bits.odin 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447
  1. package math_bits
  2. import "core:intrinsics"
  3. U8_MIN :: 0
  4. U16_MIN :: 0
  5. U32_MIN :: 0
  6. U64_MIN :: 0
  7. U8_MAX :: 1 << 8 - 1
  8. U16_MAX :: 1 << 16 - 1
  9. U32_MAX :: 1 << 32 - 1
  10. U64_MAX :: 1 << 64 - 1
  11. I8_MIN :: - 1 << 7
  12. I16_MIN :: - 1 << 15
  13. I32_MIN :: - 1 << 31
  14. I64_MIN :: - 1 << 63
  15. I8_MAX :: 1 << 7 - 1
  16. I16_MAX :: 1 << 15 - 1
  17. I32_MAX :: 1 << 31 - 1
  18. I64_MAX :: 1 << 63 - 1
  19. count_ones :: intrinsics.count_ones
  20. count_zeros :: intrinsics.count_zeros
  21. trailing_zeros :: intrinsics.count_trailing_zeros
  22. leading_zeros :: intrinsics.count_leading_zeros
  23. count_trailing_zeros :: intrinsics.count_trailing_zeros
  24. count_leading_zeros :: intrinsics.count_leading_zeros
  25. reverse_bits :: intrinsics.reverse_bits
  26. byte_swap :: intrinsics.byte_swap
  27. overflowing_add :: intrinsics.overflow_add
  28. overflowing_sub :: intrinsics.overflow_sub
  29. overflowing_mul :: intrinsics.overflow_mul
  30. log2 :: proc(x: $T) -> T where intrinsics.type_is_integer(T), intrinsics.type_is_unsigned(T) {
  31. return (8*size_of(T)-1) - count_leading_zeros(x)
  32. }
  33. rotate_left8 :: proc(x: u8, k: int) -> u8 {
  34. n :: 8
  35. s := uint(k) & (n-1)
  36. return x <<s | x>>(n-s)
  37. }
  38. rotate_left16 :: proc(x: u16, k: int) -> u16 {
  39. n :: 16
  40. s := uint(k) & (n-1)
  41. return x <<s | x>>(n-s)
  42. }
  43. rotate_left32 :: proc(x: u32, k: int) -> u32 {
  44. n :: 32
  45. s := uint(k) & (n-1)
  46. return x <<s | x>>(n-s)
  47. }
  48. rotate_left64 :: proc(x: u64, k: int) -> u64 {
  49. n :: 64
  50. s := uint(k) & (n-1)
  51. return x <<s | x>>(n-s)
  52. }
  53. rotate_left :: proc(x: uint, k: int) -> uint {
  54. n :: 8*size_of(uint)
  55. s := uint(k) & (n-1)
  56. return x <<s | x>>(n-s)
  57. }
  58. from_be_u8 :: proc(i: u8) -> u8 { return i }
  59. from_be_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == .Big { return i } else { return byte_swap(i) } }
  60. from_be_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == .Big { return i } else { return byte_swap(i) } }
  61. from_be_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == .Big { return i } else { return byte_swap(i) } }
  62. from_be_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == .Big { return i } else { return byte_swap(i) } }
  63. from_le_u8 :: proc(i: u8) -> u8 { return i }
  64. from_le_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == .Little { return i } else { return byte_swap(i) } }
  65. from_le_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == .Little { return i } else { return byte_swap(i) } }
  66. from_le_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == .Little { return i } else { return byte_swap(i) } }
  67. from_le_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == .Little { return i } else { return byte_swap(i) } }
  68. to_be_u8 :: proc(i: u8) -> u8 { return i }
  69. to_be_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == .Big { return i } else { return byte_swap(i) } }
