, 0] = cos_y
- m[0, 1] = -sin_x * - sin_y
- m[0, 2] = -cos_x * - sin_y
- m[1, 1] = cos_x
- m[1, 2] = sin_x
- m[2, 0] = sin_y
- m[2, 1] = -sin_x * cos_y
- m[2, 2] = cos_x * cos_y
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angles_yx_f16 :: proc(angle_y, angle_x: f16) -> (m: Matrix4f16) {
- cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
- cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
- m[0, 0] = cos_y
- m[0, 2] = -sin_y
- m[1, 0] = sin_y*sin_x
- m[1, 1] = cos_x
- m[1, 2] = cos_y*sin_x
- m[2, 0] = sin_y*cos_x
- m[2, 1] = -sin_x
- m[2, 2] = cos_y*cos_x
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angles_xz_f16 :: proc(angle_x, angle_z: f16) -> (m: Matrix4f16) {
- return mul(matrix4_from_euler_angle_x(angle_x), matrix4_from_euler_angle_z(angle_z))
- }
- matrix4_from_euler_angles_zx_f16 :: proc(angle_z, angle_x: f16) -> (m: Matrix4f16) {
- return mul(matrix4_from_euler_angle_z(angle_z), matrix4_from_euler_angle_x(angle_x))
- }
- matrix4_from_euler_angles_yz_f16 :: proc(angle_y, angle_z: f16) -> (m: Matrix4f16) {
- return mul(matrix4_from_euler_angle_y(angle_y), matrix4_from_euler_angle_z(angle_z))
- }
- matrix4_from_euler_angles_zy_f16 :: proc(angle_z, angle_y: f16) -> (m: Matrix4f16) {
- return mul(matrix4_from_euler_angle_z(angle_z), matrix4_from_euler_angle_y(angle_y))
- }
- matrix4_from_euler_angles_xyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
- c1 := math.cos(-t1)
- c2 := math.cos(-t2)
- c3 := math.cos(-t3)
- s1 := math.sin(-t1)
- s2 := math.sin(-t2)
- s3 := math.sin(-t3)
- m[0, 0] = c2 * c3
- m[1, 0] =-c1 * s3 + s1 * s2 * c3
- m[2, 0] = s1 * s3 + c1 * s2 * c3
- m[3, 0] = 0
- m[0, 1] = c2 * s3
- m[1, 1] = c1 * c3 + s1 * s2 * s3
- m[2, 1] =-s1 * c3 + c1 * s2 * s3
- m[3, 1] = 0
- m[0, 2] =-s2
- m[1, 2] = s1 * c2
- m[2, 2] = c1 * c2
- m[3, 2] = 0
- m[0, 3] = 0
- m[1, 3] = 0
- m[2, 3] = 0
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angles_yxz_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix4f16) {
- ch := math.cos(yaw)
- sh := math.sin(yaw)
- cp := math.cos(pitch)
- sp := math.sin(pitch)
- cb := math.cos(roll)
- sb := math.sin(roll)
- m[0, 0] = ch * cb + sh * sp * sb
- m[1, 0] = sb * cp
- m[2, 0] = -sh * cb + ch * sp * sb
- m[3, 0] = 0
- m[0, 1] = -ch * sb + sh * sp * cb
- m[1, 1] = cb * cp
- m[2, 1] = sb * sh + ch * sp * cb
- m[3, 1] = 0
- m[0, 2] = sh * cp
- m[1, 2] = -sp
- m[2, 2] = ch * cp
- m[3, 2] = 0
- m[0, 3] = 0
- m[1, 3] = 0
- m[2, 3] = 0
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angles_xzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c2
- m[1, 0] = c1 * s2
- m[2, 0] = s1 * s2
- m[3, 0] = 0
- m[0, 1] =-c3 * s2
- m[1, 1] = c1 * c2 * c3 - s1 * s3
- m[2, 1] = c1 * s3 + c2 * c3 * s1
- m[3, 1] = 0
- m[0, 2] = s2 * s3
- m[1, 2] =-c3 * s1 - c1 * c2 * s3
- m[2, 2] = c1 * c3 - c2 * s1 * s3
- m[3, 2] = 0
- m[0, 3] = 0
- m[1, 3] = 0
- m[2, 3] = 0
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angles_xyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c2
- m[1, 0] = s1 * s2
- m[2, 0] =-c1 * s2
- m[3, 0] = 0
- m[0, 1] = s2 * s3
- m[1, 1] = c1 * c3 - c2 * s1 * s3
- m[2, 1] = c3 * s1 + c1 * c2 * s3
- m[3, 1] = 0
- m[0, 2] = c3 * s2
- m[1, 2] =-c1 * s3 - c2 * c3 * s1
- m[2, 2] = c1 * c2 * c3 - s1 * s3
- m[3, 2] = 0
- m[0, 3] = 0
- m[1, 3] = 0
- m[2, 3] = 0
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angles_yxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c1 * c3 - c2 * s1 * s3
- m[1, 0] = s2* s3
- m[2, 0] =-c3 * s1 - c1 * c2 * s3
- m[3, 0] = 0
- m[0, 1] = s1 * s2
- m[1, 1] = c2
- m[2, 1] = c1 * s2
- m[3, 1] = 0
- m[0, 2] = c1 * s3 + c2 * c3 * s1
- m[1, 2] =-c3 * s2
- m[2, 2] = c1 * c2 * c3 - s1 * s3
- m[3, 2] = 0
- m[0, 3] = 0
- m[1, 3] = 0
- m[2, 3] = 0
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angles_yzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c1 * c2 * c3 - s1 * s3
