generic_float.odin 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. package strconv
  2. import "decimal"
  3. Decimal_Slice :: struct {
  4. digits: []byte,
  5. count: int,
  6. decimal_point: int,
  7. neg: bool,
  8. }
  9. Float_Info :: struct {
  10. mantbits: uint,
  11. expbits: uint,
  12. bias: int,
  13. }
  14. _f16_info := Float_Info{10, 5, -15}
  15. _f32_info := Float_Info{23, 8, -127}
  16. _f64_info := Float_Info{52, 11, -1023}
  17. generic_ftoa :: proc(buf: []byte, val: f64, fmt: byte, precision, bit_size: int) -> []byte {
  18. bits: u64
  19. flt: ^Float_Info
  20. switch bit_size {
  21. case 16:
  22. bits = u64(transmute(u16)f16(val))
  23. flt = &_f16_info
  24. case 32:
  25. bits = u64(transmute(u32)f32(val))
  26. flt = &_f32_info
  27. case 64:
  28. bits = transmute(u64)val
  29. flt = &_f64_info
  30. case:
  31. panic("strconv: invalid bit_size")
  32. }
  33. neg := bits>>(flt.expbits+flt.mantbits) != 0
  34. exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
  35. mant := bits & (u64(1) << flt.mantbits - 1)
  36. switch exp {
  37. case 1<<flt.expbits - 1:
  38. s: string
  39. if mant != 0 {
  40. s = "NaN"
  41. } else if neg {
  42. s = "-Inf"
  43. } else {
  44. s = "+Inf"
  45. }
  46. n := copy(buf, s)
  47. return buf[:n]
  48. case 0: // denormalized
  49. exp += 1
  50. case:
  51. mant |= u64(1) << flt.mantbits
  52. }
  53. exp += flt.bias
  54. d_: decimal.Decimal
  55. d := &d_
  56. decimal.assign(d, mant)
  57. decimal.shift(d, exp - int(flt.mantbits))
  58. digs: Decimal_Slice
  59. prec := precision
  60. shortest := prec < 0
  61. if shortest {
  62. round_shortest(d, mant, exp, flt)
  63. digs = Decimal_Slice{digits = d.digits[:], count = d.count, decimal_point = d.decimal_point}
  64. switch fmt {
  65. case 'e', 'E': prec = digs.count-1
  66. case 'f', 'F': prec = max(digs.count-digs.decimal_point, 0)
  67. case 'g', 'G': prec = digs.count
  68. }
  69. } else {
  70. switch fmt {
  71. case 'e', 'E': decimal.round(d, prec+1)
  72. case 'f', 'F': decimal.round(d, d.decimal_point+prec)
  73. case 'g', 'G':
  74. if prec == 0 {
  75. prec = 1
  76. }
  77. decimal.round(d, prec)
  78. }
  79. digs = Decimal_Slice{digits = d.digits[:], count = d.count, decimal_point = d.decimal_point}
  80. }
  81. return format_digits(buf, shortest, neg, digs, prec, fmt)
  82. }
  83. format_digits :: proc(buf: []byte, shortest: bool, neg: bool, digs: Decimal_Slice, precision: int, fmt: byte) -> []byte {
  84. Buffer :: struct {
  85. b: []byte,
  86. n: int,
  87. }
  88. to_bytes :: proc(b: Buffer) -> []byte {
  89. return b.b[:b.n]
  90. }
  91. add_bytes :: proc(buf: ^Buffer, bytes: ..byte) {
  92. buf.n += copy(buf.b[buf.n:], bytes)
  93. }
  94. b := Buffer{b = buf}
  95. prec := precision
  96. switch fmt {
  97. case 'f', 'F':
  98. add_bytes(&b, '-' if neg else '+')
  99. // integer, padded with zeros when needed
  100. if digs.decimal_point > 0 {
  101. m := min(digs.count, digs.decimal_point)
  102. add_bytes(&b, ..digs.digits[0:m])
  103. for ; m < digs.decimal_point; m += 1 {
  104. add_bytes(&b, '0')
  105. }
  106. } else {
  107. add_bytes(&b, '0')
  108. }
  109. // fractional part
  110. if prec > 0 {
  111. add_bytes(&b, '.')