  70. to_be_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == .Big { return i } else { return byte_swap(i) } }
  71. to_be_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == .Big { return i } else { return byte_swap(i) } }
  72. to_be_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == .Big { return i } else { return byte_swap(i) } }
  73. to_le_u8 :: proc(i: u8) -> u8 { return i }
  74. to_le_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == .Little { return i } else { return byte_swap(i) } }
  75. to_le_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == .Little { return i } else { return byte_swap(i) } }
  76. to_le_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == .Little { return i } else { return byte_swap(i) } }
  77. to_le_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == .Little { return i } else { return byte_swap(i) } }
  78. len_u8 :: proc(x: u8) -> int {
  79. return int(len_u8_table[x])
  80. }
  81. len_u16 :: proc(x: u16) -> (n: int) {
  82. x := x
  83. if x >= 1<<8 {
  84. x >>= 8
  85. n = 8
  86. }
  87. return n + int(len_u8_table[x])
  88. }
  89. len_u32 :: proc(x: u32) -> (n: int) {
  90. x := x
  91. if x >= 1<<16 {
  92. x >>= 16
  93. n = 16
  94. }
  95. if x >= 1<<8 {
  96. x >>= 8
  97. n += 8
  98. }
  99. return n + int(len_u8_table[x])
  100. }
  101. len_u64 :: proc(x: u64) -> (n: int) {
  102. x := x
  103. if x >= 1<<32 {
  104. x >>= 32
  105. n = 32
  106. }
  107. if x >= 1<<16 {
  108. x >>= 16
  109. n += 16
  110. }
  111. if x >= 1<<8 {
  112. x >>= 8
  113. n += 8
  114. }
  115. return n + int(len_u8_table[x])
  116. }
  117. len_uint :: proc(x: uint) -> (n: int) {
  118. when size_of(uint) == size_of(u64) {
  119. return len_u64(u64(x))
  120. } else {
  121. return len_u32(u32(x))
  122. }
  123. }
  124. // returns the minimum number of bits required to represent x
  125. len :: proc{len_u8, len_u16, len_u32, len_u64, len_uint}
  126. add_u32 :: proc(x, y, carry: u32) -> (sum, carry_out: u32) {
  127. tmp_carry, tmp_carry2: bool
  128. sum, tmp_carry = intrinsics.overflow_add(x, y)
  129. sum, tmp_carry2 = intrinsics.overflow_add(sum, carry)
  130. carry_out = u32(tmp_carry | tmp_carry2)
  131. return
  132. }
  133. add_u64 :: proc(x, y, carry: u64) -> (sum, carry_out: u64) {
  134. tmp_carry, tmp_carry2: bool
  135. sum, tmp_carry = intrinsics.overflow_add(x, y)
  136. sum, tmp_carry2 = intrinsics.overflow_add(sum, carry)
  137. carry_out = u64(tmp_carry | tmp_carry2)
  138. return
  139. }
  140. add_uint :: proc(x, y, carry: uint) -> (sum, carry_out: uint) {
  141. when size_of(uint) == size_of(u64) {
  142. a, b := add_u64(u64(x), u64(y), u64(carry))
  143. } else {
  144. #assert(size_of(uint) == size_of(u32))
  145. a, b := add_u32(u32(x), u32(y), u32(carry))
  146. }
  147. return uint(a), uint(b)
  148. }
  149. add :: proc{add_u32, add_u64, add_uint}
  150. sub_u32 :: proc(x, y, borrow: u32) -> (diff, borrow_out: u32) {
  151. tmp_borrow, tmp_borrow2: bool
  152. diff, tmp_borrow = intrinsics.overflow_sub(x, y)