- m[1, 0] = c3 * s2
- m[2, 0] =-c1 * s3 - c2 * c3 * s1
- m[3, 0] = 0
- m[0, 1] =-c1 * s2
- m[1, 1] = c2
- m[2, 1] = s1 * s2
- m[3, 1] = 0
- m[0, 2] = c3 * s1 + c1 * c2 * s3
- m[1, 2] = s2 * s3
- m[2, 2] = c1 * c3 - c2 * s1 * s3
- m[3, 2] = 0
- m[0, 3] = 0
- m[1, 3] = 0
- m[2, 3] = 0
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angles_zyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c1 * c2 * c3 - s1 * s3
- m[1, 0] = c1 * s3 + c2 * c3 * s1
- m[2, 0] =-c3 * s2
- m[3, 0] = 0
- m[0, 1] =-c3 * s1 - c1 * c2 * s3
- m[1, 1] = c1 * c3 - c2 * s1 * s3
- m[2, 1] = s2 * s3
- m[3, 1] = 0
- m[0, 2] = c1 * s2
- m[1, 2] = s1 * s2
- m[2, 2] = c2
- m[3, 2] = 0
- m[0, 3] = 0
- m[1, 3] = 0
- m[2, 3] = 0
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angles_zxz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c1 * c3 - c2 * s1 * s3
- m[1, 0] = c3 * s1 + c1 * c2 * s3
- m[2, 0] = s2 *s3
- m[3, 0] = 0
- m[0, 1] =-c1 * s3 - c2 * c3 * s1
- m[1, 1] = c1 * c2 * c3 - s1 * s3
- m[2, 1] = c3 * s2
- m[3, 1] = 0
- m[0, 2] = s1 * s2
- m[1, 2] =-c1 * s2
- m[2, 2] = c2
- m[3, 2] = 0
- m[0, 3] = 0
- m[1, 3] = 0
- m[2, 3] = 0
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angles_xzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c2 * c3
- m[1, 0] = s1 * s3 + c1 * c3 * s2
- m[2, 0] = c3 * s1 * s2 - c1 * s3
- m[3, 0] = 0
- m[0, 1] =-s2
- m[1, 1] = c1 * c2
- m[2, 1] = c2 * s1
- m[3, 1] = 0
- m[0, 2] = c2 * s3
- m[1, 2] = c1 * s2 * s3 - c3 * s1
- m[2, 2] = c1 * c3 + s1 * s2 *s3
- m[3, 2] = 0
- m[0, 3] = 0
- m[1, 3] = 0
- m[2, 3] = 0
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angles_yzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c1 * c2
- m[1, 0] = s2
- m[2, 0] =-c2 * s1
- m[3, 0] = 0
- m[0, 1] = s1 * s3 - c1 * c3 * s2
- m[1, 1] = c2 * c3
- m[2, 1] = c1 * s3 + c3 * s1 * s2
- m[3, 1] = 0
- m[0, 2] = c3 * s1 + c1 * s2 * s3
- m[1, 2] =-c2 * s3
- m[2, 2] = c1 * c3 - s1 * s2 * s3
- m[3, 2] = 0
- m[0, 3] = 0
- m[1, 3] = 0
- m[2, 3] = 0
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angles_zyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c1 * c2
- m[1, 0] = c2 * s1
- m[2, 0] =-s2
- m[3, 0] = 0
- m[0, 1] = c1 * s2 * s3 - c3 * s1
- m[1, 1] = c1 * c3 + s1 * s2 * s3
- m[2, 1] = c2 * s3
- m[3, 1] = 0
- m[0, 2] = s1 * s3 + c1 * c3 * s2
- m[1, 2] = c3 * s1 * s2 - c1 * s3
- m[2, 2] = c2 * c3
- m[3, 2] = 0
- m[0, 3] = 0
- m[1, 3] = 0
- m[2, 3] = 0
- m[3, 3] = 1
- return
- }
- matrix4_from_euler_angles_zxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
- c1 := math.cos(t1)
- s1 := math.sin(t1)
- c2 := math.cos(t2)
- s2 := math.sin(t2)
- c3 := math.cos(t3)
- s3 := math.sin(t3)
- m[0, 0] = c1 * c3 - s1 * s2 * s3
- m[1, 0] = c3 * s1 + c1 * s2 * s3
- m[2, 0] =-c2 * s3
- m[3, 0] = 0
- m[0, 1] =-c2 * s1
- m[1, 1] = c1 * c2
- m[2, 1] = s2
- m[3, 1] = 0
- m[0, 2] = c1 * s3 + c3 * s1 * s2
- m[1, 2] = s1 * s3 - c1 * c3 * s2
- m[2, 2] = c2 * c3
- m[3, 2] = 0
- m[0, 3] = 0
- m[1, 3] = 0
- m[2, 3] = 0
- m[3, 3] = 1
- return
- }
- matrix4_from_yaw_pitch_roll_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix4f16) {
- ch := math.cos(yaw)
- sh := math.sin(yaw)
- cp := math.cos(pitch)
- sp := math.sin(pitch)
- cb := math.cos(roll)
- sb := math.sin(roll)
- m[0, 0] = ch * cb + sh * sp * sb
- m[1, 0] = sb * cp
- m[2, 0] = -sh * cb + ch * sp * sb
- m[3, 0] = 0
- m[0, 1] = -ch * sb + sh * sp * cb
- m[1, 1] = cb * cp
- m[2, 1] = sb * sh + ch * sp * cb
- m[3, 1] = 0
- m[0, 2] = sh * cp
- m[1, 2] = -sp
- m[2, 2] = ch * cp
- m[3, 2] = 0
- m[0, 3] = 0
- m[1, 3] = 0
- m[2, 3] = 0
- m[3, 3] = 1
- return m
- }
- euler_angles_xyz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[1, 2], m[2, 2])
- C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 1]*m[0, 1])
