123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361 |
- package math
- // The original C code and the long comment below are
- // from FreeBSD's /usr/src/lib/msun/src/e_lgamma_r.c and
- // came with this notice.
- //
- // ====================================================
- // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- //
- // Developed at SunPro, a Sun Microsystems, Inc. business.
- // Permission to use, copy, modify, and distribute this
- // software is freely granted, provided that this notice
- // is preserved.
- // ====================================================
- //
- // __ieee754_lgamma_r(x, signgamp)
- // Reentrant version of the logarithm of the Gamma function
- // with user provided pointer for the sign of Gamma(x).
- //
- // Method:
- // 1. Argument Reduction for 0 < x <= 8
- // Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
- // reduce x to a number in [1.5,2.5] by
- // lgamma(1+s) = log(s) + lgamma(s)
- // for example,
- // lgamma(7.3) = log(6.3) + lgamma(6.3)
- // = log(6.3*5.3) + lgamma(5.3)
- // = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
- // 2. Polynomial approximation of lgamma around its
- // minimum (ymin=1.461632144968362245) to maintain monotonicity.
- // On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
- // Let z = x-ymin;
- // lgamma(x) = -1.214862905358496078218 + z**2*poly(z)
- // poly(z) is a 14 degree polynomial.
- // 2. Rational approximation in the primary interval [2,3]
- // We use the following approximation:
- // s = x-2.0;
- // lgamma(x) = 0.5*s + s*P(s)/Q(s)
- // with accuracy
- // |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
- // Our algorithms are based on the following observation
- //
- // zeta(2)-1 2 zeta(3)-1 3
- // lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
- // 2 3
- //
- // where Euler = 0.5772156649... is the Euler constant, which
- // is very close to 0.5.
- //
- // 3. For x>=8, we have
- // lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
- // (better formula:
- // lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
- // Let z = 1/x, then we approximation
- // f(z) = lgamma(x) - (x-0.5)(log(x)-1)
- // by
- // 3 5 11
- // w = w0 + w1*z + w2*z + w3*z + ... + w6*z
- // where
- // |w - f(z)| < 2**-58.74
- //
- // 4. For negative x, since (G is gamma function)
- // -x*G(-x)*G(x) = pi/sin(pi*x),
- // we have
- // G(x) = pi/(sin(pi*x)*(-x)*G(-x))
- // since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
- // Hence, for x<0, signgam = sign(sin(pi*x)) and
- // lgamma(x) = log(|Gamma(x)|)
- // = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
- // Note: one should avoid computing pi*(-x) directly in the
- // computation of sin(pi*(-x)).
- //
- // 5. Special Cases
- // lgamma(2+s) ~ s*(1-Euler) for tiny s
- // lgamma(1)=lgamma(2)=0
- // lgamma(x) ~ -log(x) for tiny x
- // lgamma(0) = lgamma(inf) = inf
- // lgamma(-integer) = +-inf
- //
- //
- lgamma_f64 :: proc "contextless" (x: f64) -> (lgamma: f64, sign: int) {
- sin_pi :: proc "contextless" (x: f64) -> f64 {
- if x < 0.25 {
- return -sin(PI * x)
- }
- x := x
- // argument reduction
- z := floor(x)
- n: int