  153. diff, tmp_borrow2 = intrinsics.overflow_sub(diff, borrow)
  154. borrow_out = u32(tmp_borrow | tmp_borrow2)
  155. return
  156. }
  157. sub_u64 :: proc(x, y, borrow: u64) -> (diff, borrow_out: u64) {
  158. tmp_borrow, tmp_borrow2: bool
  159. diff, tmp_borrow = intrinsics.overflow_sub(x, y)
  160. diff, tmp_borrow2 = intrinsics.overflow_sub(diff, borrow)
  161. borrow_out = u64(tmp_borrow | tmp_borrow2)
  162. return
  163. }
  164. sub_uint :: proc(x, y, borrow: uint) -> (diff, borrow_out: uint) {
  165. when size_of(uint) == size_of(u64) {
  166. a, b := sub_u64(u64(x), u64(y), u64(borrow))
  167. } else {
  168. #assert(size_of(uint) == size_of(u32))
  169. a, b := sub_u32(u32(x), u32(y), u32(borrow))
  170. }
  171. return uint(a), uint(b)
  172. }
  173. sub :: proc{sub_u32, sub_u64, sub_uint}
  174. mul_u32 :: proc(x, y: u32) -> (hi, lo: u32) {
  175. z := u64(x) * u64(y)
  176. hi, lo = u32(z>>32), u32(z)
  177. return
  178. }
  179. mul_u64 :: proc(x, y: u64) -> (hi, lo: u64) {
  180. prod_wide := u128(x) * u128(y)
  181. hi, lo = u64(prod_wide>>64), u64(prod_wide)
  182. return
  183. }
  184. mul_uint :: proc(x, y: uint) -> (hi, lo: uint) {
  185. when size_of(uint) == size_of(u32) {
  186. a, b := mul_u32(u32(x), u32(y))
  187. } else {
  188. #assert(size_of(uint) == size_of(u64))
  189. a, b := mul_u64(u64(x), u64(y))
  190. }
  191. return uint(a), uint(b)
  192. }
  193. mul :: proc{mul_u32, mul_u64, mul_uint}
  194. div_u32 :: proc(hi, lo, y: u32) -> (quo, rem: u32) {
  195. assert(y != 0 && y <= hi)
  196. z := u64(hi)<<32 | u64(lo)
  197. quo, rem = u32(z/u64(y)), u32(z%u64(y))
  198. return
  199. }
  200. div_u64 :: proc(hi, lo, y: u64) -> (quo, rem: u64) {
  201. y := y
  202. two32 :: 1 << 32
  203. mask32 :: two32 - 1
  204. if y == 0 {
  205. panic("divide error")
  206. }
  207. if y <= hi {
  208. panic("overflow error")
  209. }
  210. s := uint(count_leading_zeros(y))
  211. y <<= s
  212. yn1 := y >> 32
  213. yn0 := y & mask32
  214. un32 := hi<<s | lo>>(64-s)
  215. un10 := lo << s
  216. un1 := un10 >> 32
  217. un0 := un10 & mask32
  218. q1 := un32 / yn1
  219. rhat := un32 - q1*yn1
  220. for q1 >= two32 || q1*yn0 > two32*rhat+un1 {
  221. q1 -= 1
  222. rhat += yn1
  223. if rhat >= two32 {
  224. break
  225. }
  226. }
  227. un21 := un32*two32 + un1 - q1*y
  228. q0 := un21 / yn1
  229. rhat = un21 - q0*yn1
  230. for q0 >= two32 || q0*yn0 > two32*rhat+un0 {
  231. q0 -= 1
  232. rhat += yn1
  233. if rhat >= two32 {
  234. break
  235. }
  236. }
  237. return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s
  238. }
  239. div_uint :: proc(hi, lo, y: uint) -> (quo, rem: uint) {
  240. when size_of(uint) == size_of(u32) {
  241. a, b := div_u32(u32(hi), u32(lo), u32(y))
  242. } else {
  243. #assert(size_of(uint) == size_of(u64))
  244. a, b := div_u64(u64(hi), u64(lo), u64(y))
  245. }
  246. return uint(a), uint(b)
  247. }
  248. div :: proc{div_u32, div_u64, div_uint}
  249. is_power_of_two_u8 :: proc(i: u8) -> bool { return i > 0 && (i & (i-1)) == 0 }
  250. is_power_of_two_i8 :: proc(i: i8) -> bool { return i > 0 && (i & (i-1)) == 0 }