- T2 := math.atan2(-m[0, 2], C2)
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(S1*m[2, 0] - C1*m[1, 0], C1*m[1, 1] - S1*m[2, 1])
- t1 = -T1
- t2 = -T2
- t3 = -T3
- return
- }
- euler_angles_yxz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[0, 2], m[2, 2])
- C2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 1]*m[1, 1])
- T2 := math.atan2(-m[1, 2], C2)
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(S1*m[2, 1] - C1*m[0, 1], C1*m[0, 0] - S1*m[2, 0])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_xzx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[2, 0], m[1, 0])
- S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
- T2 := math.atan2(S2, m[0, 0])
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(C1*m[2, 1] - S1*m[1, 1], C1*m[2, 2] - S1*m[1, 2])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_xyx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[1, 0], -m[2, 0])
- S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
- T2 := math.atan2(S2, m[0, 0])
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(-C1*m[1, 2] - S1*m[2, 2], C1*m[1, 1] + S1*m[2, 1])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_yxy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[0, 1], m[2, 1])
- S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
- T2 := math.atan2(S2, m[1, 1])
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(C1*m[0, 2] - S1*m[2, 2], C1*m[0, 0] - S1*m[2, 0])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_yzy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[2, 1], -m[0, 1])
- S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
- T2 := math.atan2(S2, m[1, 1])
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(-S1*m[0, 0] - C1*m[2, 0], S1*m[0, 2] + C1*m[2, 2])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_zyz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[1, 2], m[0, 2])
- S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
- T2 := math.atan2(S2, m[2, 2])
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(C1*m[1, 0] - S1*m[0, 0], C1*m[1, 1] - S1*m[0, 1])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_zxz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[0, 2], -m[1, 2])
- S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
- T2 := math.atan2(S2, m[2, 2])
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(-C1*m[0, 1] - S1*m[1, 1], C1*m[0, 0] + S1*m[1, 0])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_xzy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[2, 1], m[1, 1])
- C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 2]*m[0, 2])
- T2 := math.atan2(-m[0, 1], C2)
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(S1*m[1, 0] - C1*m[2, 0], C1*m[2, 2] - S1*m[1, 2])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_yzx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(-m[2, 0], m[0, 0])
- C2 := math.sqrt(m[1, 1]*m[1, 1] + m[1, 2]*m[1, 2])
- T2 := math.atan2(m[1, 0], C2)
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(S1*m[0, 1] + C1*m[2, 1], S1*m[0, 2] + C1*m[2, 2])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_zyx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(m[1, 0], m[0, 0])
- C2 := math.sqrt(m[2, 1]*m[2, 1] + m[2, 2]*m[2, 2])
- T2 := math.atan2(-m[2, 0], C2)
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(S1*m[0, 2] - C1*m[1, 2], C1*m[1, 1] - S1*m[0, 1])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
- euler_angles_zxy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
- T1 := math.atan2(-m[0, 1], m[1, 1])
- C2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 2]*m[2, 2])
- T2 := math.atan2(m[2, 1], C2)
- S1 := math.sin(T1)
- C1 := math.cos(T1)
- T3 := math.atan2(C1*m[0, 2] + S1*m[1, 2], C1*m[0, 0] + S1*m[1, 0])
- t1 = T1
- t2 = T2
- t3 = T3
- return
- }
|