- if z != x { // inexact
- x = mod(x, 2)
- n = int(x * 4)
- } else {
- if x >= TWO_53 { // x must be even
- x = 0
- n = 0
- } else {
- if x < TWO_52 {
- z = x + TWO_52 // exact
- }
- n = int(1 & transmute(u64)z)
- x = f64(n)
- n <<= 2
- }
- }
- switch n {
- case 0:
- x = sin(PI * x)
- case 1, 2:
- x = cos(PI * (0.5 - x))
- case 3, 4:
- x = sin(PI * (1 - x))
- case 5, 6:
- x = -cos(PI * (x - 1.5))
- case:
- x = sin(PI * (x - 2))
- }
- return -x
- }
-
- @static lgamA := [?]f64{
- 0h3FB3C467E37DB0C8,
- 0h3FD4A34CC4A60FAD,
- 0h3FB13E001A5562A7,
- 0h3F951322AC92547B,
- 0h3F7E404FB68FEFE8,
- 0h3F67ADD8CCB7926B,
- 0h3F538A94116F3F5D,
- 0h3F40B6C689B99C00,
- 0h3F2CF2ECED10E54D,
- 0h3F1C5088987DFB07,
- 0h3EFA7074428CFA52,
- 0h3F07858E90A45837,
- }
- @static lgamR := [?]f64{
- 1.0,
- 0h3FF645A762C4AB74,
- 0h3FE71A1893D3DCDC,
- 0h3FC601EDCCFBDF27,
- 0h3F9317EA742ED475,
- 0h3F497DDACA41A95B,
- 0h3EDEBAF7A5B38140,
- }
- @static lgamS := [?]f64{
- 0hBFB3C467E37DB0C8,
- 0h3FCB848B36E20878,
- 0h3FD4D98F4F139F59,
- 0h3FC2BB9CBEE5F2F7,
- 0h3F9B481C7E939961,
- 0h3F5E26B67368F239,
- 0h3F00BFECDD17E945,
- }
- @static lgamT := [?]f64{
- 0h3FDEF72BC8EE38A2,
- 0hBFC2E4278DC6C509,
- 0h3FB08B4294D5419B,
- 0hBFA0C9A8DF35B713,
- 0h3F9266E7970AF9EC,
- 0hBF851F9FBA91EC6A,
- 0h3F78FCE0E370E344,
- 0hBF6E2EFFB3E914D7,
- 0h3F6282D32E15C915,
- 0hBF56FE8EBF2D1AF1,
- 0h3F4CDF0CEF61A8E9,
- 0hBF41A6109C73E0EC,
- 0h3F34AF6D6C0EBBF7,
- 0hBF347F24ECC38C38,
- 0h3F35FD3EE8C2D3F4,
- }
- @static lgamU := [?]f64{
- 0hBFB3C467E37DB0C8,
- 0h3FE4401E8B005DFF,
- 0h3FF7475CD119BD6F,
- 0h3FEF497644EA8450,
- 0h3FCD4EAEF6010924,
- 0h3F8B678BBF2BAB09,
- }
- @static lgamV := [?]f64{
- 1.0,
- 0h4003A5D7C2BD619C,
- 0h40010725A42B18F5,
- 0h3FE89DFBE45050AF,
- 0h3FBAAE55D6537C88,
- 0h3F6A5ABB57D0CF61,
- }
- @static lgamW := [?]f64{
- 0h3FDACFE390C97D69,
- 0h3FB555555555553B,
- 0hBF66C16C16B02E5C,
- 0h3F4A019F98CF38B6,
- 0hBF4380CB8C0FE741,
- 0h3F4B67BA4CDAD5D1,
- 0hBF5AB89D0B9E43E4,
- }
-
- Y_MIN :: 0h3ff762d86356be3f // 1.461632144968362245
- TWO_52 :: 0h4330000000000000 // ~4.5036e+15
- TWO_53 :: 0h4340000000000000 // ~9.0072e+15
- TWO_58 :: 0h4390000000000000 // ~2.8823e+17
- TINY :: 0h3b90000000000000 // ~8.47033e-22
- Tc :: 0h3FF762D86356BE3F
- Tf :: 0hBFBF19B9BCC38A42
- Tt :: 0hBC50C7CAA48A971F
-
- // special cases
- sign = 1
- switch {
- case is_nan(x):
- lgamma = x
- return
- case is_inf(x):
- lgamma = x
- return
- case x == 0:
- lgamma = inf_f64(1)
- return
- }
- x := x
- neg := false
- if x < 0 {
- x = -x
- neg = true
- }
- if x < TINY { // if |x| < 2**-70, return -log(|x|)
- if neg {
- sign = -1
- }
- lgamma = -ln(x)
- return
- }
- nadj: f64
- if neg {
- if x >= TWO_52 { // |x| >= 2**52, must be -integer
- lgamma = inf_f64(1)
- return
- }
- t := sin_pi(x)
- if t == 0 {
- lgamma = inf_f64(1) // -integer
- return
- }
- nadj = ln(PI / abs(t*x))
- if t < 0 {
- sign = -1
- }
- }
- switch {
- case x == 1 || x == 2: // purge off 1 and 2
- lgamma = 0
- return
- case x < 2: // use lgamma(x) = lgamma(x+1) - log(x)
- y: f64
- i: int
- if x <= 0.9 {
- lgamma = -ln(x)
- switch {
- case x >= (Y_MIN - 1 + 0.27): // 0.7316 <= x <= 0.9
- y = 1 - x
- i = 0