  251. is_power_of_two_u16 :: proc(i: u16) -> bool { return i > 0 && (i & (i-1)) == 0 }
  252. is_power_of_two_i16 :: proc(i: i16) -> bool { return i > 0 && (i & (i-1)) == 0 }
  253. is_power_of_two_u32 :: proc(i: u32) -> bool { return i > 0 && (i & (i-1)) == 0 }
  254. is_power_of_two_i32 :: proc(i: i32) -> bool { return i > 0 && (i & (i-1)) == 0 }
  255. is_power_of_two_u64 :: proc(i: u64) -> bool { return i > 0 && (i & (i-1)) == 0 }
  256. is_power_of_two_i64 :: proc(i: i64) -> bool { return i > 0 && (i & (i-1)) == 0 }
  257. is_power_of_two_uint :: proc(i: uint) -> bool { return i > 0 && (i & (i-1)) == 0 }
  258. is_power_of_two_int :: proc(i: int) -> bool { return i > 0 && (i & (i-1)) == 0 }
  259. is_power_of_two :: proc{
  260. is_power_of_two_u8, is_power_of_two_i8,
  261. is_power_of_two_u16, is_power_of_two_i16,
  262. is_power_of_two_u32, is_power_of_two_i32,
  263. is_power_of_two_u64, is_power_of_two_i64,
  264. is_power_of_two_uint, is_power_of_two_int,
  265. }
  266. @private
  267. len_u8_table := [256]u8{
  268. 0 = 0,
  269. 1 = 1,
  270. 2..<4 = 2,
  271. 4..<8 = 3,
  272. 8..<16 = 4,
  273. 16..<32 = 5,
  274. 32..<64 = 6,
  275. 64..<128 = 7,
  276. 128..<256 = 8,
  277. }
  278. bitfield_extract_u8 :: proc(value: u8, offset, bits: uint) -> u8 { return (value >> offset) & u8(1<<bits - 1) }
  279. bitfield_extract_u16 :: proc(value: u16, offset, bits: uint) -> u16 { return (value >> offset) & u16(1<<bits - 1) }
  280. bitfield_extract_u32 :: proc(value: u32, offset, bits: uint) -> u32 { return (value >> offset) & u32(1<<bits - 1) }
  281. bitfield_extract_u64 :: proc(value: u64, offset, bits: uint) -> u64 { return (value >> offset) & u64(1<<bits - 1) }
  282. bitfield_extract_u128 :: proc(value: u128, offset, bits: uint) -> u128 { return (value >> offset) & u128(1<<bits - 1) }
  283. bitfield_extract_uint :: proc(value: uint, offset, bits: uint) -> uint { return (value >> offset) & uint(1<<bits - 1) }
  284. bitfield_extract_i8 :: proc(value: i8, offset, bits: uint) -> i8 {
  285. v := (u8(value) >> offset) & u8(1<<bits - 1)
  286. m := u8(1<<(bits-1))
  287. r := (v~m) - m
  288. return i8(r)
  289. }
  290. bitfield_extract_i16 :: proc(value: i16, offset, bits: uint) -> i16 {
  291. v := (u16(value) >> offset) & u16(1<<bits - 1)
  292. m := u16(1<<(bits-1))
  293. r := (v~m) - m
  294. return i16(r)
  295. }
  296. bitfield_extract_i32 :: proc(value: i32, offset, bits: uint) -> i32 {
  297. v := (u32(value) >> offset) & u32(1<<bits - 1)
  298. m := u32(1<<(bits-1))
  299. r := (v~m) - m
  300. return i32(r)
  301. }
  302. bitfield_extract_i64 :: proc(value: i64, offset, bits: uint) -> i64 {
  303. v := (u64(value) >> offset) & u64(1<<bits - 1)
  304. m := u64(1<<(bits-1))
  305. r := (v~m) - m
  306. return i64(r)
  307. }
  308. bitfield_extract_i128 :: proc(value: i128, offset, bits: uint) -> i128 {
  309. v := (u128(value) >> offset) & u128(1<<bits - 1)
  310. m := u128(1<<(bits-1))
  311. r := (v~m) - m
  312. return i128(r)
  313. }
  314. bitfield_extract_int :: proc(value: int, offset, bits: uint) -> int {