  112. for i in 0..<prec {
  113. c: byte = '0'
  114. if j := digs.decimal_point + i; 0 <= j && j < digs.count {
  115. c = digs.digits[j]
  116. }
  117. add_bytes(&b, c)
  118. }
  119. }
  120. return to_bytes(b)
  121. case 'e', 'E':
  122. add_bytes(&b, '-' if neg else '+')
  123. ch := byte('0')
  124. if digs.count != 0 {
  125. ch = digs.digits[0]
  126. }
  127. add_bytes(&b, ch)
  128. if prec > 0 {
  129. add_bytes(&b, '.')
  130. i := 1
  131. m := min(digs.count, prec+1)
  132. if i < m {
  133. add_bytes(&b, ..digs.digits[i:m])
  134. i = m
  135. }
  136. for ; i <= prec; i += 1 {
  137. add_bytes(&b, '0')
  138. }
  139. }
  140. add_bytes(&b, fmt)
  141. exp := digs.decimal_point-1
  142. if digs.count == 0 {
  143. // Zero has exponent of 0
  144. exp = 0
  145. }
  146. ch = '+'
  147. if exp < 0 {
  148. ch = '-'
  149. exp = -exp
  150. }
  151. add_bytes(&b, ch)
  152. switch {
  153. case exp < 10: add_bytes(&b, '0', byte(exp)+'0') // add prefix 0
  154. case exp < 100: add_bytes(&b, byte(exp/10)+'0', byte(exp%10)+'0')
  155. case: add_bytes(&b, byte(exp/100)+'0', byte(exp/10)%10+'0', byte(exp%10)+'0')
  156. }
  157. return to_bytes(b)
  158. case 'g', 'G':
  159. eprec := prec
  160. if eprec > digs.count && digs.count >= digs.decimal_point {
  161. eprec = digs.count
  162. }
  163. if shortest {
  164. eprec = 6
  165. }
  166. exp := digs.decimal_point - 1
  167. if exp < -4 || exp >= eprec {
  168. if prec > digs.count {
  169. prec = digs.count
  170. }
  171. return format_digits(buf, shortest, neg, digs, prec-1, fmt+'e'-'g') // keep the same case
  172. }
  173. if prec > digs.decimal_point {
  174. prec = digs.count
  175. }
  176. return format_digits(buf, shortest, neg, digs, max(prec-digs.decimal_point, 0), 'f')
  177. case:
  178. add_bytes(&b, '%', fmt)
  179. return to_bytes(b)
  180. }
  181. }
  182. round_shortest :: proc(d: ^decimal.Decimal, mant: u64, exp: int, flt: ^Float_Info) {
  183. if mant == 0 { // If mantissa is zero, the number is zero
  184. d.count = 0
  185. return
  186. }
  187. /*
  188. 10^(dp-nd) > 2^(exp-mantbits)
  189. log2(10) * (dp-nd) > exp-mantbits
  190. log(2) >~ 0.332
  191. 332*(dp-nd) >= 100*(exp-mantbits)
  192. */
  193. minexp := flt.bias+1
  194. if exp > minexp && 332*(d.decimal_point-d.count) >= 100*(exp - int(flt.mantbits)) {
  195. // Number is already its shortest
  196. return
  197. }
  198. upper_: decimal.Decimal; upper := &upper_
  199. decimal.assign(upper, 2*mant - 1)
  200. decimal.shift(upper, exp - int(flt.mantbits) - 1)
  201. mantlo: u64
  202. explo: int
  203. if mant > 1<<flt.mantbits || exp == minexp {
  204. mantlo = mant-1
  205. explo = exp
  206. } else {
  207. mantlo = 2*mant - 1
  208. explo = exp-1
  209. }
  210. lower_: decimal.Decimal; lower := &lower_
  211. decimal.assign(lower, 2*mantlo + 1)
  212. decimal.shift(lower, explo - int(flt.mantbits) - 1)
  213. inclusive := mant%2 == 0
  214. for i in 0..<d.count {