- case x >= (Y_MIN - 1 - 0.27): // 0.2316 <= x < 0.7316
- y = x - (Tc - 1)
- i = 1
- case: // 0 < x < 0.2316
- y = x
- i = 2
- }
- } else {
- lgamma = 0
- switch {
- case x >= (Y_MIN + 0.27): // 1.7316 <= x < 2
- y = 2 - x
- i = 0
- case x >= (Y_MIN - 0.27): // 1.2316 <= x < 1.7316
- y = x - Tc
- i = 1
- case: // 0.9 < x < 1.2316
- y = x - 1
- i = 2
- }
- }
- switch i {
- case 0:
- z := y * y
- p1 := lgamA[0] + z*(lgamA[2]+z*(lgamA[4]+z*(lgamA[6]+z*(lgamA[8]+z*lgamA[10]))))
- p2 := z * (lgamA[1] + z*(+lgamA[3]+z*(lgamA[5]+z*(lgamA[7]+z*(lgamA[9]+z*lgamA[11])))))
- p := y*p1 + p2
- lgamma += (p - 0.5*y)
- case 1:
- z := y * y
- w := z * y
- p1 := lgamT[0] + w*(lgamT[3]+w*(lgamT[6]+w*(lgamT[9]+w*lgamT[12]))) // parallel comp
- p2 := lgamT[1] + w*(lgamT[4]+w*(lgamT[7]+w*(lgamT[10]+w*lgamT[13])))
- p3 := lgamT[2] + w*(lgamT[5]+w*(lgamT[8]+w*(lgamT[11]+w*lgamT[14])))
- p := z*p1 - (Tt - w*(p2+y*p3))
- lgamma += (Tf + p)
- case 2:
- p1 := y * (lgamU[0] + y*(lgamU[1]+y*(lgamU[2]+y*(lgamU[3]+y*(lgamU[4]+y*lgamU[5])))))
- p2 := 1 + y*(lgamV[1]+y*(lgamV[2]+y*(lgamV[3]+y*(lgamV[4]+y*lgamV[5]))))
- lgamma += (-0.5*y + p1/p2)
- }
- case x < 8: // 2 <= x < 8
- i := int(x)
- y := x - f64(i)
- p := y * (lgamS[0] + y*(lgamS[1]+y*(lgamS[2]+y*(lgamS[3]+y*(lgamS[4]+y*(lgamS[5]+y*lgamS[6]))))))
- q := 1 + y*(lgamR[1]+y*(lgamR[2]+y*(lgamR[3]+y*(lgamR[4]+y*(lgamR[5]+y*lgamR[6])))))
- lgamma = 0.5*y + p/q
- z := 1.0 // lgamma(1+s) = ln(s) + lgamma(s)
- switch i {
- case 7:
- z *= (y + 6)
- fallthrough
- case 6:
- z *= (y + 5)
- fallthrough
- case 5:
- z *= (y + 4)
- fallthrough
- case 4:
- z *= (y + 3)
- fallthrough
- case 3:
- z *= (y + 2)
- lgamma += ln(z)
- }
- case x < TWO_58: // 8 <= x < 2**58
- t := ln(x)
- z := 1 / x
- y := z * z
- w := lgamW[0] + z*(lgamW[1]+y*(lgamW[2]+y*(lgamW[3]+y*(lgamW[4]+y*(lgamW[5]+y*lgamW[6])))))
- lgamma = (x-0.5)*(t-1) + w
- case: // 2**58 <= x <= Inf
- lgamma = x * (ln(x) - 1)
- }
- if neg {
- lgamma = nadj - lgamma
- }
- return
- }
- lgamma_f16 :: proc "contextless" (x: f16) -> (lgamma: f16, sign: int) { r, s := lgamma_f64(f64(x)); return f16(r), s }
- lgamma_f32 :: proc "contextless" (x: f32) -> (lgamma: f32, sign: int) { r, s := lgamma_f64(f64(x)); return f32(r), s }
- lgamma_f16le :: proc "contextless" (x: f16le) -> (lgamma: f16le, sign: int) { r, s := lgamma_f64(f64(x)); return f16le(r), s }
- lgamma_f16be :: proc "contextless" (x: f16be) -> (lgamma: f16be, sign: int) { r, s := lgamma_f64(f64(x)); return f16be(r), s }
- lgamma_f32le :: proc "contextless" (x: f32le) -> (lgamma: f32le, sign: int) { r, s := lgamma_f64(f64(x)); return f32le(r), s }
- lgamma_f32be :: proc "contextless" (x: f32be) -> (lgamma: f32be, sign: int) { r, s := lgamma_f64(f64(x)); return f32be(r), s }
- lgamma_f64le :: proc "contextless" (x: f64le) -> (lgamma: f64le, sign: int) { r, s := lgamma_f64(f64(x)); return f64le(r), s }
- lgamma_f64be :: proc "contextless" (x: f64be) -> (lgamma: f64be, sign: int) { r, s := lgamma_f64(f64(x)); return f64be(r), s }
- lgamma :: proc{
- lgamma_f16, lgamma_f16le, lgamma_f16be,
- lgamma_f32, lgamma_f32le, lgamma_f32be,
- lgamma_f64, lgamma_f64le, lgamma_f64be,
- }
|