  315. v := (uint(value) >> offset) & uint(1<<bits - 1)
  316. m := uint(1<<(bits-1))
  317. r := (v~m) - m
  318. return int(r)
  319. }
  320. bitfield_extract :: proc{
  321. bitfield_extract_u8,
  322. bitfield_extract_u16,
  323. bitfield_extract_u32,
  324. bitfield_extract_u64,
  325. bitfield_extract_u128,
  326. bitfield_extract_uint,
  327. bitfield_extract_i8,
  328. bitfield_extract_i16,
  329. bitfield_extract_i32,
  330. bitfield_extract_i64,
  331. bitfield_extract_i128,
  332. bitfield_extract_int,
  333. }
  334. bitfield_insert_u8 :: proc(base, insert: u8, offset, bits: uint) -> u8 {
  335. mask := u8(1<<bits - 1)
  336. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  337. }
  338. bitfield_insert_u16 :: proc(base, insert: u16, offset, bits: uint) -> u16 {
  339. mask := u16(1<<bits - 1)
  340. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  341. }
  342. bitfield_insert_u32 :: proc(base, insert: u32, offset, bits: uint) -> u32 {
  343. mask := u32(1<<bits - 1)
  344. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  345. }
  346. bitfield_insert_u64 :: proc(base, insert: u64, offset, bits: uint) -> u64 {
  347. mask := u64(1<<bits - 1)
  348. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  349. }
  350. bitfield_insert_u128 :: proc(base, insert: u128, offset, bits: uint) -> u128 {
  351. mask := u128(1<<bits - 1)
  352. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  353. }
  354. bitfield_insert_uint :: proc(base, insert: uint, offset, bits: uint) -> uint {
  355. mask := uint(1<<bits - 1)
  356. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  357. }
  358. bitfield_insert_i8 :: proc(base, insert: i8, offset, bits: uint) -> i8 {
  359. mask := i8(1<<bits - 1)
  360. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  361. }
  362. bitfield_insert_i16 :: proc(base, insert: i16, offset, bits: uint) -> i16 {
  363. mask := i16(1<<bits - 1)
  364. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  365. }
  366. bitfield_insert_i32 :: proc(base, insert: i32, offset, bits: uint) -> i32 {
  367. mask := i32(1<<bits - 1)
  368. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  369. }
  370. bitfield_insert_i64 :: proc(base, insert: i64, offset, bits: uint) -> i64 {
  371. mask := i64(1<<bits - 1)
  372. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  373. }
  374. bitfield_insert_i128 :: proc(base, insert: i128, offset, bits: uint) -> i128 {
  375. mask := i128(1<<bits - 1)
  376. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  377. }
  378. bitfield_insert_int :: proc(base, insert: int, offset, bits: uint) -> int {
  379. mask := int(1<<bits - 1)
  380. return (base &~ (mask<<offset)) | ((insert&mask) << offset)
  381. }
  382. bitfield_insert :: proc{
  383. bitfield_insert_u8,
  384. bitfield_insert_u16,
  385. bitfield_insert_u32,
  386. bitfield_insert_u64,
  387. bitfield_insert_u128,
  388. bitfield_insert_uint,
  389. bitfield_insert_i8,
  390. bitfield_insert_i16,
  391. bitfield_insert_i32,
  392. bitfield_insert_i64,
  393. bitfield_insert_i128,
  394. bitfield_insert_int,
  395. }