  215. l: byte = '0' // lower digit
  216. if i < lower.count {
  217. l = lower.digits[i]
  218. }
  219. m := d.digits[i] // middle digit
  220. u: byte = '0' // upper digit
  221. if i < upper.count {
  222. u = upper.digits[i]
  223. }
  224. ok_round_down := l != m || inclusive && i+1 == lower.count
  225. ok_round_up := m != u && (inclusive || m+1 < u || i+1 < upper.count)
  226. if ok_round_down && ok_round_up {
  227. decimal.round(d, i+1)
  228. return
  229. }
  230. if ok_round_down {
  231. decimal.round_down(d, i+1)
  232. return
  233. }
  234. if ok_round_up {
  235. decimal.round_up(d, i+1)
  236. return
  237. }
  238. }
  239. }
  240. @(private)
  241. decimal_to_float_bits :: proc(d: ^decimal.Decimal, info: ^Float_Info) -> (b: u64, overflow: bool) {
  242. end :: proc "contextless" (d: ^decimal.Decimal, mant: u64, exp: int, info: ^Float_Info) -> (bits: u64) {
  243. bits = mant & (u64(1)<<info.mantbits - 1)
  244. bits |= u64((exp-info.bias) & (1<<info.expbits - 1)) << info.mantbits
  245. if d.neg {
  246. bits |= 1<< info.mantbits << info.expbits
  247. }
  248. return
  249. }
  250. set_overflow :: proc "contextless" (mant: ^u64, exp: ^int, info: ^Float_Info) -> bool {
  251. mant^ = 0
  252. exp^ = 1<<info.expbits - 1 + info.bias
  253. return true
  254. }
  255. mant: u64
  256. exp: int
  257. if d.count == 0 {
  258. mant = 0
  259. exp = info.bias
  260. b = end(d, mant, exp, info)
  261. return
  262. }
  263. if d.decimal_point > 310 {
  264. set_overflow(&mant, &exp, info)
  265. b = end(d, mant, exp, info)
  266. return
  267. } else if d.decimal_point < -330 {
  268. mant = 0
  269. exp = info.bias
  270. b = end(d, mant, exp, info)
  271. return
  272. }
  273. @static power_table := [?]int{1, 3, 6, 9, 13, 16, 19, 23, 26}
  274. exp = 0
  275. for d.decimal_point > 0 {
  276. n := 27 if d.decimal_point >= len(power_table) else power_table[d.decimal_point]
  277. decimal.shift(d, -n)
  278. exp += n
  279. }
  280. for d.decimal_point < 0 || d.decimal_point == 0 && d.digits[0] < '5' {
  281. n := 27 if -d.decimal_point >= len(power_table) else power_table[-d.decimal_point]
  282. decimal.shift(d, n)
  283. exp -= n
  284. }
  285. // go from [0.5, 1) to [1, 2)
  286. exp -= 1
  287. if exp < info.bias + 1 {
  288. n := info.bias + 1 - exp
  289. decimal.shift(d, n)
  290. exp += n
  291. }
  292. if (exp-info.bias) >= (1<<info.expbits - 1) {
  293. set_overflow(&mant, &exp, info)
  294. b = end(d, mant, exp, info)
  295. return
  296. }
  297. decimal.shift(d, int(1 + info.mantbits))
  298. mant = decimal.rounded_integer(d)
  299. if mant == 2<<info.mantbits {
  300. mant >>= 1
  301. exp += 1
  302. if (exp-info.bias) >= (1<<info.expbits - 1) {
  303. set_overflow(&mant, &exp, info)
  304. b = end(d, mant, exp, info)
  305. return
  306. }
  307. }
  308. if mant & (1<<info.mantbits) == 0 {
  309. exp = info.bias
  310. }
  311. b = end(d, mant, exp, info)
  312. return
  313. }